
Towards Ultra-Low Power Pulse
Based Signal Processing

Jose C. Principe
Distinguished Professor

University of Florida
principe@cnel.ufl.edu

www.cnel.ufl.edu

Euro Micro 2015

Acknowledgements

Joint work with Drs. John Harris and Nima Maghari

Students: Gabriel Nallathambi
 Kan Li

 Alex Singh
 Manu Rastogi
 Christy Rogers
 Du Chen
 Das Wei

Supported by NIH and NSF

Digital Computing
•  Church-Turing (1936) developed the theory of formal systems

and propositional calculus that enabled computation

•  Von Neumann (1945) proposed an architecture to implement it

•  Number representations are supported by logic. This created
our current model of computation, which is digital.

•  We should appreciate the value of these theoretical and
engineering achievements, and look at this systematic
approach as an example to follow.

•  Digital computing is ubiquitous and currently we do not have
yet competitors (quantum computing).

From Real World Signals to Numbers:
 Sampling Theory

Output Space

Bit Streams

Input Space

Time Functions

Reconstruction
to Input Space

Definition: Sampling is a one to one mapping between algebraic
 spaces with a unique inverse (isomorphism)

Band-limited
Shift-invariant
Sparse

Point evaluation
Local average
Random projection

Linear spaces
Frame methods
L1 minimization

Moore’s Law and Computational
Frameworks

•  The demise of Moore’s Law (1965/75) is pushing us to
imagine computation beyond the digital model.

•  With these two bottlenecks (theoretical and technological),
perhaps it is a good time to think out of the box!

•  I submit that time based computation has really good
attributes (engineers master time measurements). But it is not
fully explored nor theorized.

•  Let us briefly review alternative computational frameworks.

.

Stochastic Computing

•  Gaines (1967) proposed computing with probabilities

instead of numbers (Von Neumann’s stochastic logic).
•  A quantity is represented by a clocked sequence of logic

levels generated by a random process (Bernoulli sequence).
•  He proposed 3 linear mappings of analog variables to digital

variables probabilities (i.e. 0 for zero quantity, 1 for
maximum range, and the probability in between).

•  Finite state machines could operate with these probabilities
to do computation.

•  One of the problems is poor scaling with precision. Still
interesting today because of low power.

 A. ALAGHI, J. HAYES, Survey of Stochastic Computing, ACM TECS, 2012

Non Numeric Computing: Analog

•  The first man made computers were analog.
•  Since the real world is analog it does not require conversion.
•  Analog computation is fast (speed of electrons) and very

appropriate to model dynamical systems because it uses
time to do computation.

•  Analog computing is also low power with current
technologies.

•  But it is plagued by fabrication variations, drift, noise, and
non repeatability.

•  All this limits analog computing scalability and analog
computation is not general purpose at this point.

Non Numeric Computing: Human Brain
The brain is a spatio-temporal dynamical system, i.e.
computation is done in time.

1.  Representation
Neural spike trains are nonlinear
encodings of vector space variables.
2. Computation/Transformation
Linear decoding of spike encodings can
compute arbitrary vector functions.
3. Dynamics
Neural representations are control
theoretic state variables in a nonlinear
dynamical system

Eliasmith & Anderson, 2003 D/A Σωij xi

A/D

Neuromorphic Computing: Silicon Based

•  W. Maass, 1999 showed that computation with
pulses using Leaky Integrate and Fire (LIF) neural
models is universal.

•  It is an electronic implementation of brain like
computation with the known rules of neural function.

•  It is asynchronous, requires integration (or sum of
products) so it is not fully implemented with time
operators

•  More recently many different neuromorphic
architectures are following this approach (IBM
TrueNorth, HRL SyNAPSE)

Neuromorphic Computing: Silicon Based

•  The brain is a crowded noisy environment, and
nature invented the spikes because spikes
– Handle noise well
– Use as little power as possible

•  Spikes are great because we have exquisite
precision in time measurements

•  Neurons are operators on spikes, which still require
analog processing or numeric computation with the
current digital techniques.

•  Can we handle the neural operations differently?

Time –Based Computation

•  Depart from the brain metaphor
Do all computation with time domain operators

•  Challenges
– How to transform signals into pulses (samplers)
– How to compute with pulses in time
– Preserve Von Neumann programmability

IFS ? ?

Available Time Samplers

 Asynchronous Delta-Sigma Modulators

Drawback: Oversampling, since information

is encoded in the event rate

Output
Space

Input
space

Band-limited

Reconstruction

Inequality constraint Low pass filter

Integrate and Fire Sampler
 A special case of an ASDM, but it operates at
sub-Nyquist rates

IFS approximates the input signal by the area under

the curve (rectangles of fixed area). Information is
encoded in the precise timing of the events.

Output
Space

Input
space

Band-limited
Shift-Invariant

Reconstruction

Events at Integral
level crossing

linear adaptive
filters

Integrate and Fire Sampler
 Inspired by how neurons work:

 When the action
 potentials arrive at
 the synaptic input
of a neuron, the
potential field in the
 dendritic tree
slowly rise until the
 neuron fires an
action potential.

Amplifier with pulse coded output, (with Harris, Chen, and Wei), US Patent # 7324035, 2008.

Time

Output

Input

15
t1 t2 t3 t4 t5 t6

Integrate and Fire Sampler

Samples depend on local time structure

With a fixed size area constraint, amplitude is
converted in the time between pulses

We introduce an auxiliary function, the
membrane potential v(t)

16

Integrate and Fire Theory

Membrane
potential

Condition to
fire

Feichtinger H., Principe J., Romero L., Singh A.,Velasco G., “Approximate reconstruction of
bandlimited functions for the integrate and fire sampler”, Advances in Computational Math, Volume
36 Issue 1, pp 67-78, 2012

����v(tj+1)� e�(tj�tj+1)v(tj)
���� = �

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

17

v(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

18

v(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

19

v(t)

Integrate and Fire Theory

For band limited signals we can bound the reconstruction error
based only on the threshold, which also controls the accuracy

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

f̃ =
X

k2Z
sk⇥(·� �k)

ṽ =
X

k2Z
sk⇥(·� �k)

20

2

64
⇥1
...

⇥N

3

75 =

2

664

R t2
t1+� ⇤1(�)d� . . .

R t2
t1+� ⇤M (�)d�

...
. . .

...R tN

tN�1+� ⇤1(�)d� . . .
R tN

tN�1+� ⇤M (�)d�

3

775

2

64
a1
...

aM

3

75

f(t) =
MX

k=1

ak�k(t)

21

⇥� = S⇥a

Integrate and Fire: Reconstruction

Reconstruction can be implemented in batch (blocks of data)
or on-line using recursive least squares type of algorithms.
Basis Function: Splines or Fourier

How to Think About the IF
Sampler in Practice

•  IF sampler is different from ADCs because the
number of pulses are unequally distributed across
the signal (true time processing).

•  This enables sub-sampling rates while preserving
high reconstruction accuracy in high amplitude
portions of the signal.

•  Therefore it behaves like compressive sampling
without imposing the constraint of sparseness.

•  There is no randomness intrinsic in this
operation! 22

Hardware Implementation

[1]M. Rastogi, V. Garg, and J.G. Harris, “Low power integrate and fire circuit for data conversion,” 2009 IEEE International Symposium on
Circuits and Systems, IEEE, 2009, pp. 2669-2672.

8 channel IF chip for Neural implant
4.0 mm X 4.0 mm in CMOS 0.5 um tech.
Chip includes :
1.  8 Bio-Amplifers
2.  8 Voltage-to-current converters
3.  8 Bi-phasic IF
4.  Telemetry DACs
5.  Asynchronous Readout Circuit

Biphasic IF circuit
Single channel IF has ~ 30 transistors.
With a layout box of 100 um X 100 um
In CMOS 0.5 um tech.

FOM (pJ/conv)= 0.6 in 0.6 µm

How to Compute with Pulses

Wish list:
– Avoid binary, synchronous machines!
– Avoid analog integration!

•  Information is contained in the timing and
sequence of pulses, so need to capture this
structure by time operators

•  Need to realize that all signals from the
world are noisy.

How to Compute with Pulses

Two possible methodologies
•  Syntactic Pattern Matching (automata)

– Extract structure of the pulse trains using
definitions (when available) or automatically
from data (machine learning)

•  Arithmetic
– Define a Field on the space of pulse trains (time

functions), instead of real or complex numbers.

Syntactic Pattern Matching
•  The extraction of information should be done on the

EXACT time structure of the pulse trains.
•  The bipolar pulses generated by IFS have positive or

negative polarity and hence have digital amplitude
(-1/+1).

•  Since IFS pulse trains are digital sequences, we can
apply the theory of deterministic finite automata and
formal grammars augmented with duration
constraints.

Hopcroft, Ullman, Introduction to Automata Theory, Languages, and Computation, 1979

DFAs and Attribute Grammars
•  A deterministic finite automaton (DFA) is a 5-tuple,

consisting of a finite set of states, a finite set of input
symbols called the alphabet, a transition function, a
start state, and a set of accept states .

•  An attribute grammar is a four-tuple

 with a finite set of attributes for each symbol
•  Attribute grammars combine both syntactic and

statistical approaches and incorporates language
syntax and contextual semantics.

Start symbol terminals
Non-
terminals Production rules

G(VT ,VN ,P,S)

Application: ECG Beat Detection

200

30 pulses/sec (~8 bits) versus 100 Hz (8 bits)

SP Architecture

Nallathambi G., Principe J., “Integrate and Fire Pulse Train Automaton for QRS detection”
IEEE Trans. Biomed Eng. , 2013.

TIME Attributes

•  Pulse count
•  Start time
•  End time
•  Minimum IPI
•  Time mIPI

All can be implemented
by combinatory logic

Attribute vector

A(p+) = A(p−) =
= {pc, st,et,miv,mit}

Automata Based Decision Logic
~ 1,000 Gates

Comparison

min[Se, +P] Algorithm
99.5% Proposed method

Hamilton and Tompkins [18]
Afonso et al. [19]
Bahoura et al. [20]

>99% Inoue et al. [21]
Li et al. [22]
Poli et al. [23]
Kohler et al. [24]

95%-99% Sun et al. [39]
Suppappola and Sun [40]

Tested with MIT-BIH arrhythmia database

How to Learn Automata from Data?

So far the DFA and AG have been determined from the
clinical ECG knowledge. So this is restrictive and requires
human intervention.

Goal: Use ideas of kernel autoregressive filters (KAARMA) to
learn the input structure through prediction, and then extract
the grammars from the KAARMA

IFS DFA DFA
Li Kan, Principe J., “Kernel Adaptive Auto Regressive Moving Average Algorithm”, accepted
IEEE Trans. Neural Networks and Learning Systems, 2015

State Models in RKHS

The advantage is that a linear
model in RKHS is a nonlinear
model in the input space.

Liu W., Principe J., Haykin S., "Kernel Adaptive Filtering: a Comprehensive Introduction", John Wiley, 2010.

State Models in RKHS- Our Approach
Rewrite the dynamical system equations as

Map the augmented state s(.) and u(.) to two separate RKHS and then create a
product kernel (tensor product)

State Models in RKHS

Parameters can be trained with Real time Recurrent Learning

Syntactic Pattern Recognition with
KAARMA

�  Problem: Given a set of positive and negative training
sequences, describe the discriminating property of the two.

Positive Samples Negative Samples

1 10
11 01
111 00
1111 011
11111 110
111111 11111110

Solution:
English: Accept any binary string that does not contain ‘0’.
Regular Expression: 1*
or Deterministic Finite Automaton (DFA):

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1	

(Tomita regular grammar # 1)

Tomita Grammars

�  Training set consists of 1000 randomly generated binary
strings, with lengths of 1-15 symbols (mean length is 7.758),
and labeled according to grammar.

�  The stimulus-response pairs are presented to the network
sequentially: one bit at a time.

� At the conclusion of each string, the network weights are
updated.

Tomita Grammar Extraction
�  First the state of the KAARMA is bynarized (+/- 1)
� DFA is reduced using the Mealy procedure
� KAARMA generated DFA for Tomita grammar #1.

3
9

Results in Tomita Grammars

Inference Engine train size test error accuracy network size Extraction w.
bynarized state

DFA size

KAARMA 170 4 99.994 43.3 1.00 4.5
Grammar 1 RNN (Miller & Giles ’93) 23000 1 99.999 9 (1st) 1.00 9.2

RG (Schmidhuber & Hochreiter ’96) 182 - - 1 (A1) - -

KAARMA 700 3 99.995 29.8 1.00 6.0
Grammar 2 RNN 77000 5 99.992 9 (2nd) 1.00 9.9

RG 1511 - - 3 (A1) - -
KAARMA 900 1343 97.919 25 1.00 8.2

Grammar 4 RNN 46000 1240 98.078 9 (2nd) 0.81 12.3

RG 13833 - - 2 (A1) - -
KAARMA 1160 2944 95.437 36.6 1.00 5.5

Grammar 6 RNN 49000 8725 86.475 9 (2nd) 0.67 10.5

KAARMA 4400 4623 92.834 30.2 1.00 10.8
Grammar 7 RNN 121000 889 98.622 9 (2nd) 0.86 10.7

These and other tests show that the KAARMA is a powerful
method to extract temporal patterns directly from data.

For real world applications we still need to implement the
attribute grammars to handle noise.

The corresponding DFAs can then be implemented directly in
small programmable gate arrays or customized VLSI chips for
each application with minimal hardware resources.

Summary

The Future:
Fully Reprogrammable & Synthesizable

Analog / Digital Circuits

Goal: to implement the ECG detector in ultra low power
logic using < 5 µWatts.

Full use of digital gates, even for analog amp Vdd=0.4 v.

Adjustable
Impedance

Digital	
 Gate	
 2	

Array	
 With	
 RC

From/To
Sensor

Backend	

Converter

Channel	
 1+
-­‐

1cm

1cm

crystal
I/O

7m
m

battery

(a) (b)

To/From
	
 Sensor

Digital	
 Gate	

Array	
 1

Pu
ls
e	

Si
gn
al
	
 P
ro
ce
ss
in
g

M
em

or
y

Se
ria

l	
 t
o	

Pa

ra
lle
l	
 I
nt
er
fa
ce
	
 (S

PI
)

Adjustable
Impedance

Digital	
 Gate	
 2	

Array	
 With	
 RC

From/To
Sensor

Backend	

Converter

Channel	
 8+
-­‐

Digital	
 Gate	

Array	
 1

antenna

Any finite bandwidth signal can be decomposed as

In practice the delta function is replaced by short pulses of Δt
duration

Suppose we constrain the area to θ

which is what the IFS does. Don’t loose information about f(t)
if we put out a time marker when the area constraint is reached
(the pulse), then the time between two consecutive pulses is θ.

Pulse Domain Arithmetic

Pulse Based Arithmetic Units, Patent pending #23308560, Aug 2015

Arithmetic with IFS Pulse Trains
•  Goals:

 1. Algebraically process the information in
analog signals by converting them to IFS pulse trains
with amplitudes of +/- 1.

 2. Perform addition and multiplication with IFS
pulse trains to mimic the operations of instantaneous
addition and multiplication on the analog signals
•  Information will be exclusively in the time domain

–  Inputs – Pulse trains
–  Output – Pulse train

Guidelines for Pulse Domain
Arithmetic

•  Known:
–  Time between two pulses satisfies the area constraint.

•  To perform arithmetic:
–  Assume all pulse trains are generated by the same IFS

parameters.
–  Relate pulse differences to areas to find out when to

include pulses in the time line resulting from the binary
operation of addition/multiplication.

–  Because pulses occurring in two signals are
asynchronous, it is also necessary to quantify
carryovers between subsequent evaluations.

Pulse Domain Addition -
Illustration

One
constant
area

One
constant
area

One constant area

Pulse Domain Addition –
Algorithm

1.  Find the number of constant areas resulting
from augend and addend at a given pulse
interval.

2.  The floor function of the total number of
constant areas defines the # of pulses of the
output pulse train which represent the same
constant area.

3.  The fractional part in step 2 gives the carryover
area which is added in the next pulse interval.

Results – Addition of Periodic
Pulse Trains

SNR is 88.87dB (simulation with 100 MHz time stamping and 1 MHz counters)

Pulse Trains Input Signals

Results – Addition of Aperiodic
Pulse Trains

SNR is 42.2dB (simulation with 100 MHz time stamping and 1 MHz counters)

Pulse Trains Input Signals

SNR of Addition is Under the
Control of the User

The IFS threshold
can be adjusted
appropriately to get
the desired SNR.

Pulse Domain Multiplication
• To perform multiplication, we need to identity a

pulse train reference - corresponding to a
reference of one under the analog curve

•  This determines the contraction/expansion of timing
in the output pulse train.

Pulse Domain Multiplication -
Illustration

Relative multiplier
area= Reference
IPI/ Multiplier IPI

Pulse Domain Multiplication –
Algorithm

1.  Find the number of constant areas resulting from
multiplier by dividing the reference pulse train by the
multiplier pulse interval.

2.  Find the number of constant areas resulting from
multiplicand at the given pulse interval.

3.  The floor function of the product of the number of
constant areas of step 1 and step 2 gives the output
pulse train which represent the same constant area.

4.  The fractional part of step 3 gives the carryover area
which is added in the next pulse interval.

Results – Multiplication of
Periodic Pulse Trains

SNR is 74.82dB (simulation with 100 MHz time stamping and 1 MHz counters)

Pulse trains Input Signals

Results – Multiplication of
Aperiodic Pulse Trains

SNR is 41.12 dB (simulation with 100 MHz time stamping and 1 MHz counters)

Pulse trains Input signals

SNR of Multiplication is Under
User Control

The threshold can
be adjusted
appropriately to get
the desired SNR.

Current Work

•  We have theoretically proved that pulse train
algebra forms a Field.

•  This allows inner products with pulse trains which
is the foundation of signal processing.

•  We are also developing low power architectures for
processing with IFC pulse trains.
–  The main building block of the
 architecture will be counters.
–  It enables the quantification
 of information in time.

Conclusions

•  Pulse trains created by the IFS do represent analog signals
with an accuracy given by the threshold. So they can
substitute ADCs for digital signal processing.

•  It is possible to quantify properties of time signals using
automata provided the user can infer the rules to achieve
the goals.

•  KAARMA and the binarization of its state appears as an
automatic way of learning the automata structure directly
from data.

•  These automata can be implemented in very simple
systems with the advantage of ultra low power due to
dedicated architectures and ultra low Vdd.

Conclusions

•  We also developed addition and multiplication in the pulse
domain for general purpose computation with pulse trains.

•  Right now this is a curiosity that expands signal processing
in the analog domain using operators, instead of converting
time into amplitude as most of the analog signal processing.

•  If we can implement these rules in ultra low power
Arithmetic Units this opens the door to a revolution in signal
processing.

•  If you are interested in this approach, please contact me.

principe@cnel.ufl.edu

