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Statistical Learning Theory

Now that we have an idea what is ERM (empirical risk
minimization) we are ready to appreciate Vladimir
Vapnik’s contribution to Statistical Learning Theory.

Vapnik challenged the prevailing view in SLT about the
compromise between machine capacity and
generalization that moved the theory for many, many
years (Akaike, MDL, Bayesian criteria).

Indeed all these criteria penalize the model order
(machine capacity) to achieve better generalization.



Statistical Learning Theory

For instance, Akaike’s criterion states that
mi nAIC() =N logJ(l) + 2l

where | is the model order, N the number of samples
and J(l) the MSE (empiric error) for model I.

MDL is similar (the penalty is slightly different)

mi nAIC(I) =N IogJ(I)+l2 log(l)

For nonlinear systems the issue is much harder but it
was known that the value of the parameters, not only
their number was involved in the definition.



Structural Risk Minimization (SRM)
Principle

Vapnik posed four questions that need to be
addressed in the design of learning machines (LMSs):
1. What are the necessary and sufficient
conditions for consistency of a learning
process.
2. How fast is the rate of convergence to the
solution.
3. How can we control the generalization ability
of the LM.
4. How can we construct an algorithm that
Implement these pre requisites.



Structural Risk Minimization (SRM)
principle

I h of a set of functions Is defined as the maximum number
| of vectors that can be separated into two classes in all 2"
| possible ways, using functions of the set.

| For linear discriminants in RN this is exactly N+1.




Structural Risk Minimization (SRM)
principle

VC dimension of a learning machine is what counts for
generalization. In fact he proved that the Risk of a learning
machine f(x,w) of size | parametrized by w is bounded by

R () < R (W) + )

I The second term iIs a confidence interval and we see that
| what matters is the number of samples, N the training error

I and VC dimension (not on the number of parameters |).

{ This was not expected!

: Notice that we can bound the generalization without any

| constraint of the size of the network by decreasing the error

l and minimizing the confidence interval: That is, search for

| the LM that has the smallest VC dimension.




Structural Risk Minimization (SRM)
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Structural Risk Minimization (SRM)
principle

Construct decision surface where the distance between the
closest samples to the boundary (the margin) iIs maximized




SVM Design

Basic geometry:

Equation of the hyperplane
g(x)=w'(x—xg)=w'x+b=0
Sides of the hyperplane
w'y+hb>0andwz+b<0

Projection on the hyperplane

p1 + p2 where p r
— M1 2 1 — '
|wl|



SVM Design

Classification Given samples and corresponding class labels i.e.

{xi, diti,
di=1ifw'x;+b>1
di=—-1lifw'x;+b< —1
.e.
di(w'x;+b) > 1
Margin
2
[w]
Problem

1 _
min =w ' w such that dj(w'x; + b) > 17

w.b




SVM Design

Use Lagrange multipliers

1 n
max min EwTw — Z aj[di(w ' x; + b) — 1] such that a; > 0

(cvq,....cen) W,b P

» Derivative with respect to w is zero i.e.

0J d
w 0= w= ; o diX;

w is in the span of the samples

» Derivative with respect to b is zero i.e.

0J !
T 0= w= Z;(_}-,-d;
1=



SVM Design

KKT condition
ajldi(w x; +b) —1] =0

Only aj's with d,-(wa; + b) = 1 can take nonzero values
Sparsity! Support vectors!

Dual problem

n
(ﬂTiﬁ'n};m szmjd dx x; such that Zn,d =0,0;,>0

i=1 j=1

Quadratic optimization problem




SVM Design

Nonlinear decision surface Use similar ideas as in RBF.

n
w = Z ajdio(x)
i=1

But wait! Note that, o depends on x through the inner product
< xly >1=x"y.

Specify the inner product without specifying the nonlinear
functions explicitly. For example,

< @(x)[(y) 2= (x"y)?

For this example if x = [x1,x2] then (x) = [x2, X2, V/2x1X2]



SVM Design

Chss: 1 N

Slack variable
di(w'x; +b)>1—&.,6 >0

0 < & < 1 :Correct classification but inside margin

& > 1 :0n the wrong side!




SVM Design

Primal problem

TQ E1u.4'u'Tw + CZ;{; such that d,-(wa; +b) =17
=

C acts as regularizer.

Dual problem

max Z“’__ZZ”*’“Jddx Xj S.t. an =0.0<a;<C

i=1 j=1




