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Signal Processing Field 

 

Hilbert 
Spaces for 
continuous 

time signals,  

grew 
admirably in 

vector spaces 
with digital 
methods  

returning to 
Hilbert 
Spaces      

SP is applied mathematics and it helps information 

technologists invent new realities.  

 

 

 

 

 

 

 

 

 

 

 

SP foot print is enormous and with a remarkable 

balance between theory and applications.  

 

x=f(t) 



Signal Processing Field 
Tools 

SP tools are mostly based on the linear model, 

Gaussian statistics and stationary assumptions,   

 

    While the world is nonstationary, non Gaussian and 

nonlinear 

    Why have the linear model and the Gaussian 

assumptions been so effective approximations? 

 

“Why” questions require some philosophical answers! 



Signal Processing Field 
Tools 

Wigner, 1960 “Unreasonable Effectiveness of Mathematics in the 

Natural Sciences” 

 

Richard Hamming, 1980 (Naval Postgraduate School, Monterey)  

“Unreasonable Effectiveness of Mathematics” states 

We see what we look for 

We pick the mathematics we want 

Science answers very few questions 

The evolution of man provides the model 

 

I will add: SP had the luxury of building communications systems 

under the assumptions it mastered. But more recently SP has 

attacked the problem of speech and video that takes us away 

from our comfort zone.  

The complexities of the world demand new computational 

paradigms  



Signal Processing Field 
Statistical Signal Processing  

There is an obvious overlap between Signal Processing 

and Machine Learning  

 

 

 

 

 

 

 

 

Tom Michell: A computer program is said to learn from experience 

E with respect to some class of tasks T and performance measure 

P, if its performance at tasks in T, as measured by P, improves with 

experience E. 

 

 

 

Machine Learning Signal Processing 

Data mining 

Inductive Inference Algorithms 

Filtering 

Spectral analysis 

Statistical Signal Processing 

Computational learning 



Signal Processing Field 
Statistical Signal Processing  

Statistical Signal Processing (SSP) and Machine Learning (ML) 

share the need for another unreasonable effectiveness: data 

(Halevy et al, 2009). This makes them synergistically intertwined. 

 

Tools are the same (statistics either Bayesian or frequentist).  

SSP tends to address learning in time (non IID assumptions) 

Optimality conditions tend to be different in SSP and ML 

 

Major difference is how methods are applied.  

ML prefers to create generative models for the problem under 

study. Inference models and parameters are determined by data 

and their environments. 

Due to this ML often finds new solutions to complex problems 

(because of the heavy reliance on Bayesian Inference (BI)).  

 

 

 

 

 



Case Study 1: 
Integration of ML and SSP Extends the Linear Model 

for Adaptive Nonlinear Filters 



On-Line Learning for Non-Linear Filters? 
 

 

Can we generalize the LMS algorithm                                    to 
nonlinear models? 

 

and create incrementally the nonlinear mapping? 
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Reproducing Kernel Hilbert Spaces  

  
The simplest kernel is a function of two arguments   

      symmetric                       ,     positive definite                                 

and shift invariant                                                          as the 

Gaussian or Laplacian  

 
Positive definite kernel functions define a Reproducing Kernel 

Hilbert Space (RKHS). A RKHS is a special type of Hilbert Space 

with the reproducing property (kernel trick)  

 
Operating with functions seems complicated and it is! But it 

becomes much easier in RKHS if we restrict the computation to 

inner products, as the most conventional operators in DSP. 
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Kernel Least-Mean-Square (KLMS) 

 
LMS  algorithm 

 

Select our kernel                                        , e.g. a Gaussian 

 

Transform data into a high dimensional feature space F  

      and build a linear model                           in the following way:                        

 

 

 

 

 

 

 

 

RBF Centers are the samples, and weights are the errors! 

KLMS is model free (uses the basis of the space) 
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Growing Network Structure 
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Weight function is incrementally implementing the representer in RKHS 

of the desired input output mapping.  



KLMS- Mackey-Glass Prediction 
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Nonlinear Channel Equalization 

 

  

Algorithms Linear LMS (η=0.005) 
KLMS (η=0.1) 

(NO REGULARIZATION) 

RN 

(REGULARIZED λ=1) 

BER (σ = .1) 0.162±0.014 0.020±0.012 0.008±0.001 

BER (σ = .4) 0.177±0.012 0.058±0.008 0.046±0.003 

BER (σ = .8) 0.218±0.012 0.130±0.010 0.118±0.004 

Algorithms Linear LMS KLMS  RN  

Computation (training) O(l) O(i) O(i3) 

Memory (training) O(l) O(i) O(i2) 

Computation (test) O(l) O(i) O(i) 

Memory (test) O(l) O(i) O(i) 

2( , ) exp( 0.1|| || )i j i ju u u u   

The KLMS solution is well posed in the sense of Hadamard, and does 

not need to be explicitly regularized. So robustness of LMS carries over.  
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Neural Networks versus Kernel Filters 

 

  

ANNs Kernel filters 

Universal Approximators YES YES 

Convex Optimization NO YES 

Model Topology grows with data NO YES 

Require Explicit Regularization NO YES/NO (KLMS) 

Online Learning YES YES 

Computational Complexity LOW MEDIUM 

ANNs are semi-parametric, nonlinear approximators 

Kernel filters are non-parametric, nonlinear approximators 



Kernels Extend Signal Processing to Non 

Numeric Data  

The idea is to find (injective) mappings to the Hilbert space using 
kernelization.  

We will exemplify the technique for neural spike trains, which are point 
processes.  

 

 

 

 

O O O O O Hilbert space 

O O O O Banach space 

O O Metric space 

? ? ? ? ? Point processes? 

Graphs?     Text? 

k-Nearest Neighbor algorithm 

k-means algorithm 

Support Vector Machine, Wiener filters, KLMS,  
KRLS, PCA, CCA, … 

17 



Definition of Neural Spike Trains 

 
Point process describes stochastically a sequence of 

events occurring in time 

A neural spike train is a realization of a point process 
spike train space 

• The probability measure over the spike train space 

defines a point process 

• The conditional intensity function fully describes the PP 

 
 

• The Poisson point process is memoryless l(t|Ht)=l(t).  
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Neural Spike Trains 
RKHS for spikes with cross-intensity kernels 

Given two point processes pi, pj, define the inner 
product between their intensity functions 

 

 

This yields a family of cross-intensity (CI) kernels, in 
terms of the model imposed on the point process 
history, Ht. For Poisson Point Processes 

Memoryless CI (mCI) kernel:   

    

 

Nonlinear cross-intensity (nCI) kernel: 

 

Paiva, et al Neural Computation, 2008 
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Somatosensory Motor Stimulation  

 

 

 

 

How to mimic the perception of  “touch” by electrical 

stimulation in the brain Stimulate Mimic 



log likelihood 

log likelihood 

Inverse controller C(z) Plant model  Ŝ(z)  Plant  S(z) 

d1t 

d2t 

y1t 

y2t 

λ1t 

λ 2t 

d1t 

d2t 

Inverse Adaptive Control for Sensory Motor Stimulation  



     Inverse Controller 

Receives spikes as inputs and produces a 

continuous output.  

Create a linear controller in a RKHS adapted by 

the Kernel LMS algorithm.  

But now the kernel is the nCI kernel (strictly 

positive definite).  

 

 

       

Back propagate the cost through the plant model. 
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Sensory Motor Stimulation 
Results (synthetic data) 

 

 

 

 

Microstimulation produced by the model  



What have we accomplished? 

 

We showed the power of kernel methods: define a 

kernel for your purpose (Gaussian or mCI) and keep 

the SSP model the same!  

Showed how RKHS can extend DSP tools for more 

abstract objects like point processes.  

Used KLMS to implement an universal mapper, 

online, sample by sample, with complexity O(n).  

Optimization is convex on the parameters 

It does not need explicit regularization 

Solution grows with the number of data samples, so 

needs to be pruned in practice 
 

 

 

 



Case Study 2:  
Integration of Information Theory and SSP goes Beyond 

2nd Order Statistics: Robust Similarity Functions  



Correntropy: 
A new generalized similarity measure 

Definition: Cross-correntropy between two arbitrary scalar 

random variables X and Y is defined by 

 

where (.,.) is any continuous positive definite kernel.  

When (.,.) = xy , we obtain cross-correlation.  

When (.,.) is a shift invariant kernel (e.g. Gaussian) we 

have 

 

That can be estimated as  

 

 

What are the properties of this new similarity function? 
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Correntropy: 
A new generalized similarity measure 

Correntropy as a cost function versus MSE.     

 
2

2

,

2

( , ) [( ) ]

( ) ( , )

( )

XY

x y

E

e

MSE X Y E X Y

x y f x y dxdy

e f e de

 

 







,

( , ) [ ( )]

( ) ( , )

( ) ( )

XY

x y

E

e

V X Y E k X Y

k x y f x y dxdy

k e f e de

 

 









Correntropy: 
A new generalized similarity measure 

Correntropy induces a metric (CIM) in the sample 

space defined by   

 

 

Kernel size controls the  

    metric scale 

Therefore correntropy can 

be used as an alternative 

similarity criterion in the  

space of samples. 

1/ 2( , ) ( (0,0) ( , ))CIM X Y V V X Y 

Liu W., Pokharel P., Principe J., “Correntropy: Properties and Applications in Non Gaussian Signal Processing”, IEEE Trans. Sig. Proc, vol 55; # 11, pages 5286-5298 

 



Correntropy: 
A new generalized similarity measure 

When we use correntropy criterion for regression we are 

implementing Huber’s M estimation (robust statistics). When 

applied to the weighted least square problem gives 

 

 

      when  

 

      this leads to maximizing the correntropy of the error at the origin.    
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Correntropy: 
Nonlinear Filtering with Outliers 

Middleton noise model 

 

 

 

 

 

Neural Network approximator   



Auto-Correntropy Function 
 

Definition: The auto-correntropy of a stationary random 

process {xt} is  
 
 

The name correntropy stems from the fact that the mean 

of V(.) over the lags (or the dimensions) is the argument 

of the log of Renyi’s quadratic entropy. 

 
For strictly stationary and ergodic r. p.  
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Santamaria I., Pokharel P., Principe J., “Generalized Correlation Function: Definition, Properties and  

Application to Blind Equalization”, IEEE Trans. Signal Proc. vol 54, no 6, pp 2187- 2186, 2006. 
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Auto-Correntropy Function 
Properties 

It has a maximum at the origin (            ) 

It is a symmetric positive function (hence defines RKHS) 

Its mean value is the argument of the log of Renyi’s 

quadratic entropy 

 

For the Gaussian kernel, correntropy includes second 

and higher order moments of the r.v.  

 

 

The matrix whose elements are the correntopy at 

different lags is Toeplitz 
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Applications of Auto-Correntropy  
Correntropy based correlograms 

lags 

Correntropy can be used in Computational Auditory Scene Analysis  

(CASA), providing high resolution for pitch estimation.  

Figures show the correlogram from a 64 channel cochlea model for one 

synthetic vowel “a” (pitch=100Hz). 

Auto-correlation Function                     Auto-correntropy Function 
  



Beyond 2nd Moment Spectral Representations  
Correntropy Spectral Density 
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Definition: The Fourier transform of the centered auto-correntropy 

function of a strictly stationary process x(t) is called the correntropy 

spectral density (CSD) and is defined by 

 

      

u() is the centered auto-correntropy and  is the frequency in radians. 

u(0) is the generalized variance (projected power in the RKHS).  

 
The CSD contains a sum of higher even moments of the r.v. 

We have implemented a taper approach to eliminate the kernel size and 

defined the weighted taper CSD as the  
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Correntropy Function 
 Detection of sinewave in  stable noise 

PSD: power spectral density 

CSD: correntropy spectral density 

WCSD: weighted correntropy spectral density 

PMSD: power multitapered spectral density 

CMSD: correntropy-based multitaper spectral density 

WCMSD: weighted correntropy-based multitaper spectral density 

700Hz 

Sinewave at 700 Hz  

in =1.5 noise 

GSNR=-9dB 



What have we accomplished? 

 
Correntropy creates a metric space where the 

conventional constant Minkowski metrics are substituted 

with a metric that is a function of distance and includes 

a sum of higher order moments of the data. 

This is very useful for outlier rejection in adaptive 

filtering and is equivalent to M estimation. 

Correntropy function is an alternative for correlation in 

statistical signal processing (also model based).  

A correntropy spectral density can be defined and goes 

beyond second order spectral representations and 

seems appropriate for non Gaussian noise backgrounds.  
 

 

 

 

 



Case Study 3,  
How Neuroscience can Inspire new Paradigms for 

Cognitive Information Processing 
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Cognitive Memory Embodiment 
Hierarchical Organization and Distributed Nature 

•  Circuit diagram of visual 

system1. 

•  Different layers are organized 

in a hierarchy with both forward 

and backward connections.  

•  Memory ( Hippocampus) uses 

the rest of the brain for its 

functionality. Can not dissociate 

memory from visual processing. 

• Storage and recall can be 

modeled as hierarchical brain 

networks.  

 
1 Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb 

Cortex. 1991 Jan-Feb;1(1):1-47. 
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Cognitive Memory Functional Principles 
Generative Model for Learning and Memory 

• Visual Memory is modeled as an inference machine where 
the hidden causes try to predict the sensory inputs.  
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Cognitive Memory Functional Principles 
Hierarchical State Space Models with Unknown Inputs  

HSSM represents the data and the state of the environment by 
considering both hidden states and causal states. 

 
Dynamic hidden states quantify the history and the internal state of the 

system, while the causal states determine the “inputs” driving the 
system .  

 
Empirical Bayesian priors create a hierarchical model, 
 the layer on the top predict the causes for layer below. 
 

Linear Dynamical Systems 
yt – Observations 
xt – Hidden states 
ut – Causal states   

 
 
 
 

But model has to be sparse 
 
 

 

Karl Friston, “A theory of cortical responses,” Philosophical Transactions of The 

Royal Society B: Biological Sciences, vol. 360, pp. 815–836, 2005 



Kalman filter: A popular dynamic 

system used for estimation and 

prediction. Optimal under linear and 

Gaussian assumptions. 

Sparse Coding: Encode the observation 

over a set of over-complete basis such that 

only a few basis are active at each 

instance. 

? 

Dynamic Model with Sparse Coding 

𝑥𝑡 = 𝐴𝑥𝑡
− 1 

+ 𝐵𝑢𝑡 + vt   
𝑦𝑡 = 𝐶𝑥𝑡 + 𝑛𝑡 

𝑠. 𝑡 𝑥𝑡 1 ≤  𝜖
   

Sequential Dual Estimation Problem: Train the network assuming that the 

parameters are changing dynamically over time, while considering the 

transition matrix fixed. Alternate between inferring the states and learning the 

parameters. How to propagate the second (or higher order) statistics 

over time, while maintaining the constraints? 

𝑢𝑡 = Unknown control/input signal.  

Cognitive Memory Functional Principles 
Optimal Dynamic Systems with Sparse Coding 



• Consider the prior on the states as 

 

    It can be shown that it leads to an l1-norm constraint. 

• Optimization: Find MAP estimate of xt and ut using EM 

algorithm while considering  as a hidden variable 

• E Step: Marginalize  to obtain its posterior 

 

• M Step: Solve for xt and ut using 

 

• The posterior distribution over states xt is approximated 

as a Super Gaussian, and the propagation of the 

Covariance Matrix over time is still possible.  

Alex Nelson. Nonlinear estimation and modeling of noisy time-series by dual Kalman filtering methods. PhD thesis, 2000. 

Cognitive Memory Functional Principles 
Bayesian Sparse Coding 
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Example: Natural Time-Varying Images 

Basis 

The states change gradually i.e., gradual change in 

the basis over time. 

11x11 video patches (observations). The dataset contains 800, 
150 frames obtained from videos of natural scenes. 



Example: Natural Time-Varying Images 

Results show the "generated" data for a single layer network.  

Once the system is learnt, fix the cause u(t) over time and initialize the 

states to zeros and let the system evolve over time (same procedure 

for the attractor curves as well).  

 

 
Causes act as control inputs and determine the shape of the attractor. 

With fixed inputs Change in the attractors for different control signals/inputs. 



What have we accomplished? 

 

NeuroScience tells us that neural processing is bottom up 

but also top down in close loop feedback.  

We are determined to understand using ML and SSP 

principles how distributed hierarchical dynamical models 

with sparse constraints can model visual memory and 

provide efficient CAM storage.  

Coupling causes (memory) with the processing may 

simplify tremendously scene labeling, and explain figure 

background segregation (you see what you want to see!) 

This system uses compressive sampling but learns the 

basis functions. This can have impact both on multimodal 

video processing and reduce greatly storage. 

   
 

 

 

 

 



Conclusions 

 

We showed how Machine Learning and Information 

Theoretic ideas can push Statistical Signal Processing out 

of its mold of linear models, Gaussian, and non stationary 

assumptions 

Machine Learning and Information Theory provide 

rigorous frameworks and the skills of Signal Processing 

experts are badly needed to make these ideas practical.  

The applications are many in speech and video analysis  

The impact in creating Cognitive Information Processing 

systems for engineering can be enormous.    
 

 

 

 

 


