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Renyi’s entropy

History: Alfred Renyi was looking for the most gene
information measures that would preserve the addit
dent events and was compatible with the axioms of

He started with Cauchy’s functional equation: If p an
dent than I(pq)=I(p)+I(q).

Apart from a normalizing constant this is compatible
information content I(p)=-log p. If we assume that th
X={x1,...xN} have different probabilities {p1,...pN}, an
bits of information, then the total amount of informa

This can be recognized as Shannon’s entropy. But 
there is an implicit assumption used in this equation
average, which is not the only one that can be used
In the general theory of means, for any function g(x
the mean can be computed as 
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Applying this definition to the I(P) we get

When the postulate of additivity for independent eve
get just two possible g(x):

g(x)=cx
g(x)=c-2(1-α)x

The first form gives Shannon information and the se

for non negative α different from 1. This gives a par
information measures that are called today Renyi’s 

It can be shown that Shannon is a special case whe

So Renyi’s entropies contain Shannon as a special 
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Meaning of α

If we compare the two definitions we see that instea
log pk by the probabilities, here the log is external to
argument is the α power of the PMF, i.e. 

Note that Vα(X) is the argument of the α norm of th

A geometric view will help here. All the PMFs of N r
called the simplex, in an N dimensional space.   
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The norm measures exactly the distance of the PMF
α is the designated l-norm (Euclidean norm is l=2). 
changes the metric distance in the simplex. 

From another perspective, the α root of Vα(X) is the
PMF. So we conclude that Renyi’s entropy is more 
non and includes Shannon as a special case. 

We will be using extensively α=2. 
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Properties of Renyi’s entropies
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Renyi’s quadratic entropy
We will be using heavily Renyi’s entropy with α=2, c
entropy

It has been used in physics, in signal processing an

We want also to stress that the argument of the log
norm of the PMF V2(X) has meaning in itself. In fac
if we make the change in variables ξk=p(xk), then it 
transformed variable when the PMF is the transform

For us Reny’s quadratic entropy is appealing becau
an easy way to estimate it directly from samples. 
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Extensions to continuous variables. 

It is possible to show that Renyi’s entropy measure 
ous r.v. and reads

and for the quadratic entropy 

Notice however that now entropy is no longer positi
become arbitrarily large negative. 
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Estimation of Renyi’s quadratic entropy

We will use here ideas from density estimation calle
estimation. This is an old method (Rosenblatt) that 
Parzen density estimation because Parzen proved 
statistical properties of the estimator. 

The idea is very simple: Place a kernel over the sam
proper normalization, i.e. 

The kernel has the following properties:

Parzen proved that the estimator is asymptotically u
sistent with a good efficiency. 
The free parameter is called the kernel size. Norma
used and σ becomes the standard deviation. 
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But notice that here we are not interested in estimat
a function, we are interested in a single number the 
For a Gaussian kernel, substituting the estimator yie

We call this estimator for V2(X), the Information Po
Let us look at the derivation: We never had to comp
explicitly since the integral of the product of Gaussia
Gaussian at the difference of arguments (with a larg
Let us also look at the expression: The algorithm is O
a free parameter σ that the user has to select from 
Cross validation or the Silverman’s rule suffice for m
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Extended Estimator for Renyi’s Entropy

We can come up with still another estimator for Ren
order 

by approximating the expected value by the empiric

to yield 

We will now present a set of properties of these est

[log
1

1
)(log

1
1

)( 1pEdxxpXH XXX
−

∞

∞−

Δ

−
=

−
= ∫ αα

α αα

∑
=

−

−
≈

N

j
jX xp

N
XH

1

1 )(1log
1

1)( α
α α

∑ ∑

∑ ∑

=

−

=

=

−

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
=

N

j

N

i
ij

N

j

N

i
ij

xx
N

xx
NN

XH

1

1

1

1 1

)(1log
1

1

)(
11

log
1

1
)(ˆ

α

σα

α

σα

κ
α

κ
α



JO

U.

EE

35

pri

co

opy using Gaussian 

kernel size.   

the estimator of Eq.

caling property 

mean of the 

nnon’s entropy. The 

’s entropy estimated 

mple mean. 
SE C. PRINCIPE

 OF FLORIDA

L 6935

2-392-2662

ncipe@cnel.ufl.edu

pyright 2009

page 11 of 35

Properties of the Estimators
Property 2.1: The estimator of Eq. (2.18) for Renyi’s quadratic entr

kernels only differs from the IP of Eq. (2.14) by a factor of 2 in the 

Property 2.2: For any Parzen kernel that obeys the relation  

∫
∞

∞−

−⋅−=− dxxxxxxx j
old

i
old

ij
new )()()( κκκ                (2.19) 

the estimator of Renyi’s quadratic entropy of Eq. (2.18) matched 
(2.14) using the IP.  

Property 2.3. The kernel size must be a parameter that satisfies the s
ccxxc /)/()( σσ κκ =  for any positive factor c  

Property 2.4. The entropy estimator in Eq. (2.18) is invariant to the 
underlying density of the samples as is the actual entropy 

Property 2.5. The limit of Renyi’s entropy as 1→α is Sha

limit of the entropy estimator in Eq. (2.18) as 1→α is Shannon

using Parzen windowing with the expectation approximated by the sa
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Properties of the Estimators
Property 2.6. In order to maintain consistency with the scaling prope
entropy, if the entropy estimate of samples {x1,…,xN} of a random v
using a kernel size of σ, the entropy estimate of the samples {cx1,…
variable cX must be estimated using a kernel size of |c|σ. 

Property 2.7. When estimating the joint entropy of an n-dimension

from its samples {x1,…,xN}, use a multi-dimensional kernel that is th

dimensional kernels. This way, the estimate of the joint entropy 

marginal entropies are consistent. 

Theorem 2.1. The entropy estimator in Eq. (2.18) is consis

windowing and the sample mean are consistent for the actual PDF of th

Theorem 2.2. If the maximum value of the kernel κσ(ξ) is achieved wh
minimum value of the entropy estimator in Eq. (2.18) is achieved whe
equal to each other, i.e., x1=…= xN = c  
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Properties of the Estimators
Theorem 2.3. If the kernel function κσ(.) is continuous, differenti

unimodal, then the global minimum described in Theorem 2.2 of the

Eq. (2.18) is smooth, i.e., it has a zero gradient and a positive s

matrix.  

Property 2.8. If the kernel function satisfies  the conditions in 

the limit, as the kernel size tends to infinity, the quadratic entropy 

to the logarithm  of a scaled and biased version of the sample variance

Property 2.9. In the case of joint entropy estimation, if the

kernel function satisfies )()( 1ξκξκ −
ΣΣ = R  for all orthonormal ma

entropy estimator in Eq. (2.18) is invariant under rotations as is the 

random vector X. Notice that the condition on the joint kernel funct

spherical symmetry. 
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Properties of the Estimators

Bias of the Information Potential
 

Variance of the Information Potential 

The AMISE (asymptotic mean integrated square err

This is expected from the kernel density estimation 
belongs to this class of estimators. 
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Physical Interpretation of the Information Poten

There is a useful physical interpretation of the IP. Th
tional or the electrostatic field. 
Assume the samples are particles (information part
that interact with each other with the rules specified
nel used. This analogy is exact!
The information potential field is given by the kernel

the Information Potential is the total potential 

Now if there is potential there are forces in the spac
that can be easily computed as 
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Interaction between one information particle in the c

Another way to look at the interactions among samp
matrices in the space

D is a matrix of distances, and ζ is a matrix of scala
the samples create a metric space given by the ker
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Example of forces pulling apart samples when the e
mized. The lines show the direction of the force and
intensity of the pull. 
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Extension to any α and kernel

The framework of information potential and forces e
Parzen kernel where the shape of the kernel create
field. Changing α also changes the field. 
The α information potential field is 

and it can be expressed as a function of the IP as

The α information force is likewise given by 

so conceptually all fields can be composed from the
sizes regions of lower density of samples (opposite
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Divergence Measures

Renyi proposed a divergence measure from his ent
which is different from Kullback Liebler divergence d

Renyi’s divergence

with properties 
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Reny’s Mutual Information

Renyi’s mutual information is also the divergence b
and the product of the marginals 

and we can come up with a kernel estimate for it if w
E[.] by the empirical mean

that also approximates KL estimator for α->1. Howe
gence and MI are not as general as KL because Sh
information is the only one for which the increase in
equal to the negative of the decrease in uncertainty
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Quadratic Divergence and Mutual Information

Measuring dissimilarity in probability space is a com
there are many other divergence measures that can
transform the simplex to an hypersphere preserving
mation, the coordinates of each PMF become . T
tance between PMF f and g becomes 
the Bhattacharyya distance (which is Renyi’s diverg

Now if we measure the distance between f and g in
space (the cordal distance) we get 
the Hellinger distance which is also related to Reny

Since we have an estimator for quadratic Renyi’s en
will substitute α=1/2 for 2 and define two quadratic d
Euclidean distance and Cauchy Schwarz divergenc

pk
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Euclidean distance between PDFs

We will drop the square root and define the distance

Notice that each of the three terms can be estimate
middle term involves samples from the two PDFs an
the Cross Information Potential (CIP) that measures
ated by one PDF in the locations specified by the sa
PDF. 

We will define the quadratic mutual information QM
random variables as 

Notice that the IED is zero if the two r.v. are indepen
The extension to multidimensional random variable

Although a distance, we sometimes refer to DED as

∫ ∫ ∫−=−= dxgxfdxxfdxxgxfgfDED
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Cauchy Schwarz divergence

The other divergence is related to the Bhattacharyy
be formally derived from the Cauchy Schwarz inequ

where the equality holds iff f(x)=g(x). The divergenc

DCS is always greater than zero, it is zero for f(x)=g
metric (but does not obey the triangular inequality). 
with the square of this quantity in practice. We can 

We can also define the quadratic mutual information

and as before for independent variables it is zero. It
extended to multiple variables easily
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Relation between DCS and Renyi’s relative entro

There is a very interesting interpretation of the DCS 
entropy. Lutwak defines Renyi’s relative entropy as 

for α=2 this gives exactly DCS, so 

where the first term can be shown to be quadratics 
entropy. 
There is a striking similarity between DCS and Shan
mation, but notice that here we are dealing with Ren
entropy. 
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Geometric Interpretation of Quadratic Mutual Inf

Let us define 

therefore QMIED and QMIED can be rewritten as 

The Figure illustrates these distances in the simplex
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Information Potential and Forces in the Joint Sp

The important lesson to be learned from the IP fram
tances measures defined, is that each PDF creates
that interacts with the others. This is an additive pro
are also additive, and it becomes relatively simple. 

Euclidean and Cauchy Schwarz divergences

The three potentials needed are
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Quadratic Mutual Information

The QMIs are a bit more detailed because now we 
the joints, the marginals and their product. But ever
tive. The three PDFs are 

they create the following fields
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let us exemplify for VC

Notice that Vc has complexity O(N3). Finally we hav
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The interactions are always based on the marginals
three levels: the level of the individual marginal sam
the level of the marginal sample and marginal fields
product of the two marginal fields. This field can be 
number of variables

The information forces for each field are also easily

These expressions are going to be very useful when
with divergences or quadratic mutual information. 
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Fast Information and Cross Information Potentia

One of the problems with this IP estimator methodo
tational complexity which is O(N2) or O(N3). There a
approximations to the IP and CIP with arbitrary accu
Gauss Transform and the Incomplete Cholesky dec
both transform the complexity to O(NM) where M <<

Fast Gauss Transform

The FGT takes advantage of the fast decay of the G
and can efficiently compute weighted sums of scala

The savings come from the shifting property of the G
which reads

and the efficient approximation of the Hermite polyn
order p.
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The shifting property is useful because there is no n
every Gaussian at every point. Instead a p term sum
around a small number yc of cluster centers with O(
These sums are then shifted to the yi desired locatio
in another O(Mp) operations. Normally the centers c
the furthest point algorithm which is efficient. 

The information potential calculation (M=N) can be 
as 

which requires O(NpB) calculations. p is normally 4
of N), and B, the number of clusters is also relativel
with a weak dependence on N. 

The problem with this algorithm is if the data is mult
because the complexity p changes to pD where D is
order to cope with high dimensions, a vector Taylor 
proposed to approximate the high dimensional Gau
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and the cross term is approximated by a Taylor exp

Now the IP for multidimensions becomes

For a D dimensional data set the calculation is O(N

O(NBrD) with , but normally p must
before for the same precision. 
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Incomplete Cholesky Decomposition

It turns out that the eigenvalues of the matrix create
evaluation of the Gaussian is full rank, but the eigen
very fast. Hence we can take advantage of this fact
For a NxN symmetric matrix K=GTG, where G is a lo
matrix of positive diagonal entries. When the eigens
we can approximate K by NxD lower triangular matr

. There are ways of computing  effectively
complexity of the procedure becomes O(ND). 
The IP can be computed as 
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However the CIP is not a positive definite matrix, so

KXX to create a positive definite matrix  w
the Gram matrix for the CIP. The calculation of the C

with complexity O(ND2). The divergence measures 
efficiently as 
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