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Digital Computing 
•  Church-Turing (1936) developed the theory of formal systems 

and  propositional calculus that enabled computation 

•  Von Neumann (1945) proposed an architecture to implement it 

•  Number representations are supported by logic. This created 
our current model of computation, which is digital. 

•  We should appreciate the value of these theoretical and 
engineering achievements, and look at this systematic 
approach as an example to follow.  

•  Digital computing is ubiquitous and currently we do not have 
yet competitors (quantum computing).   



From Real World Signals to Numbers: 
 Sampling Theory 

Output Space 
 

Bit Streams 

Input Space 
 

Time Functions 

Reconstruction 
to Input Space 

 

Definition: Sampling is a one to one mapping between algebraic 
  spaces with a unique inverse (isomorphism) 

Band-limited 
Shift-invariant 
Sparse 

Point evaluation 
Local average 
Random projection 

Linear spaces 
Frame methods 
L1 minimization 



Moore’s Law and Computational 
Frameworks 

 
•  The demise of Moore’s Law (1965/75) is pushing us to 
imagine computation beyond the digital model. 

•  With these two bottlenecks (theoretical and technological), 
perhaps it is a good time to think out of the box!  

•  I submit that time based computation has really good 
attributes (engineers master time measurements). But it is not 
fully explored nor theorized. 

•  Let us briefly review alternative computational frameworks. 
 

 
. 



Stochastic Computing 
 
•  Gaines (1967) proposed computing with probabilities 

instead of numbers (Von Neumann’s stochastic logic).  
•  A quantity is represented by a clocked sequence of logic 

levels generated by a random process (Bernoulli sequence). 
•  He proposed 3 linear mappings of analog variables to digital 

variables probabilities (i.e. 0 for zero quantity, 1 for 
maximum range, and the probability in between). 

•  Finite state machines could operate with these probabilities 
to do computation.  

•  One of the problems is poor scaling with precision. Still 
interesting today because of low power. 

 A. ALAGHI, J. HAYES, Survey of Stochastic Computing, ACM TECS, 2012   



Non Numeric Computing: Analog 
 
•  The first man made computers were analog. 
•  Since the real world is analog it does not require conversion. 
•  Analog computation is fast (speed of electrons) and very 

appropriate to model dynamical systems because it uses 
time to do computation. 

•  Analog computing is also low power with current 
technologies. 

•  But it is plagued by fabrication variations, drift, noise, and 
non repeatability.  

•  All this limits analog computing scalability and analog 
computation is not general purpose at this point. 



Non Numeric Computing: Human Brain 
The brain is a spatio-temporal dynamical system, i.e. 
computation is done in time.  

1.  Representation 
Neural spike trains are nonlinear 
encodings of vector space variables. 
2. Computation/Transformation  
Linear decoding of spike encodings can 
compute arbitrary vector functions. 
3. Dynamics 
Neural representations are control 
theoretic state variables in a nonlinear 
dynamical system 
 
Eliasmith & Anderson, 2003 D/A Σωij xi

A/D 



Neuromorphic Computing: Silicon Based 

•  W. Maass, 1999 showed that computation with 
pulses using Leaky Integrate and Fire (LIF) neural 
models is universal.  

•  It is an electronic implementation of brain like 
computation with the known rules of neural function. 

•  It is asynchronous, requires integration (or sum of 
products) so it is not fully implemented with time 
operators  

•  More recently many different neuromorphic 
architectures are following this approach (IBM 
TrueNorth, HRL SyNAPSE)    



Neuromorphic Computing: Silicon Based 

•  The brain is a crowded noisy environment, and 
nature invented the spikes because spikes 
– Handle noise well  
– Use as little power as possible 

•  Spikes are great because we have exquisite 
precision in time measurements 

•  Neurons are operators on spikes, which still require 
analog processing or numeric computation with the 
current digital techniques. 

•  Can we handle the neural operations differently? 

 



Time –Based Computation 
 

•  Depart from the brain metaphor 
Do all computation with time domain operators 

•  Challenges 
– How to transform signals into pulses (samplers) 
– How to compute with pulses in time 
– Preserve Von Neumann programmability  

IFS ? ? 



Available Time Samplers 

 Asynchronous Delta-Sigma Modulators 
 
 
 
    
    
Drawback: Oversampling, since information 

is encoded in the event rate 

Output 
Space 

Input 
space 

Band-limited 

Reconstruction 

Inequality constraint Low pass filter 



Integrate and Fire Sampler 
 A special case of an ASDM, but it operates at 
sub-Nyquist rates 

 
 
 
    
IFS approximates the input signal by the area under 

the curve (rectangles of fixed area). Information is 
encoded in the  precise timing of the events. 

Output  
Space 

Input 
space 

Band-limited 
Shift-Invariant 

Reconstruction 

Events at Integral 
level crossing 

linear adaptive 
filters 



Integrate and Fire Sampler 
 Inspired by how neurons work: 

    When the action 
 potentials arrive at 
 the synaptic input  
of a neuron, the  
potential field in the 
 dendritic tree  
slowly rise until the 
 neuron fires an  
action potential.  

 
 
 
    

Amplifier with pulse coded output, (with Harris, Chen, and Wei), US Patent # 7324035, 2008.  



Time 

Output 

Input 

15 
t1 t2 t3 t4 t5 t6 

Integrate and Fire Sampler 

Samples depend on local time structure 

With a fixed size area constraint, amplitude is 
converted in the time between pulses 



We introduce an auxiliary function, the 
membrane potential v(t) 

16 

Integrate and Fire Theory 

Membrane 
potential 
 
 
Condition to 
fire 

Feichtinger H., Principe J., Romero L., Singh A.,Velasco G., “Approximate reconstruction of 
bandlimited functions for the integrate and fire sampler”, Advances in Computational Math, Volume 
36 Issue 1, pp 67-78, 2012 
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v(t)
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v(t)
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v(t)



Integrate and Fire Theory 

For band limited signals we can bound the reconstruction error 
based only on the threshold, which also controls the accuracy 
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Integrate and Fire: Reconstruction 

Reconstruction can be implemented in batch (blocks of data) 
or on-line using recursive least squares type of algorithms. 
Basis Function: Splines or Fourier    
   



How to Think About the IF 
Sampler in Practice 

•  IF sampler is different from ADCs because the 
number of pulses are unequally distributed across 
the signal (true time processing).  

•  This enables sub-sampling rates while preserving 
high reconstruction accuracy in high amplitude 
portions of the signal. 

•  Therefore it behaves like compressive sampling 
without imposing the constraint of sparseness. 

•  There is no randomness intrinsic in this 
operation!  22 



Hardware Implementation 

[1]M. Rastogi, V. Garg, and J.G. Harris, “Low power integrate and fire circuit for data conversion,” 2009 IEEE International Symposium on 
Circuits and Systems, IEEE, 2009, pp. 2669-2672. 

8 channel IF chip for Neural implant 
4.0 mm X 4.0 mm  in CMOS 0.5 um tech.  
Chip includes : 
1.  8 Bio-Amplifers  
2.  8 Voltage-to-current converters 
3.  8 Bi-phasic IF 
4.  Telemetry DACs 
5.  Asynchronous Readout Circuit 

Biphasic IF circuit  
Single channel IF has ~ 30 transistors.  
With a layout box of 100 um X 100 um  
In CMOS 0.5 um tech.  
 
FOM (pJ/conv)= 0.6    in   0.6 µm 



How to Compute with Pulses 

Wish list: 
– Avoid binary, synchronous machines! 
– Avoid analog integration!  

•  Information is contained in the timing and 
sequence of pulses, so need to capture this 
structure by time operators 

•  Need to realize that all signals from the 
world are noisy.  

 
  



How to Compute with Pulses 

Two possible methodologies 
•  Syntactic Pattern Matching (automata) 

– Extract structure of the pulse trains using 
definitions (when available) or automatically 
from data (machine learning) 

•  Arithmetic 
– Define a Field on the space of pulse trains (time 

functions), instead of real or complex numbers. 
 
  



Syntactic Pattern Matching 
•  The extraction of information should be done on the 

EXACT time structure of the pulse trains. 
•  The bipolar pulses generated by IFS have positive or 

negative polarity and hence have digital amplitude 
(-1/+1).   

•  Since IFS pulse trains are digital sequences, we can 
apply the theory of deterministic finite automata and 
formal grammars  augmented with duration 
constraints.  

Hopcroft, Ullman, Introduction to Automata Theory, Languages, and Computation, 1979 



DFAs and Attribute Grammars 
•  A deterministic finite automaton (DFA) is a 5-tuple,  

consisting of a finite set of states, a finite set of input 
symbols called the alphabet, a transition function, a 
start state, and a set of accept states . 

•  An attribute grammar is a four-tuple  

 
 

  
   with a finite set of attributes  for each symbol 
•  Attribute grammars combine both syntactic and 

statistical approaches and incorporates language 
syntax and contextual semantics. 

Start symbol terminals 
Non-
terminals Production rules 

G(VT ,VN ,P,S)



Application: ECG Beat Detection 

200 

30 pulses/sec (~8 bits) versus   100 Hz (8 bits)  



SP Architecture 

Nallathambi G., Principe J., “Integrate and Fire Pulse Train Automaton for QRS detection”  
IEEE Trans. Biomed Eng. , 2013. 



TIME Attributes 
 
•  Pulse count 
•  Start time 
•  End time 
•  Minimum IPI 
•  Time mIPI 
 
All can be implemented 
by combinatory logic 
 
Attribute vector 

A(p+ ) = A(p− ) =
= {pc, st,et,miv,mit}



Automata Based Decision Logic 
~ 1,000 Gates 



Comparison 

min[Se, +P] Algorithm 
99.5% Proposed method 

Hamilton and Tompkins [18] 
Afonso et al. [19] 
Bahoura et al. [20] 

>99% Inoue et al. [21] 
Li et al. [22] 
Poli et al. [23] 
Kohler et al. [24] 

95%-99% Sun et al. [39] 
Suppappola and Sun [40] 

Tested with MIT-BIH arrhythmia database 
 



How to Learn Automata from Data? 
 

So far the DFA and AG have been determined from the 
clinical ECG knowledge. So this is restrictive and requires 
human intervention.  
 
Goal: Use ideas of kernel autoregressive filters (KAARMA) to 
learn the input structure through prediction, and then extract 
the grammars from the KAARMA 

IFS DFA DFA 
Li Kan, Principe J., “Kernel Adaptive Auto Regressive Moving Average Algorithm”, accepted 
IEEE Trans. Neural Networks and Learning Systems, 2015 



State Models in RKHS 

The advantage is that a linear  
model in RKHS is a nonlinear  
model in the input space.  

Liu W., Principe J., Haykin S., "Kernel Adaptive Filtering: a Comprehensive Introduction", John Wiley, 2010. 



State Models in RKHS- Our Approach 
Rewrite the dynamical system equations as  

Map the augmented state s(.) and u(.) to two separate RKHS and then create  a 
product kernel                              (tensor product) 



State Models in RKHS 

Parameters can be trained with Real time Recurrent Learning 



Syntactic Pattern Recognition with 
KAARMA 

�  Problem:  Given a set of positive and negative training 
sequences, describe the discriminating property of the two. 

Positive Samples Negative Samples 

1 10 
11 01 
111 00 
1111 011 
11111 110 
111111 11111110 

Solution: 
English: Accept any binary string that does not contain ‘0’. 
Regular Expression: 1* 
or Deterministic Finite Automaton (DFA): 
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(Tomita regular grammar # 1) 
 



Tomita Grammars 

�  Training set consists of 1000 randomly generated binary 
strings, with lengths of 1-15 symbols (mean length is 7.758), 
and labeled according to grammar. 

�  The stimulus-response pairs are presented to the network 
sequentially: one bit at a time. 

� At the conclusion of each string, the network weights are 
updated. 



Tomita Grammar Extraction 
�  First the state of the KAARMA is bynarized (+/- 1) 
� DFA is reduced using the Mealy procedure 
� KAARMA generated DFA for Tomita grammar #1. 

3
9 



Results in Tomita Grammars 

Inference Engine train size test error accuracy network size Extraction w. 
bynarized state 

DFA size 

KAARMA 170 4 99.994 43.3 1.00 4.5 
Grammar 1 RNN (Miller & Giles ’93) 23000 1 99.999 9 (1st) 1.00 9.2 

RG (Schmidhuber & Hochreiter ’96) 182 - - 1 (A1) - - 

KAARMA 700 3 99.995 29.8 1.00 6.0   
Grammar 2 RNN 77000 5 99.992 9 (2nd) 1.00 9.9 

RG 1511 - - 3 (A1) - - 
KAARMA 900 1343 97.919 25 1.00 8.2 

Grammar 4 RNN 46000 1240 98.078 9 (2nd) 0.81 12.3 

RG 13833 - - 2 (A1) - - 
KAARMA 1160 2944 95.437 36.6 1.00 5.5 

Grammar 6 RNN 49000 8725 86.475 9 (2nd) 0.67 10.5 

KAARMA 4400 4623 92.834 30.2 1.00 10.8 
Grammar 7 RNN 121000 889 98.622 9 (2nd) 0.86 10.7 



These and other tests show that the KAARMA is a powerful 
method to extract temporal patterns directly from data. 
 
For real world applications we still need to implement the 
attribute grammars to handle noise.  
 
The corresponding DFAs can then be implemented directly in 
small programmable gate arrays or customized VLSI chips for 
each application with minimal hardware resources.    
 

  

Summary 



The Future:  
Fully Reprogrammable & Synthesizable 

Analog / Digital Circuits 

Goal: to implement the ECG detector in ultra low power 
logic using < 5 µWatts. 
 
 
 
 
 
Full use of digital gates, even for analog amp Vdd=0.4 v. 
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Any finite bandwidth signal can be decomposed as  
 
In practice the delta function is replaced by short pulses of Δt 
duration 
 
Suppose we constrain the area to θ
 
which is what the IFS does. Don’t loose information about f(t)  
if we put out a time marker when the area constraint is reached 
(the pulse), then the time between two consecutive pulses is θ.  
 

  

Pulse Domain Arithmetic 

Pulse Based Arithmetic Units, Patent pending #23308560, Aug 2015 



Arithmetic with IFS Pulse Trains 
•  Goals:  

 1. Algebraically process the information in 
analog signals by converting them to IFS pulse trains 
with amplitudes of +/- 1. 

 2. Perform addition and multiplication with IFS 
pulse trains to mimic the operations of instantaneous 
addition and multiplication on the analog signals  
•  Information will be exclusively in the time domain 

–  Inputs – Pulse trains 
–  Output – Pulse train 

 



Guidelines for Pulse Domain 
Arithmetic 

•  Known:  
–  Time between two pulses satisfies the area constraint.  

•  To perform arithmetic: 
–  Assume all pulse trains are generated by the same IFS 

parameters. 
–  Relate pulse differences to areas to find out when to 

include pulses in the time line resulting from the binary 
operation of addition/multiplication. 

–   Because pulses occurring in two signals are 
asynchronous, it is also necessary to quantify 
carryovers between subsequent evaluations.  



Pulse Domain Addition - 
Illustration 

One 
constant 
area 

One 
constant 
area 

One constant area 



Pulse Domain Addition – 
Algorithm 

1.  Find the number of constant areas resulting 
from augend and addend at a given pulse 
interval. 

2.  The floor function of the total number of 
constant areas defines the # of pulses of the 
output pulse train which represent the same 
constant area.  

3.  The fractional part in step 2 gives the carryover 
area which is added in the next pulse interval. 



Results – Addition of Periodic 
Pulse Trains 

SNR is 88.87dB (simulation with 100 MHz time stamping and 1 MHz counters) 

Pulse Trains Input Signals 



Results – Addition of Aperiodic 
Pulse Trains 

SNR is 42.2dB (simulation with 100 MHz time stamping and 1 MHz counters) 
 

Pulse Trains Input Signals 



SNR of Addition is Under the 
Control of the User 

The IFS threshold 
can be adjusted 
appropriately to get 
the desired SNR. 



Pulse Domain Multiplication 
• To perform multiplication, we need to identity a 

pulse train reference -  corresponding to a 
reference of one under the analog curve 

•  This determines the contraction/expansion of timing 
in the output pulse train. 



Pulse Domain Multiplication - 
Illustration 

Relative multiplier 
area= Reference 
IPI/ Multiplier IPI 



Pulse Domain Multiplication – 
Algorithm 

1.  Find the number of constant areas resulting from 
multiplier by dividing the reference pulse train by the 
multiplier pulse interval. 

2.  Find the number of constant areas resulting from 
multiplicand at the given pulse interval. 

3.  The floor function of the product of the number of 
constant areas of step 1 and step 2 gives the output 
pulse train which represent the same constant area.  

4.  The fractional part of step 3 gives the carryover area 
which is added in the next pulse interval. 



Results – Multiplication of 
Periodic Pulse Trains 

SNR is 74.82dB (simulation with 100 MHz time stamping and 1 MHz counters) 
 

Pulse trains Input Signals 



Results – Multiplication of 
Aperiodic Pulse Trains 

SNR is 41.12 dB (simulation with 100 MHz time stamping and 1 MHz counters) 
 

Pulse trains Input signals 



SNR of Multiplication is Under 
User Control 

The threshold can 
be adjusted 
appropriately to get 
the desired SNR. 



Current Work 

•  We have theoretically proved that pulse train 
algebra forms a Field. 

•  This allows inner products with pulse trains which 
is the foundation of signal processing. 

•  We are also developing low power architectures for 
processing with IFC pulse trains. 
–  The main building block of the 
    architecture will be counters.  
–  It enables the quantification  
   of information in time. 



Conclusions 

•  Pulse trains created by the IFS do represent analog signals 
with an accuracy given by the threshold. So they can 
substitute ADCs for digital signal processing.  

•  It is possible to quantify properties of time signals using 
automata provided the user can infer the rules to achieve 
the goals.  

•  KAARMA and the binarization of its state appears as an 
automatic way of learning the automata structure directly 
from data.  

•  These automata can be implemented in very simple 
systems with the advantage of ultra low power due to 
dedicated architectures and ultra low Vdd.    



Conclusions 

•  We also developed addition and multiplication in the pulse 
domain for general purpose computation with pulse trains.  

•  Right now this is a curiosity that expands signal processing 
in the analog domain using operators, instead of converting 
time into amplitude as most of the analog signal processing.  

•  If we can implement these rules in ultra low power 
Arithmetic Units this opens the door to a revolution in signal 
processing.  

•  If you are interested in this approach, please contact me.  
 

principe@cnel.ufl.edu           


