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Time Dependency

Seasons, Circadian cycles

e The world and us are hugely complex dynamical system:
o Cosmos

v pi

Heart sinus rhythm
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N




Feedforward Topology

e But we keep using a finite unidirectional information
flow created by finite impulse response (FIR) filter

e FIR filter, combinatorial model.
e No contex: static mapping.

* Rely on a priori knowledge of desired topology.

e Dy =3 hG)
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General Continuous Nonlinear State-
Space-Model

LEARNING MACHINE

Current
sample ok
p W State Output
) > = X; y:
Hidden State - Measurement
Xi-1 Model Model
—
i Pam—

x; = f(x;-1, ;)

y; = h(x;)

with input vector u; € R"*, state vector x; € R"* output vector y, € R"v.




The Bayesian Filter

HENEM
Xi—l f () Xi f () Xi+1
O - O
h() Step 1: Prediction
p(xi|Di-1) = /p(Xi|Xz'—1)p(Xi—1|Dz'—1)dXz'—l
Step 2: Measurement update
Y p(yilxi) p(xi|Di—1)
p(xi|D;) =

p(yi|Di-1)
where the denominator is calculated as

pilDi) = [ plyilx) p(xiiDi-1) i,

State model: Propagate distribution of hidden state
e




Hierarchical Linear Dynamical System

HENEN

® The linear model consists of one
measurement equation and multiple state

transition equations. Layer 3
2t = Zt—1 T Dt
ug = Gui_1+Dzi_1+7r Layer 2
t t—1 T D21 + 1 y s “':5 .
r, = Fxi 14+ Bui—1+ wy INING TR 17
ye = Hxy+ v Layer 1

® By design the top layer creates point
attractors (Brownian state) to extract
redundancies in the sound time structure XXX
by slowing down the top layer dynamics. Frequency

® The nested HLDS is driven bottom-up by
the observations, and top-down by the
states so indirectly it segments the input
in spectral uniform regions.

Cinar G., Principe J., “Clustering of Time Series Using a Hierarchical
Linear Dynamical System”, in Proc. ICASSP 2014, Florence, Italy




State Estimation in Joint Space

HENEN

 We can re-write the nested dynamics as follows:

X, = FX,1+W, EqU|v§Ient to a single
s layer linear model!
y = HX;+
- <t - am’ Constraints naturally
where Xe= | u |, F=|D G enforced by design
~ B Pk
and H=1[0 0 H|,W,= |
Wi

* These equations define a joint state-space where we can do the estimation
of all the hidden states in all the layers simultaneously.

e Therefore we can use the unconstrained cost function for inference and
exploit the computational efficiency of the Kalman Filter.




Point attractors for Trumpet Notes

Train with audio samples from Univ. of lowa Musical
Instrument notes (2 sec sustained notes) in the range

E3-D6 for the nonvibrato Trumpet.

The algorithm organizes in a self organizing fashion the
different time structure of notes into point attractors in the
state space of the highest layer (Hopfield network).
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Monophonic/Chord Note Classification

HENEN

THE TABLE THE PERFORMANCE OF HLDS, SWIPE AND YIN ON MONOPHONIC NOTE CLASSIFICATION TESTED WITH MULTIPLE MUSICAL
INSTRUMENTS.

Instrument  Violin G-string Bass Trombone Tenor Trombone Bass Clarinet Flute Trumpet
HLDS 93.88% 90.41% 92.70% 86.94% 82.66% || 96.61%
SWIPE’ 90.63% 89.11% 92.86% 84.60% 77.91% 95.45%
YIN 51.20% 80.64% 90.40% 82.19% 78.74% 93.71%
Instrument Bb Clarinet Tuba Eb Clarinet Oboe Horn

HLDS 90.57% 87.86% 91.53% 94.22% 97.10%

SWIPE’ 82.94% 86.23% 83.03% 88.48% 96.16%

YIN 82.52% 75.45% 81.20% 77.24% 90.06%

FOR ISOLATED CHORDS USING DIFFERENT METHODS.

THE TABLE SHOWS THE COMPARISON OF THE CLASSIFACTION ACCURACY

HLDS

NMF

Isolated Chord Classification Accuracy 93.45%

91.45%




Advantage of Continuous State Space

{CNE L
06 « Discovery of Notes
34.4 G4 D4
57 A ;;SF‘%?;EG' as s We train 7 models (s = 3, k = 10)
E . Ces i gs-seﬁép's leaving out one note (-BS). How
Eg o E5 Dis' s would the model classify the
i . 1o missing note?
-C6s c6
muw

2" State in 3" Layer

- The model chooses notes that are musically close to B5, i.e. the model assigns
either other octaves of B, or notes that are related as perfect fifths to B

- The model also generalizes from the trumpet to the saxofone.
- We conclude that HLDS learned the metric of the music space.




Testing Musical Distances with HLDS

/N

N SN

\ /N /N 7
/N /N S
SN /N /N

TN,/ N/

* Voice-leading space where pitches are represented by the logarithms of their
fundamental frequencies (pitches are close if they are neighbors on the piano
keyboard). Hence the distance is measured according to the usual metric on R.

 Tonnetz space is based on acoustics (fundamental and harmonics) with notes
places in hexagons (tiling of 2 D space).

 They do not always agree: Based on the Riemannian Tonnetz, C major is closer
to F major, whereas it is closer to F minor based on the voice-leading distance.

 Model agrees most often with Tonnetz (10 from 15 models)




Neural Anatomy of the Visual System

{CNE LY

e We share Helmholtz’
view that cortical
function evolved to
explain sensory inputs.
As such we seek to
understand the role of

processing and stored

experience in a
machine learning
framework for the
decoding of sensory
input.




Cognitive Architecture for Object

Causes

Sensory Inputs

Recognition in Video

Hippocampus G O a I .

Develop a bidirectional,
dynamical, adaptive, sel
-organizing, distributed
and hierarchical model
for sensory cortex

S : processing using

approximate Bayesian
inference.

Principe J. Chalasani R., “Cognitive Architecture for Sensory Processing”, Proceedings of the
IEEE, vol 102, #4, 514-525, 2014
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Sensory Processing Functional Principles

Generalized state space model with additive noise:

y, — Observations _ ™ .
X, — Hidden states Vi = Cxt T Dut T, , Lft
u,— Causal states _ B

Xt -_ Axt_l + But + Vt Mo, 20— Xo A - x, D
Hidden states model the history and C|
the internal state. Vi
Causes model the “inputs” driving the 17

system .
Empirical Bayesian priors create a hierarchical model, the layer on

the top tries to predict the causes for the layer below.




Multi-Layered Architecture

e Tree structure with tiling
of scene at bottom

e Computational model is
uniform within layer and

— N —

',
.

dCross La\yferi La}rer 2

e Different spatial scales due to pooling which also slows
the time scale in upper layers

® Learningis greedy (one layer at a time)
e This creates a Markov chain across layers




Scalable Architecture with Convolutiona

Dynamic Models (CDNSs)
SINGLE LAYER MODEL
A - - v A - -GN
el -] - EhA-E R

5

_ STATE MAPS
(Xt)

Pooling
unpooling

zas

- INPUTS

(1)

Chalasani, R., and Principe, J.C, “Context Dependent Encoding with Convolutional Dynamic
Network", accepted in IEEE Neural Networks and Learning Systems, 2015




Convolution Dynamic Models

« Each channel I™ is modeled as a linear combination of
K matrices convolved with filters C,

K
I'=%C,, *X/+N"  m€&{12,.M}

t
k=1

th(i,j) = ak,k'th—‘l(i’j)-l_‘/tk(i’j)

K
k'=1
* ay are the lateral connections and here we only

consider self-recurrent connections (a, =1 for k=k’, zero
otherwise) because the application is object recognition




Convolutional Dynamic Models

HENEN

« Energy function for state maps (x is a matrix):

M K
El(xtaIta C) — Z HIt,m - ch,m * l‘tkH% + )\th - Xt—lHl ‘|"YHXt
m=1 k=1

« Energy function for cause maps (x is pooled):

K
Ba(us, %, B) =( D b - wenl) + Blul:
k=1

1+ exp(— [ gy Ba * ur,a))
Y& =70 [ 9 }




Convolution Dynamic Models

« Learning is done layer by layer starting from the
bottom

« To simplify learning, we do not consider any top
down connections for inference

 Filters are normalized to unit norm after learning
 The gradients are

K
Vo E==2X""#(1"-YC,,* X"
’ k=1

V., E=-U""*

.‘down(Xf"I)‘

D
d,l
5 exp{—z B.,* U, "}
d=1




Object Recognition- Training

CNELJ

Layer 1 - Causes

* Learning on Van
Hateren natural
video database
(128x128).

 Architecture:

— Layer 1: 16 states of 7x7
filters and 32 causes of
6x6 filters.

— Layer 2: 64 states of 7x7
filters and 128 causes.

— Pooling: 2 x 2 between
states and causes.




Improving Discriminability in Occlusion

LCNE LY
‘
e -H
s ry
e e
=70 Hﬂ

Example Video frames
[VIdTIMIT]

Layer -1 Causes

Principal Component 2

Layer -1 States




Object Recognition with Time Context

Contextual information during inference can lead to a consistent
representation of objects

e COIL-100 dataset:
e /2 frames per object.

e Top-down inference is run over
each sequence

e \We assume that the test data is
partially available (4 frames)
during training.

e So called “transductive”
learning.

e Four frames per object for training
a linear SVM.

(0°, 90°, 180°, 270°)




Object Recognition Results
Methods Accuracy (%)
View-tuned network (VTU) 79.10 %
[Wersing & Korner, 2003]
Convolutional Nets with temporal 92.25 %
coherence [Mobabhi et al, 2009]
Stacked ISA with temporal coherence 87.00 %
[Zou et al, 2012]
Our method; 79.45 %
without temporal coherence
Our method; 94.41 %
with temporal coherence
Our method; 98.34 %
with temporal coherence + Top-down




Testing Discriminability in Sequence
Labeling

e Honda/UCSD face data set (20 for training, 39 for testing) using Viola Jones
face finding algorithm (on 20x20 patches).Histogram equalization is done. 2
layer model (16,48)1 (64,100),, 5x5 filters, causes concatenated as features

4

BN e
Fﬁﬁﬂﬂﬂﬂ
%8‘&&”

N

b

Sequence Lengths 50 frames 100 frames Full length Average
/ Methods

MDA [Wang and Chen, 2009] 74.36 94.87 97.44 88.89
AHISD [Cevikalp and Triggs, 2010] 87.18 84.74 89.74 87.18
CHSID [Cevikalp and Triggs, 2010] 82.05 84.62 92.31 86.33
SANP [Hu et al., 2011] 84.62 92.31 100 92.31
DFRV [Chen et al., 2012b] 89.74 97.44 97.44 94.87
CDN w/o context 89.74 97.44 97.44 94.87

- CDN with context 92.31 100 100 97.43 -




Remarks

The HLDS is easy to compute in real time but it is
restricted to linear inference in the hierarchical
structure

The DCN is computationally demanding but it is
quite general and results are very good.

Hence the goal is to investigate better compromises
of performance versus computational complexity




Dynamical System Modeling

CNELJ

Model parameter unknown

Dynamical system problem

State model: X;; =X; Medel known
Y
Bayesian Filter > PF
Gaussian
. Domain
Adaptive Filter B

|—l_inetar system Non-linear system —l

I | !

| G

A 4 A 4 Y \ 4 A 4
LMS RLS » Ex-RLS |=H KF EKF UKF CKF |

| D | Input Space
g 0 RKHS
oI
8%
2

<Z <z <z @ ts)
KLMS KRLS Ex-KRLS -
7z
KKF
S7
KF in RKHS?77?




Foundations of RKHS

CNEL

Theorem(Moore-Aronszajn): Given any nonnegative definite function
k(x,y), there exists a uniquely determined (possibly infinite dimensional)
Hilbert space H consisting of functions on X such that

(I) Ve € X, k(x,-) e H

(II) Ve € X, Vf e H, f(x) = (f,k(x,-)),. (reproducing property)

Mercer’s Theorem: there are countable many nonnegative eigenvalues

{\; : 7 € N} and corresponding orthonormal eigenfunctions
{1); : i € N} € H}, such that

=) Ai(@)ei(y)", (z,y) € X x X

1€N Ar XY T H
Feature map ¢ : X — H k(z,-) = ¢(x) N Y (D(X)
k(x,y) = (k(z,-),k(y, )y .

= {p(@),0)) — /—>
o (@)(j) = /At ()




Foundations of RKHS

HENEN

Representer Theorem: Functions have the following representation
f() — Z ajk(x% ')) Tj € X.
JEN,
where N,, :={1,2,...,n} and {«; : j € N,,} C R are parameters
typically obtained from training data, {z; : j € N, }.

with an universal kernel, we can approximates any real-valued
target function defined on a compact space arbitrarily well as
the number of summands increases without bound.

Gaussian kernel: is universal defined as
_ 2
k() = exp (L5285 ) = e (~olle — o)

where o is the kernel size and p is the kernel parameter.

Dimensionality of H associated with Gaussian kernel n; is infinite.




Conventional Kernel Approach

e Feedforward network (KLMS): partitions the input into
segments of equal length and learn the nonlinear
mapping between the exemplars and their
corresponding labels.

e Inadequate generalization for modeling dynamlcal
systems:
o Only learns the static mapping between
input-output pairs.

Kernel
Adaptive Filtering

o Infinite number of exemplars leads to an infinite ]
number of weights. Mg _

o Solution is never compact or exact. JOSE C. PRINCIPE

WEIFENG LIU
SIMON HAYKIN

$WILEY



Conventional Kernel Approach

The simplest of the recurrent structures is the
Extended Recursive Least Square (Ex-RLS)
algorithm.

We proved that its kernelized version does not
allow for general modeling in RKHS using the
Representer Theorem.

We implemented a Kernel Kalman filter using
statistical embedding operators, which still has
high computational complexity

Zhu P., Chen B., Principe J., “Learning Nonlinear Generative Models of Time Series with a
Kalman Filter in RKHS”, IEEE Trans. Signal Proc, Vol 62, # 1, 141-155, 2014



General Continuous Nonlinear State-
Space-Model

e For simplicity we can rewrite the state-space model
in terms of a new augmented hidden state vector, via
concatenation

A x| f(x;_1,u;)
Ty T (hof(xior,w)

.= 8§. = Ny
y’L (2 y

)

with new state vector s; € R*=1"y, I,, is an ny, X n, identity matrix,
and o is the function composition operator.




Theory of KAARMA

 To learn the general continuous nonlinear transition and
observation functions, we map the augmented state
vector and input vector into two separate RKHSs

@(s;) € Hs and ¢(w;) € H,

e By the Representer Theorem, the new state-space model
in the coupled RKHS is defined as the following set of
weights (functions in the input space)

A g('7 )
= [h og(, 'J

where H ., 2 Hs ® H, and ® is the tensor-product operator.

Li Kan, Principe J., “Kernel Adaptive Auto Regressive Moving Average Algorithm”, accepted in
IEEE Trans. Neural Networks and Learning Systems, 2015




Theory of KAARMA

e The features in the tensor-product RKHS are
Y(sio1, W) = @(sio1) ® ¢(w;) € Hay
e The tensor product kernel is defined by
(Y(s,0), (s’ u'))n,, = Keu(s,u,8,0") =(Ks @ £y (s, u,8", ')
— }Cu (11, 11/) ICS (Sa S/)a
Gaussian Kernel: K(u, u’) = exp(—a ||u — u’||?)
e And the kernel state-space model is expressed as

s; = QM (si_1,w;)
y; = Is;

the measurement equation I 2 [0 Iny] simplifies to a selector matrix.




Theory of KAARMA

e The general state-space model for dynamical systems
is equivalent to performing linear filtering in the
RKHS with a recurrent RBF network

state to feature space (#H,) mapping

input to feature space (#,) mapping

Simple recurrent network in the RKHS with scalar input and output.




Real Time Recurrent Learning

,
(CNELY

 We evaluate the error gradient at time ; with respect
to the weight in the RKHS

857: o 86?82- o T 8}’1 B Tayz 5’82'

3)’1’

—= —e; 95, 00® where e =3

9Q® — 200F ' 90k
 We expand the state gradient using the product rule

0s; B 3QT¢(S7;_.1,117;) _ QT 8¢(Si._1,11¢)

(K) o)y \T
ok 5 ) o k) +In (i1, w)

where Igfs) is the k-th column of the ng X ng identity matrix.




Real Time Recurrent Learning

,
(CNELY

e Using the Representer Theorem, the weight at time i is a
linear combination of the prior mappings

Q, =V,A;

where @; = [1h(s_1,U0), (S, —2, Wpn,—1)].

e Using substitution and applying the chain rule, we obtain
QT Op(si—1,wi) _ AT oWl (si—1,1;) Osi_1

8Q(k) 851-_1 895@
— 24, ATK; DY as”(‘kl)
o0
K; = diag(¥T%(s;.,u;)) is the diagonal matrix of kernel-evaluation products é A'I, asi_l
D, = [(s_1 —si—1), "+ , (Sm,—2 — s;_1)] is the state difference matrix aﬂgk)



Real Time Recurrent Learning

HENEN

 Finally, we obtain the following recursion

8sz~ aSZ 1

T (k) T
89(’“) —|_I @b(SZ 1,11%) .

e Since the state gradient is independent of the error
(future), we can forward propagate it using the
initialization

880 _ 0
Q)

since the initial state is functionally independent of the filter weights.




Complexity: Regression

HENEN

W) = [¢)(s_1,ug)] update weight
S N A 1\

S—1/( S0 /‘@ 3@ s 8 —M SN | Hidden State
/ / /—,\u/ /\ %

Up | uy U Uus uy” | Input

O = [P(so,w). - W(svotuy)] New Centers

_______________________________________________________________________________________

h,(i+1) — [\I:(i)7 \IJ'] Updated Dictionary

Regression (update every new sample/symbol)

: . N N(N+1

Sum of bases is a triangular number Zk:l k = %

Memory (Training) O(N?) fre #update _ 1
Computation (Training) O(N3) q #symbol




Complexity: Classification

HENEM

W) = [¢)(s_1,ug)] update weight

Hidden State

Up | uy U Uus uy” | Input

O = [P(so,w). - W(svotuy)] New Centers

_______________________________________________________________________________________

v = (@ '] | Updated Dictionary

Classification (update every new sequence/string)

Sum of bases is linear N
Memory (Training) O(N)
Computation (Training) O(N?)

A Hypdate 1
freq — Hsymbol T N




Vector Quantization on the Centers

(CNELY

W) = [h(s_1,ug)] update weight

N N DN N\ 1\
S_15l S0 | > : coo BN .

1 0 /@/’@ P /fﬁ/;f\ N/ Hidden State
W | [ u us us ... un” | Input

O = [P(so,w). - W(svoruy)] New Centers

dis(¥'"”, W) 2  min
1<j<m,

) = (@O \I:”: Updated Dictionary

Chen B., Zhao P., Zhu P., Principe J., Quantized Kernel Least Mean Square Algorithm. IEEE
Trans. Neural Netw. Learning Syst. 23(1): 22-32 (2012)




Remarks on KAARMA

e Learns the general state transition and measurement functions
completely from data.

e Takes scalar input.
e Forces the state vector space into well-separated partitions

e We can use simple clustering techniques (QKAARMA) to
achieve compact solutions without performance sacrifice.

e Distinct regions in the hidden state space correspond to state
nodes in some finite state machine (FSM), with accepting
states indicated by nonnegative response values.




DFA Synthesis from KAARMA

e Once the KAARMA correctly identifies the system, we can
perform a binarization of its continuous state space to
obtain a discrete finite automaton (DFA):

o Start from the initial state, form root node.

o For each distinct state node defined by the quantization partition,
alternate the symbols of the alphabet, e.g., {0,1}, at the network input to
generate the corresponding children states.

O Repeat until no distinct sate is visited.

o Using Moore’s algorithm to eliminate non-distinguishable states, forming the
minimal DFA.

KAARMA becomes a sintactic Battern reCOﬁnizer




Grammatical Inference

WCNELJ

Identification and Reconstruction of DFA on Tomita
Grammars

Comparisons with Recurrent Neural Networks
(RNN)

Comparisons




Syntactic Pattern Recognition

HENEN

Problem: Given a set of positive and negative training
sequences, describe the discriminating property of the two.

Positive Samples Negative Samples
1 10
11 01
111 010
1111 011
11111 110
111111 11111110
(Tomita regular grammar # 1)
Solution:
English: Accept any binary string that does not contain ‘0’.
Regular Expression: 1* \¢‘3
or Deterministic Finite Automaton (DFA):

1



Tomita Grammars

HENEN

e Evaluate the performance of KARF using the Tomita
grammars as benchmark.

Grammar No.  Description

1 2

2 (10)*

3 An odd number of consecutive 1’s is always followed by an even number of consecutive 0’s.
4 Any string with fewer than three consecutive 0’s.

5 Any even length string with zero modulo-2 sum of all the bits.

6 Difference between the number of 1’s and 0’s 1s a multiple of 3.

7 g 1et1




Tomita Grammars

e Training set consists of 1000 randomly generated
binary strings, with lengths of 1-15 symbols (mean
length is 7.758), and labeled according to grammar.

e The stimulus-response pairs are presented to
the network sequentially: one bit at a time.

e At the conclusion of each string, the network weights
are updated.




Tomita Grammars

HENEN

e QKAARMA generated DFA for Tomita grammar #1.

Extracted Automaton Minimized DFA

O State
@ Initial Statc 0‘
@ Accept State

---= ‘0 -Transition \\\
-0.83704 ( ) ‘0>-Self-Transition | ~~__  -0.83704
~ —+— /‘ —= ‘1 -Transition __= —-(«'— © ,‘
3 () “1’-Self-Transition e - 2
//
0. 7295
f\\ 1 /“




Tomita Grammars

HENEN

e QKAARMA generated DFA for Tomita grammar #4.

Extracted Automaton Minimized DFA
0.76541

0.84851

-0.89643 -0.89643
M //




Tomita Grammars

HENEM

e Summary of the result

Grammar QKAARMA size Extract. DFA Min. DFA

#1 20 ol 3
#2 22 6 =
#3 46 8 6
#4 28 7 5
#5 34 5 5
#6 28 5 =
#7 36 8 6




Comparison to RNN

e Performance averaged over 10 random initializations.

e RNNs are epoch trained on all binary strings of length 0-9,
in alphabetical order.

o Test set consists of all strings of length 10-15 (64512 total).

Inference Engine train size testerror accuracy network size extractionrate DFA size
QKAARMA 170 4 99.994 433 1.00 4.5
Grammar I  RNN (Miller & Giles ’93) 23000 I 99.999 9 (lst) 1.00 9.2
RG (Schmidhuber & Hochreiter *96) 182 - - 1 (A1)
QKAARMA 700 3 99995 298 1.00 6
Grammar2 RNN 77000 5 99992 9 (2nd) 1.00 9.9
RG 1511 - - 3 (A1) - -
QKAARMA 900 1343 97919 25 1.00 8.2
Grammar4 RNN 46000 1240  98.078 9 (2nd) 0.81 12.3
RG 13833 - - 2 (Al - -
QKAARMA 1160 2944 95437  36.6 1.00 5.5
Grammar 6 RNN 49000 8725 86.475 9 (2nd) 0.67 10.5
QKAARMA 4400 4623  92.834 30.2 1.00 10.8
Grammar 7 RNN 121000 889  98.622 9 (2nd) 0.86 10.7




Liquid State Machine (LSM)

HENEN

e RNN require significantly more data and training epochs.

e LSMs rely on fixed, randomly initialized recurrent network:
dynamic reservoir.

» No stable state like an attractor: “liquid state”.

Memoryless Readout

|

i (t) = f1 (xM (1))

u(i)

forall: <t

A e XM({:) = (LJ\/[u)(t)
M| State




Temporal Processing

HENEN

 Random displacement of spikes creates two templates: Gaussian or
uniform jitter o = 4 ms.

e Asnon-numeric data, there are no spatial cues to rely on.
e 500 realizations for training and 200 for testing

Poisson Spike Train Templates

wol N

Class 1

Resulting Input Spike Train for Class 0 with Gaussian Jitter

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

time [sec]




Temporal Processing
[LCNE LY
e Data format
~ Template 0 Test Set Template 0 Test Set Binned
- -
5IO 160 150 260 250 % .3I50= 4(I)0 4‘;30 .500 tl'> ‘]IO 175. 2IO. 2I5 6? 6? 4I0 4I.5 .50
Time (ms) Bin (10 ms)




LSM Performance

HENEN

e Recurrent neural microcircuit comprised of 135 integrate and
fire neurons (20% are inhibitory)

 State of microcircuit sampled every 25 ms by low-pass filtering
the response.

Criteria | Linear Classification | p-Delta Rule | Linear Regression | Backpropagation

CC 0.4568 0.6109 0.4773 0.7280

-% MAE 0.2721 0.2533 0.4006 0.2327

= MSE 0.2721 0.1662 0.1928 0.1175
score 0.7841 0.5773 0 0

CC 0.4527 0.5652 0.3757 0.6772

% | MAE 0.2710 0.2674 0.4086 0.2561

= MSE 0.2710 0.1846 0.2207 0.1353
score 0.8052 0.6199 0 0




DFA Solution Using QKAARMA

HENEN

e DFA extracted from QKAARMA with 100% accuracy.

Hidden states s € R3, kernel parameters as = a,, = 1, learning rate n = 0.1,

quantization threshold ¢ = 0.4, DFA extraction quantization threshold ¢pgpa4 = 0.11

Spike Template 0 Spike Template 1




DFA Solution Using QKAARMA

CNELJ

State

State Trajectory Plot for Template 0 DFA

\ \ \ \ \ \
15~
10~
=
0[0
0 25
Time Step
State Trajectory Plot for Template 1 DFA
12 I I
11
10+ 10 —
8- 8 —
7
6 _
41 4 _
21 _
A 0O
U L T©
0 20 25

Time Step




Remarks

 RNN require significantly more data and training
epochs than KAARMA.

e L. SM has no stable states and random recurrent
networks have no guarantee on performance.

e DFA provides efficient and exact solutions.

e Grammar-based solutions open the door to novel
applications in neuroscience such as comparing long
term firing rates of neurons associated with different
behavior.




Future Work

e Feature spaces induced by Gaussian kernels are
special Hilbert spaces where all evaluations are
finite. However, this does not translate directly into
convergent dynamics.

e For recurrent systems, this requires studies of
stability that are beyond bounded-input bounded-
output (BIBO) stability.

e Along with stability, a proper treatment of exploding
gradients will also be pursued in the future.

e Evaluate the performances using distance
measures in the RKHS, e.g., correntropy induced
metric.




