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Statistical Learning Theory

Now that we have an idea what is ERM (empirical risk 

minimization) we are ready to appreciate Vladimir 

Vapnik’s contribution to Statistical Learning Theory. 

Vapnik challenged the prevailing view in SLT about the 

compromise between machine capacity and 

generalization that moved the theory for many, many 

years (Akaike, MDL, Bayesian criteria). 

Indeed all these criteria penalize the model order 

(machine capacity) to achieve better generalization. 



Statistical Learning Theory

For instance, Akaike’s criterion states that

where l is the model order, N the number of samples 

and J(l) the MSE (empiric error) for model l.  

MDL is similar (the penalty is slightly different)

For nonlinear systems the issue is much harder but it 

was known that the value of the parameters, not only 

their number was involved in the definition.  
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Structural Risk Minimization (SRM) 

Principle

Vapnik posed four questions that need to be 

addressed in the design of learning machines (LMs):

1. What are the necessary and sufficient 

conditions for consistency of a learning 

process.

2. How fast is the rate of convergence to the 

solution.

3. How can we control the generalization ability 

of the LM.

4. How can we construct an algorithm that 

implement these pre requisites. 



Structural Risk Minimization (SRM) 

principle

Vapnik argues that the necessary and sufficient conditions 

of consistency (generalization) of the ERM principle depend 

on the capacity of the set of functions implemented by the 

learning machine. 

He showed that the VC (Vapnik- Chervonenkis) dimension 

h provides a way to estimate an upper bound of the Bayes 

error. 

h of a set of functions is defined as the maximum number 

of vectors that can be separated into two classes in all 2h

possible ways, using functions of the set. 

For linear discriminants in RN this is exactly N+1. 



Structural Risk Minimization (SRM) 

principle

VC dimension of a learning machine is what counts for 

generalization. In fact he proved that the Risk of a learning 

machine f(x,w) of size l parametrized by w is bounded by

The second term is a confidence interval and we see that 

what matters is the number of samples, N the training error 

and VC dimension (not on the number of parameters l). 

This was not expected! 

Notice that we can bound the generalization without any 

constraint of the size of the network by decreasing the error 

and minimizing the confidence interval: That is, search for 

the LM that has the smallest VC dimension.  
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Structural Risk Minimization (SRM) 

principle

The problem is that the VC dimension is in general very 

difficult to compute for arbitrary classifiers…. But it is easy 

for hyperplanes. 

So Vapnik and colleagues worked with linear machines, not 

in the input space, but in a special infinite dimensional 

space of functions called a Reproducing Kernel Hilbert 

Space (RKHS). It can be shown that for some RKHS, linear 

classifiers are universal classifiers (remember Cover’s 

Theorem?) and they are called Support Vector Machines. 

What one needs to do is to find a way to maximize the 

margin ( df(x,w)) of the linear classifier. 



Structural Risk Minimization (SRM) 

principle

Construct decision surface where the distance between the 

closest samples to the boundary (the margin) is maximized  
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