Interpreting Neural Activity Through Linear and Nonlinear Models for Brain-Machine Interfaces

Justin C. Sanchez
Computational NeuroEngineering Laboratory
justin@cnel.ufl.edu

Sponsored by: DARPA
Brain-Machine Interface Project
Motivation for Modeling and Analysis

- **Help Individuals with Disabilities**
 - Of the 43 million Americans with disabilities, approximately 38 per cent have mobility limitations (NIH 1997).
 - Can we extract information about voluntary movement from the brain?
 - Can we restore movement to individuals with neurological disorders?

- **Augment Performance**
 - The nervous system is slow!
 - Complete limb action (~100-900 msec)
 - Muscle strength is limited

- **Learn about neurophysiology!**
Modeling for Brain Machine Interfaces

Posterior Parietal (PP) – Visual to motor transformation

Premotor (PM) – Preparation and guidance (visual inputs)

Primary Motor (M1) – Initiates muscle contraction

We invoke the principles of:

Broadman – Cytoarchitectonic Analysis, Penfield – Topographic Representation

Adrian – Rate Coding, Georgopoulos – Population Coding
BMIs Present an Input/Output Modeling Problem

- We must create a representation space which can map neuronal firing patterns to hand position
- Adaptive systems are tools for modeling
- What is the complexity of the system being modeled?
- Data: nonstationary, sparse, many-to-one mapping
Model Topologies

Linear Feedforward
“Wiener Filter”

Nonlinear Dynamic
“Recurrent Multilayer Perceptron” (RMLP)

\[y(t) = Wx(t) \]

\[y_1(t) = f(W_1 x(t) + W_f y_1(t-1) + b_1) \]

\[y_2(t) = W_2 y_1(t) + b_2 \]
Motor Task & Simultaneous Recording of Neural Activity

Task 1

- Monkey cued to make a 3-D reaching movement to a food reward.
Model Building Techniques

- Train the adaptive system with neuronal firing patterns as the input and hand position as the desired signal.
- Training - 20,000 samples (~33 minutes of neuronal firing)
- Preserve model generalization
- Freeze weights and present novel neuronal data.
- Testing - 3,000 samples – (5 minutes of neuronal firing)
3-D Trajectory I/O Modeling Movie (Fixed Parameters)

Red - Actual
Blue - Predicted
How does each cortical area contribute to the reconstruction of this movement?
Train 15 separate Wiener filters with every combination of cortical input.
Cortical Contributions **Nonlinear**

Train 15 separate RMLPs with every combination of cortical input.

<table>
<thead>
<tr>
<th>Areas</th>
<th>(Array 1)</th>
<th>(Array 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areas 12</td>
<td>M1</td>
<td>M1</td>
</tr>
<tr>
<td>Areas 13</td>
<td>PP</td>
<td></td>
</tr>
<tr>
<td>Areas 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas 123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas 124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas 134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas 234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas 1234</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing Sensitivities Through the Models

Identify the neurons that affect the output the most.

Feedforward Linear Eq.

\[y(t) = Wx(t) \]

Feedforward RMLP Eqs.

\[y_1(t) = f(W_1 x(t) + W_f y_1(t-1) + b_1) \]

\[y_2(t) = W_2 y_1(t) + b_2 \]

General form of Linear Sensitivity

\[\frac{\partial y(t)}{\partial x(t)} = W \]

General form of RMLP Sensitivity

\[\frac{\partial y_2(t)}{\partial x(t-\Delta)} = W_2^T D_t \left(\prod_{i=1}^{\Delta} W_f^T D_{t-i} \right) W_1^T \]
Select Neurons Based on Sensitivity

Firing Counts of Entire Ensemble of Neurons (104)

Sensitivity = \frac{\text{Change in Position}}{\text{Change in Neural Activity}}

Select Neurons with Largest Sensitivity
Ordered Lists of Important Neurons for each Topology

7/10 most sensitive neurons are identical for both topologies
The Effect of Sensitive Neurons on RMLP Performance
Conclusions

- Interpretation of the neuronal activity is independent of the model topology.
- From a BMI design Perspective:
 - Identified cortical regions contributing to the reaching motor task.
 - Developed methods for selecting neurons related to a reaching motor task.
- Spatially sample the cortex as many neurons as technically feasible.
Acknowledgements

- Deniz Erdogmus
- Yadunandana Rao
- Scott Morrison
- Sung-Phil Kim
- Kenneth Hild

For references see www.cnel.ufl.edu > Research > BMI