
www.elsevier.com/locate/ynimg
NeuroImage 31 (2006) 153 – 159
Mu rhythm (de)synchronization and EEG single-trial classification of

different motor imagery tasks

G. Pfurtscheller,a,* C. Brunner,a A. Schlögl,a and F.H. Lopes da Silvab
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We studied the reactivity of EEG rhythms (mu rhythms) in association

with the imagination of right hand, left hand, foot, and tongue

movement with 60 EEG electrodes in nine able-bodied subjects. During

hand motor imagery, the hand mu rhythm blocked or desynchronized

in all subjects, whereas an enhancement of the hand area mu rhythm

was observed during foot or tongue motor imagery in the majority of

the subjects. The frequency of the most reactive components was 11.7

Hz T 0.4 (mean T SD). While the desynchronized components were

broad banded and centered at 10.9 Hz T 0.9, the synchronized

components were narrow banded and displayed higher frequencies at

12.0 Hz T 1.0. The discrimination between the four motor imagery

tasks based on classification of single EEG trials improved when, in

addition to event-related desynchronization (ERD), event-related

synchronization (ERS) patterns were induced in at least one or two

tasks. This implies that such EEG phenomena may be utilized in a

multi-class brain–computer interface (BCI) operated simply by motor

imagery.

D 2005 Elsevier Inc. All rights reserved.

Introduction

A fundamental property of a neural network is the ability of

neurons to work in synchrony and to generate oscillatory activity

(Lopes da Silva, 1991). One prominent group of such brain

oscillations has frequencies between 9–13 Hz in man and 12–15

Hz in cat and originates in sensorimotor areas. These activities are

known as ‘‘rolandic mu rhythms’’ or ‘‘wicket rhythms’’ in man

(Niedermeyer, 1993; Gastaut, 1952) and sensorimotor rhythms

(SMRs) in cat (Chase and Harper, 1971; Howe and Sterman,

1972).

It is well known that planning and execution of hand and/or

finger movement block or desynchronize the mu rhythm (Chatrian

et al., 1959), and inhibition of motor behavior synchronizes the
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SMR (Howe and Sterman, 1972). The importance of such an

enhancement of 12- to 15-Hz oscillations for biofeedback therapy

was documented already in the seventies by Sterman et al. (1974)

and confirmed by Egner and Gruzelier (2001) and others. It was

already demonstrated that externally paced foot and tongue

movement and imagination of foot movement (Pfurtscheller and

Neuper, 1994, 1997) can enhance the hand area mu rhythm, similar

as observed during reading of words (Pfurtscheller, 1992), pattern

vision (Koshino and Niedermeyer, 1975) or flicker stimulation

(Brechet and Lecasble, 1965). This ability to suppress or enhance

the amplitude of the hand area mu rhythm consciously by directing

attention to different body parts or limbs is not only of interest to

suppress epileptic seizures by neurofeedback therapy (Sterman et

al., 1974) but also for realizing an EEG-based brain–computer

interface (BCI) with motor imagery as a mental strategy (Wolpaw

et al., 2002; Pfurtscheller and Neuper, 2001).

The goals of this paper are

(i) to study the inter- and intrasubject variability of event-

related EEG (de)synchronization patterns (ERD/ERS) in

four motor imagery tasks,

(ii) to study whether the same or different frequency compo-

nents are involved in desynchronization and synchroniza-

tion patterns recorded from the same cortical areas,

(iii) to report on the distinctiveness between four different motor

imagery tasks when single trials are analyzed and classified,

and

(iv) to provide recommendations for the realization of a multi-

class BCI with improved classification accuracy.

Methods

Subjects and experimental paradigm

Six female and three male healthy right-handed subjects

(mean age 26.2 years, range 21–31 years) participated in this
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study. They sat in a comfortable armchair in an electrically

shielded cabin watching a 15� monitor from a distance of about 2

m. Each trial started with a blank screen at second 0. At second

2, a fixation cross was presented at the center of the monitor until

the end of the trial at second 7. Simultaneously, a short warning

tone occurred at second 2. At second 3, an arrow, pointing either

to the left, right, up, or down representing one of four different

motor imagery tasks (left hand, right hand, both feet, and tongue,

respectively), appeared on the screen for 1.25 s. The period

between trials varied randomly between 0.5 and 2.5 s (Fig. 1,

right). The subjects were instructed to perform the indicated

motor imagery task up to second 7. During the motor imagery

task, in particular, the subjects should imagine the indicated

movement. They were asked to imagine the (kinesthetic)

experience of movement (rather than a visual type of imagery)

while remaining relaxed and avoiding any motion during

performance. The experiment was divided into 6 runs, consisting

of 40 trials each, which led to 60 repetitions of each type of

mental task. There were breaks of 3 to 5 min between the runs.

Within each run, the tasks were performed in a random order to

avoid adaptation.

EEG signals were recorded from a grid of 60 Ag/AgCl scalp

electrodes (using a cap by Easycap, Germany) referenced to the left

mastoid. The right mastoid electrode served as ground (Fig. 1, left).

The closely spaced electrodes with distances of approximately 2.5

cm were placed in a configuration including the electrode positions

C3, C4, Cz, Fz, and Pz of the international 10–20 system. The

signals were acquired with a SynAmps amplifier (NeuroScan,

USA) filtered between 1 and 50 Hz. An additional 50-Hz notch

filter was used. The data, including a rectangular trigger signal,

were sampled at 250 Hz.

To obtain reference-free EEG data, calculation of source

derivation based on the center and the four nearest neighboring

electrodes was performed (Hjorth, 1975)—for boundary electro-

des, an equivalent calculation was carried out based on the first,

second, or third nearest neighbors.

After triggering the data, trials of 10-s length were obtained

including 2 s before the warning tone. Single trials were visually

inspected for muscle and ocular artifacts, using the software

package g.BSanalyze (Guger Technologies, Graz, Austria). Trials

containing artifacts were eliminated.

Quantification of ERD/ERS

The quantification of ERD/ERS was carried out in four

steps: bandpass filtering of each trial, squaring of samples, and

subsequent averaging over trials and over sample points. The

ERD/ERS was expressed as percentage power decrease (ERD)

or power increase (ERS) in relation to a 1-s reference interval

before the warning tone (Pfurtscheller and Lopes da Silva,
Fig. 1. Electrode positions (left) and experimental paradigm (right).
1999). The statistical significance of the ERD/ERS values was

verified by applying a t percentile bootstrap statistic to calculate

confidence intervals with a significance level of a = 0.05. This

procedure was carried out for overlapping (by 1 Hz) 2-Hz

bands in the frequency range between 6 and 42 Hz (for details,

see Graimann et al., 2002). The time–frequency maps obtained

were used for selection of the alpha (mu) band rhythms with

the most significant band power increase or decrease during the

motor imagery tasks at the central electrode positions C3, Cz,

and C4.

Analysis and classification of single-trial EEG data

First, the monopolar (raw) EEG data was downsampled from

250 Hz to 125 Hz. Next, adaptive autoregressive (AAR)

parameters (of order 3) were estimated for every monopolar

channel (N = 60) and for every possible combination of bipolar

channels (N = 1770). Accordingly, 60 + 1770 = 1830 single

channel AAR estimates were obtained using the Kalman filtering

algorithm (for details, see Schlögl, 2000). Next, the AAR estimates

from each trial were divided into segments of 25 samples, i.e., 0.2

s. For each segment, a minimum Mahalanobis distance (MDA)

classifier across all trials was calculated and applied to the same

segment. This classifier is based on the so-called Mahalanobis

distance dc(x), which is defined as:

d2c xð Þ ¼ x� lcð ÞR�1c x� lcð ÞT :
Here, lc is the mean and Rc the covariance of the normally

distributed class c, estimated from the corresponding training

samples. For each testing point x in the n-dimensional feature

space, a distance to each class can be calculated, and x is then

assigned to the class with the smallest distance. That way, a simple

and robust statistical classifier can be obtained which is also

applicable to more than two classes.

Accordingly, an average measure for the classification accuracy

of the four class problem (four motor imagery tasks) for each

segment was obtained. As a measure of distinctiveness, the kappa

coefficient j (Kraemer, 1982) was used. In an M class classifica-

tion problem, the proper evaluation of the classifier is described by

its confusion matrix defining the relationship between the true

classes and the output of the classifier. From the confusion matrix

H, we can derive the classification accuracy ACC (overall

agreement) as follows:

ACC ¼ p0 ¼
1

N
~
i

Hii

The chance expected agreement is

pe ¼
~i noinio

NN
;

where N = ~i~jHij is the total number of samples, Hij are elements

of the confusion matrix H on the main diagonal, and noi and nio are

the sums of each column and each row, respectively. Then the

estimate of the kappa coefficient j is

j ¼ p0 � pe

1� pe

with chance probability pe = 1/M. For more details, see also Cohen

(1960), Bortz and Lienert (1998) and Kraemer (1982). To compute

the kappa coefficient, we used the implementation realized in the

BioSig toolbox (Schlögl, 2004).
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Within the trial length of 0 to 7s, the 0.2-s segment with the

largest j was used to set up the classifier. The classifier was cross-

validated using a leave-one-out approach. This provides 7-s time

courses of j for each of the 1830 channels. Next, for each
Fig. 2. (a) Examples of time– frequency maps displaying significant ERD (red) a

locations. (b) Maps displaying the topographical distribution of averaged band p

imagery tasks (second 5.5 to 5.75 of the trial). Data are displayed from 2 represe

ERS. (c) Topographic maps of averaged kappa maxima. The maps display the top

classification and discrimination between 4 motor imagery tasks (0 means no and

locations (electrode positions) are marked by red color.
electrode, the 60 time courses of j (59 bipolar channels plus 1

monopolar channel) were averaged. The maximum of j within

each averaged time course and electrode is displayed in form of a

topographic map (see Fig. 2c).
nd ERS (blue) for one subject (s6), 4 motor imagery task, and 3 electrode

ower (ERD, ERS) in the upper alpha band (10 to 12 Hz) during 4 motor

ntative subjects (s6 and s4, see Table 1). ‘‘Red’’ indicates ERD and ‘‘blue’’

ographic distribution of j for all investigated subjects, based on single-trial

1 best distinctiveness between motor imagery tasks). The most important
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Results

Averaged band power in alpha (mu) frequency bands during motor

imagery tasks

Examples of time–frequency ERD/ERS maps from one subject

are presented in Fig. 2a. The maps for electrode positions C3, Cz,

and C4 show characteristic patterns of mu and beta ERD only for

right and left hand motor imagery, namely, a broad-banded ERD in

the 10-Hz and 20-Hz bands at electrode positions C3 and C4 with a

contralateral dominance during right hand imagery. Quite different

patterns are found with foot and tongue motor imagery. In the first

case, an ERS in the 15-Hz band is dominant at Cz, followed by a

short-lasting beta burst with frequencies around 25 Hz. In addition,

a weak but significant 9-Hz ERD exists over Cz. In the latter case

(tongue motor imagery), enhanced narrow-banded 11-Hz, 22-Hz,

and 33-Hz components (ERS) are present at electrode position C3.

While hand motor imagery blocked or desynchronized the broad-

banded mu components, tongue motor imagery enhanced the

narrow-banded components. Both low- and high-frequency mu

components showed an arch-shaped form as documented by the

harmonics in the spectral reactivity patterns. In Fig. 2a, another

interesting detail should also be mentioned, namely, that the

enhanced mu rhythm during tongue motor imagery had a slightly

lower frequency in the right hemisphere as compared to the left

hemisphere. This serves as a good example for the independency

of the mu generating systems in both hemispheres as already

postulated by Storm van Leeuwen et al. (1978).

Table 1 presents the averaged results of band power changes

(ERD, ERS) of the most reactive mu components (mean

frequencies are indicated) for 3 electrode positions (C3, Cz,

C4) and 4 motor imagery tasks (left hand, right hand, foot,

tongue). The data show that hand motor imagery induced in a

significant mu ERD in all subjects, whereas foot and/or tongue

motor imagery revealed a significant ERS in a number of subjects

only. The most reactive frequency components varied between 9

and 14 Hz and are found at all central electrode positions and

motor tasks. The subjects’ individual frequencies varied between

10 Hz T 1.0 (mean T SD) and 12 Hz T 1.1 with a mean of 11.7

Hz T 0.4 (Table 2).

The discrimination of the frequencies between ERD and ERS

revealed a mean frequency of the desynchronized components of

10.9 Hz T 0.9 and a corresponding frequency of the synchronized

components of 12.0 Hz T 1.0. This difference was significant (t

test, P < 0.05). Furthermore, the ERD affects more broad-banded

components within the alpha band, whereas the ERS enhances

narrow-banded components in the upper alpha/lower beta band

focused around 12/13 Hz.

From all ERD/ERS values (3 electrodes, 4 tasks) obtained in

one subject, the standard deviation was calculated and termed

‘‘intertask variability’’ (ITV). The ITVs presented in Table 2

display low (e.g., subject s4) and high levels (e.g., subject s6). A

low ITV indicates an ERD on all central electrode positions during

all motor tasks (examples of the individual maps are displayed in

Fig. 2b, lower row). In the case of a high ITV, the ERD is dominant

only during hand motor imagery, whereas ERS is frequently found

during foot and/or tongue motor imagery (examples of maps Fig.

2b, upper row). The obvious difference between foot and tongue

motor imagery maps in subject s6 (Fig. 2a) is the midcentral ERD

with foot motor imagery and midcentral ERS with tongue motor

imagery.



Table 2

Mean and intertask variability (ITV) of averaged ERD/ERS values,

maximum j obtained from single-trial classification and mean (median)

frequency of the reactive mu components of the 9 subjects investigated

ERDS Frequency

Mean ITV j Mean SD Min Max Med

s1 29 127.93 0.478 10.67 1.07 9.00 12.00 11.00

s2 �40.67 48.98 0.394 10.50 1.17 9.00 13.00 11.00

s3 26.67 120.55 0.367 12.00 1.13 11.00 14.00 11.50

s4 �67.67 19.21 0.298 11.08 1.00 9.00 13.00 11.00

s5 42.67 167 0.482 11.33 2.10 9.00 14.00 10.00

s6 28 139.14 0.501 11.17 1.03 10.00 13.00 11.00

s7 29 127.93 0.478 10.67 1.07 9.00 12.00 11.00

s8 �40.67 48.98 0.394 10.50 1.17 9.00 13.00 11.00

s9 26.67 120.55 0.367 12.00 1.13 11.00 14.00 11.50
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Single-trial classification and motor imagery task discrimination

Fig. 2c gives an overview of the topographical distribution of

the revealed locations for the discrimination between four motor

imagery tasks. The maps show a linear interpolation of the

classification accuracy (expressed as maximum of the averaged

j) for the individual subjects. The maps show that the electrode

position overlaying approximately the hand representation area

(electrode positions C3 and C4) provide the best results of single-

trial discrimination between the different motor tasks in the

majority of subjects. This is expected because two of the tasks

were hand motor imagery, and imagination of hand movement

affects mu rhythms in a similar way as observed during execution

of the same movement. Interestingly, in some subjects (e.g.,

subject s6) also, the midcentral electrode position (around Cz)

contributed to the best discrimination between the four different

motor tasks.

Relationship between intertask variability of mu power changes

and single-trial classification accuracy

Fig. 3 displays the relationship between the intertask variability

(ITV) and the single-trial classification accuracy of the best

performing channel expressed by j (Table 2) and shows that the

power of single-trial discrimination between four different motor

tasks increases when central mu rhythms are synchronized and

express ERS during foot and/or tongue motor imagery. This is not

surprising because it would be nearly impossible to discriminate

between four motor imagery tasks if every task displayed very

similar centrally localized ERD patterns.
Fig. 3. Relationship between intertask variability (ITV) and single-trial

classification accuracy expressed by j for the 9 able-bodied subjects. A

linear regression model was fitted to the data, and in addition, the 95%

confidence interval is shown.
Discussion

‘‘Focal ERD/surround ERS’’ induced by motor imagery

Basically, hand motor imagery activates neural networks in the

cortical hand representation area which is manifested as blocking

or desynchronization of the hand area mu rhythm (mu ERD). Such

a mu ERD was found in all subjects during right and left hand

motor imagery with a clear contralateral dominance. Less clear is

the activation of the foot representation area during foot motor

imagery because of its location in the mesial wall. In this case, a

midcentral mu ERD was found not in all but in the majority of

subjects. However, it is very interesting that foot as well as tongue
motor imagery enhanced the hand area mu rhythm (mu ERS) in the

majority of subjects. This simultaneous pattern of ERD and ERS

serves as a good example for the so-called ‘‘focal ERD/surround

ERS’’ phenomenon, which describes the observation that desynch-

ronization of alpha (mu) rhythm occurs not in isolation but can be

accompanied by an increase in synchronization in neighboring

cortical areas that correspond to the same or to another modality

(Pfurtscheller and Lopes da Silva, 1999; Suffczynski et al., 2001).

Based on our results on the different center frequencies of the

broad-banded ERD (10.9 Hz T 0.9) and narrow-banded ERS (12.0

Hz T 1) and the functional dissociation between lower and upper

mu rhythms during hand and foot movement execution (Pfurtsch-

eller et al., 2000), the following explanation is suggested:

execution and imagination of movement desynchronize lower mu

components somatotopically unspecific (similar in hand and foot

representation areas) and upper mu components somatotopically

specific. In the former case, desynchronization is present in all

sensorimotor areas (in target attended and non-attended body part

areas), whereas in the latter case of local desynchronization in the

attended body part area can be accompanied by a synchronization

in non-attended or surrounding areas.

We hypothesize that the enhanced narrow-banded hand area mu

rhythm represents a deactivated or inhibited state of hand cortical

area networks. In this respect, it is also of interest that the 10-Hz

somatosensory (mu) rhythm is also found in magnetoencephalo-

graphic (MEG) recordings and interpreted as rhythm characteristic

when a sensory cortical area passed into an ‘‘idling’’ state (Salmelin

and Hari, 1994, Salmelin et al., 1995). Such inhibition (or passing

into an ‘‘idling’’ state of the hand area networks) can occur when

the motor attention is directed to the foot or tongue modalities, and

attention is withdrawn from the hand. Support for this interpreta-

tion comes from regional blood flow (rCBF) measurements

showing a decrease in rCBF in the somatosensory cortical

representation area of one body part (e.g., hand area) whenever

attention is directed to a distant body part (e.g., foot area) (Drevets

et al., 1995). Such an interaction is not only possible between

different body parts (intramodal) but also between different

modalities. For example, a decrease of rCBF in primary

somatosensory areas was observed when the subject attended to
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a task that involved non-tactile modalities (Kawashima et al.,

1995). Further evidence comes from fMRI studies in the visual

system showing that attention directed to one stimulus counteracts

competitive suppression from multiple visual stimuli in nearby

visual space (Kastner et al., 1998).

Relationship between centrally localized ERD/ERS patterns and

single-trial classification accuracy

Single-trial classification results indicate that the most

important electrode locations for differentiation between different

motor imagery tasks are the electrode positions C3, Cz, and C4.

This is not unexpected because two of the tasks were hand motor

imagery associated with mu ERD at least over the contralateral

side (Pfurtscheller et al., 1997), and the two other tasks were foot

and tongue motor imagery, respectively, associated with mu ERS

in the majority of subjects. It is interesting that different feature

extraction and classification methods always document the

importance of electrode positions over the hand representation

area. Among these are single-trial classification of adaptive

autoregressive (AAR) parameters (in our case), the measurement

of the proportion of the variance of the mu and/or beta rhythm

amplitude that is accounted for by the target location (r2)

(McFarland et al., 1997), and the application of the distinction

sensitive learning vector quantification (DSLVQ) (Pregenzer et

al., 1996). Also, optimal spatial filtering of multichannel EEG

single-trial data revealed electrode positions in the close

neighborhood of C3 and C4 as the most important ones for

discrimination between different motor imagery tasks (Ramoser et

al., 2000). This underlines the importance of the Rolandic mu

rhythm, associated with those cortical areas most directly

correlated with a motor task for the realization of an EEG-based

BCI and the attainment of control over brain oscillations.
Conclusion

During performance of different motor imagery tasks, there

exists not only a great intersubject variability but also a

considerable intrasubject variability concerning the reactivity of

upper mu components. Different types of band power changes

(enhancement vs. suppression) during different imagery tasks are a

prerequisite for an optimal distinctiveness between different motor

imagery tasks when single trials are analyzed. We should

emphasize that the ERD/ERS changes reported here were elicited

by imagining movements. This implies that such EEG phenomena

may be utilized in a brain–computer interface operated simply by

motor imagery. Since a number of psychophysiological variables

related to perceptual and memory processes and task complexity

result in a desynchronization of alpha band rhythms (Klimesch,

1999), it is very difficult to discriminate between more than two

mental states when only imagery-induced ERD patterns are

available.
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