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Renyi’s entropy

History: Alfred Renyi was looking for the most general definition of
iInformation measures that would preserve the additivity for indepen-
dent events and was compatible with the axioms of probability.

He started with Cauchy’s functional equation: If p and g are indepen-
dent than I(pq)=I(p)+I(q).

Apart from a normalizing constant this is compatible with Hartley’s
information content I(p)=-log p. If we assume that the events
X={X1,...Xn} have different probabilities {p4,...pn}, and each delivers I,

bits of information, then the total amount of information for the set is

N
1(P)= ¢l
k=1

This can be recognized as Shannon’s entropy. But he reasoned that
there is an implicit assumption used in this equation: we use the linear
average, which is not the only one that can be used.

In the general theory of means, for any function g(x) with inverse g,
the mean can be computed as

N
97 (> Pa(%))
k=1




JOSE C. PRINCIPE
U. OF FLORIDA
EEL 6935
352-392-2662
principe@cnel.ufl.edu

copyright 2009

page 2 of 35

Applying this definition to the I(P) we get

N
I(P) = 9‘1(k2I Pa(l))
When the postulate of additivity for independent events is applied we
get just two possible g(x):
g(x)=cx
g(x):C-Z(l-OL)X
The first form gives Shannon information and the second gives

1 N
1o (P) == log(}_ p)
k=1

for non negative a different from 1. This gives a parametric family of
Information measures that are called today Renyi’'s entropies.

It can be shown that Shannon is a special case when o -1

N N
H o a-1
| im—"log'S !‘ILnlkZ;‘ 9P Py ;pk
imH_(X)=Iim 0 = = = =H. (X

a—1

So Renyi’'s entropies contain Shannon as a special case.
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Meaning of o

If we compare the two definitions we see that instead of weighting the
log pi by the probabilities, here the log is external to the sum and its

argument is the o power of the PMF, i.e.
H,(0) = log, 0)) =—logte 7, (00) =l {EW 0] Ve ¥) = X

Note that Va(X) is the argument of the oo norm of the PMF.

A geometric view will help here. All the PMFs of N r.v. exist on what is
called the simplex, in an N dimensional space.

Py LI a
A > P = lIpll,  (entropy a-norm) 4 P>
K=1
1% (a—normof p raised powerto o) . 1+ P = (P, Py, Py)
P = (P1, P2) v
« p
/(N/\; ’
P, 1
> Pip/ 1

0 1
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The norm measures exactly the distance of the PMF to the origin, and
o IS the designated I-norm (Euclidean norm is I=2). Changing o
changes the metric distance in the simplex.
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LL )) LL )A LA

[100] o =02 [o10] [1 o =05 [010] [100] [010]
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From another perspective, the a root of V,(X) is the a-norm of the

PMF. So we conclude that Renyi’s entropy is more flexible than Shan-
non and includes Shannon as a special case.

We will be using extensively a=2.
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Properties of Renyi’s entropies

(a) Hy(Y) 1s nonnegative: H, (X) = 0;
(b) Hy(X) 1s decisive: Hy (0, 1) =Hy (1. 0):
(c) For & <1 Renyi’s enfropy is concave. For & > 1 Renyi’s entropy in not pure convex

nor pure concave ; It looses concavity for & >a™>1 where a* depends on NV and obeys the

relation a®™<1+1n(4)/In(N —1).

(d) Since H;IHQ(X)E ﬁ[;IHﬁ(X) for a<p . (a-1)Hy,(X) 1s a concave

function of X

(e) Hy(X) 1s bounded, continuous and non increasing function of « ;

(f) Reny1’s entropies for different « are correlated.

(g) The following i1s a simple but not very sharp bound on Shannon entropy (Hs(XX)) of

any probability mass function

H,(X)<Hy(X)<InN+1/N—exp(-H,(X))

(h) HAX) with z =a+jw is analytic in all the complex plane except the negative real axis.
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Renyi’s quadratic entropy
We will be using heavily Renyi’'s entropy with a=2, called the quadratic
entropy

H,(X) =—log(} pc)
k

It has been used in physics, in signal processing and in economics.

We want also to stress that the argument of the log, which is the 2-
norm of the PMF V,(X) has meaning in itself. In fact it is the E[p(X)] or

If we make the change in variables &,=p(xy), then it is the mean of the
transformed variable when the PMF is the transformation.

p(x)

Mean p(X)

N

mean of X

For us Reny’s quadratic entropy is appealing because we have found
an easy way to estimate it directly from samples.
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Extensions to continuous variables.

It is possible to show that Renyi’'s entropy measure extends to continu-
ous r.v. and reads

H,(X) = lim(1, (7,) - lagr) =——log [ " (xck

and for the quadratic entropy

H,(X) =—log | p*(x)ax

Notice however that now entropy is no longer positive, in fact it can
become arbitrarily large negative.
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Estimation of Renyi’s quadratic entropy

We will use here ideas from density estimation called kernel density
estimation. This is an old method (Rosenblatt) that is now called
Parzen density estimation because Parzen proved many important
statistical properties of the estimator.

The idea is very simple: Place a kernel over the samples and sum with
proper normalization, i.e.

X— X
—)

B () === D
i=1

The kernel has the following properties:

[HEN

supg k| < o

. J.R‘k‘<oo

lim [xk (x)|= 0

X—> 0

N

w

4. k(x)=0, ij(x)dx =1

Parzen proved that the estimator is asymptotically unbiased and con-
sistent with a good efficiency.

The free parameter is called the kernel size. Normally a Gaussian is
used and ¢ becomes the standard deviation.
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But notice that here we are not interested in estimating the PDF that is
a function, we are interested in a single number the 2-norm of the PDF.
For a Gaussian kernel, substituting the estimator yields immediately

We call this estimator for V,(X), the Information Potential.

Let us look at the derivation: We never had to compute the integral
explicitly since the integral of the product of Gaussians is the value of a
Gaussian at the difference of arguments (with a larger kernel size).

Let us also look at the expression: The algorithm is O(N?), and there is
a free parameter ¢ that the user has to select from the data.
Cross validation or the Silverman’s rule suffice for most cases

1
Gopt = Oy (AN (20 +1)va
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copyright 2009 H, (X)=——Ilog J- px (X)dx = —log E [pi_l(x )]
l-a 7 l-a

by approximating the expected value by the empirical mean
H, 00 = log 1Y p2(x))
T 1eq NG

to yield

1 1 N/ N a-1
= 1o IOg Z(ZKU (Xj — X )]

N a\ia

We will now present a set of properties of these estimators.
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Properties of the Estimators
Property 2.1: The estimator of Eq. (2.18) for Renyi’s quadratic entropy using Gaussian

kernels only differs from the IP of Eq. (2.14) by a factor of J2 in the kernel size.

Property 2.2: For any Parzen kernel that obeys the relation

K" (X =) = TKO"’ (x=x )& (x=x,)dx (2.19)

—00

the estimator of Renyi’s quadratic entropy of Eq. (2.18) matched the estimator of Eq.
(2.14) using the IP.

Property 2.3. The kernel size must be a parameter that satisfies the scaling property
K. (X) =x,(Xx/c)/c forany positive factor c

Property 2.4. The entropy estimator in Eq. (2.18) is invariant to the mean of the
underlying density of the samples as is the actual entropy

Property 2.5. The limit of Renyi’s entropy as ¢ — 1 is Shannon’s entropy. The

limit of the entropy estimator in Eq. (2.18) as a« — 1 is Shannon’s entropy estimated

using Parzen windowing with the expectation approximated by the sample mean.
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Properties of the Estimators

Property 2.6. In order to maintain consistency with the scaling property of the actual
entropy, if the entropy estimate of samples {xy,...,xn} of a random variable X is estimated
using a kernel size of o, the entropy estimate of the samples {cx4,...,cxy} of a random
variable cX must be estimated using a kernel size of |c|c.

Property 2.7. When estimating the joint entropy of an n-dimensional random vector X

from its samples {xy,...,Xn}, use a multi-dimensional kernel that is the product of single-
dimensional kernels. This way, the estimate of the joint entropy and estimate of the

marginal entropies are consistent.

Theorem 2.1. The entropy estimator in Eg. (2.18) is consistent if the Parzen

windowing and the sample mean are consistent for the actual PDF of the iid samples.

Theorem 2.2. If the maximum value of the kernel x,(¢) is achieved when £= 0, then the
minimum value of the entropy estimator in Eg. (2.18) is achieved when all samples are
equal to each other, i.e., X;=...=Xy=C
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Properties of the Estimators
Theorem 2.3. If the kernel function x,(.) is continuous, differentiable, symmetric and

unimodal, then the global minimum described in Theorem 2.2 of the entropy estimator in

Eq. (2.18) is smooth, i.e., it has a zero gradient and a positive semi-definite Hessian

matrix.

Property 2.8. If the kernel function satisfies the conditions in Theorem 2.3, then in

the limit, as the kernel size tends to infinity, the quadratic entropy estimator approaches

to the logarithm of a scaled and biased version of the sample variance.

Property 2.9. In the case of joint entropy estimation, if the multi-dimensional

kernel function satisfies I(Z(Zf):I(Z(R_lf) for all orthonormal matrices, R, then the
entropy estimator in Eq. (2.18) is invariant under rotations as is the actual entropy of a
random vector X. Notice that the condition on the joint kernel function requires hyper-

spherical symmetry.
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Properties of the Estimators

Theorem 2.4. lim H,(X)=H,(X)>H,(X),where X is a random variable with the
N—0

PDF fy (.)*x.(.). The equality (in the inequality portion) occurs if and only if (iff) the
kernel size is zero. This result is also valid on the average for the finite-sample case.

Bias of the Information Potential
Bias[V (X)] = E[\?(X)]—j f2(x)dx = (o2 1 2)E[ f"(X)]

Variance of the Information Potential

Var(V(X)) = EV (X))~ (EM (x))? = NN DN =2 +NIN=D @ = oy,
oN No

a= E|K, (% —X)K, (% %)~ E[K, 06 = X)) E[K, (x; = X))
b=Var[K, (% —x;)]
The AMISE (asymptotic mean integrated square error)

aN(N —1)(N —2) +bN(N —1)
ON4

AMISE(V (X)) = E[[ (V (X) -V (X))?dx] =%4j(f”(x))2dx+

This is expected from the kernel density estimation theory. The IP
belongs to this class of estimators.




JOSE C. PRINCIPE
U. OF FLORIDA
EEL 6935
352-392-2662
principe@cnel.ufl.edu

copyright 2009

page 15 of 35

Physical Interpretation of the Information Potential Estimator

There is a useful physical interpretation of the IP. Think of the gravita-
tional or the electrostatic field.

Assume the samples are particles (information particles) of unit mass
that interact with each other with the rules specified by the Parzen ker-
nel used. This analogy is exact!

The information potential field is given by the kernel density estimation

" AN
\2 (Xj)ZWZGm/z(Xj —X;)
i=1
the Information Potential is the total potential
N N N
V,(X)=1/ND V,(x;)
j=1

Now if there is potential there are forces in the space of the samples
that can be easily computed as

0 \» 1
&jVZ(Xj)_ Z 6(2 i —%) :MEGU@(XJ' =% )(% —X;)

Al
Fz(xj;xi)zﬁG 2 (Xj = %)

F, (X )—a —V, (X)) = ZF (X}:%)
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Interaction between one information particle in the center of 2-D space

Another way to look at the interactions among samples is to create two
matrices in the space

D=0 =X g Lgy,
c={i} V =Gm/§(dij) fields: N_iﬂ N
F(I)= NGZ JZ:“l ijdlj

D is a matrix of distances, and C is a matrix of scalars As we can see
the samples create a metric space given by the kernel.
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Example of forces pulling apart samples when the entropy is maxi-
mized. The lines show the direction of the force and their size is the
iIntensity of the pull.
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Extension to any a and kernel

The framework of information potential and forces extends to any
Parzen kernel where the shape of the kernel creates the interaction
field. Changing o also changes the field.

The o information potential field is

R A 1 N a-1
V,(X; )ZW [Z’%(X i )j
i=1
A 1N .
Va(x) :Nz\/a(xj)
j=1

and it can be expressed as a function of the IP as

=1

R 1 N a2 1 N o A
Va(xj):Na—Z (Z’%(Xj _)ﬁ)j WZ’%(XJ'_)?)ZP Z(Xj)\/Z(Xj)
i=1
The o information force is likewise given by

~ A o .~ a—1 N a-2 N
Fa(xj):&\/a(xj) = NG [Z’%(Xj _Xi)j (ZK;(Xj _Xi)j
J i=1 i=1
= (@ =1 P52 (xR, (%)
so conceptually all fields can be composed from the IP. a<2 empha-
sizes regions of lower density of samples (opposite for a>2).
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copyright 2009 Renyi’'s divergence

D, fll9)=—-Iog | f(x)(fg ;j

with properties
i.  D,(f]g)=0, Vf,g,a>0

ii. D,(f]lg)=0 ifffx)=gx) VxeR
i limD,(f 19)=Di (f |9)

-1
f(x) f(xj)
D, (f g)——logE [(Q(X)J ]~a—1 Z[g(xg)j

a-1

1 N ZKf (Xjf _Xif) ~
L iglSE ar
a-1 N j=1 Z}(g(xjg —Xig)

i=1
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Reny’s Mutual Information

Renyi’'s mutual information is also the divergence between the joint
and the product of the marginals

A 0 o oyl n
|(X)—_—|09 IJ‘ pri((x ..... X )dxl an
—o _OOHp:;.(Ot(XO)
0=1

and we can come up with a kernel estimate for it if we approximate the
E[.] by the empirical mean

l-a

1N
NiZ:;KZ(Xj - Xi)J

that also approximates KL estimator for a->1. However Renyi’s diver-
gence and MI are not as general as KL because Shannon measure of
information is the only one for which the increase in information is
equal to the negative of the decrease in uncertainty.
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Quadratic Divergence and Mutual Information

Measuring dissimilarity in probability space is a complex issue and
there are many other divergence measures that can be used. If we
transform the simplex to an hypersphere preserving the Flsher infor-

mation, the coordinates of each PMF become /p,. The geodesic dis-

tance between PMF f and g becomes cospg = 3" fi fo,- This is related to
the Bhattacharyya distance (which is Renyi’s divergence with a=1/2)

Dy(f,9)=—In{ [y T g0
Now if we measure the distance between f and g in a linear projection

space (the cordal distance) we get b, = Z(ﬁ—@)O'SThiS resembles
the Hellinger distance which is also related to Reny’s divergence

0(1,9~| [T o0 o] =l Tmead}”

Since we have an estimator for quadratic Renyi’'s entropy (the IP) we
will substitute a=1/2 for 2 and define two quadratic divergences called
Euclidean distance and Cauchy Schwarz divergence between f and g.
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Euclidean distance between PDFs

We will drop the square root and define the distance as

Den(f,9)=[(f () - g9 ok = | f (x)%dx—2] F ()9 (x)cx+ [ g(x)°alx

Notice that each of the three terms can be estimated with the IP. The
middle term involves samples from the two PDFs and so will be called
the Cross Information Potential (CIP) that measures the potential cre-
ated by one PDF in the locations specified by the samples of the other
PDF.

We will define the quadratic mutual information QMIgp between two
random variables as

len (Xg, X5) = Dep((fx x, 04:%2), Tx, (%) T, (X2))

Notice that the Igp is zero if the two r.v. are independent.
The extension to multidimensional random variables is also possible

K
lep (X Xi) = Dep (Fx (Xp,0Xg )’H fx, (%))
i=1

Although a distance, we sometimes refer to Dgp as a divergence.
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Cauchy Schwarz divergence

The other divergence is related to the Bhattacharyya distance but can
be formally derived from the Cauchy Schwarz inequality

\/ j f 2(x)o|xj g2 (x)dx > j f (x)g(x)dx
where the equality holds iff f(x)=g(x). The divergence is defined as
f f(x)g(X)dx
\/ [ £2000x] g% ()i
D¢ is always greater than zero, it is zero for f(x)=g(x) and it is sym-

metric (but does not obey the triangular inequality). We will also work
with the square of this quantity in practice. We can also write

Des (f,9) =log([ f (x)° )+ log([ (x)?dx) - 2log [ f (x)g(x)clx)

D (f,g)=-log

We can also define the quadratic mutual information QMl-g as
les(Xp, X9) = Deg(C Ty x (X1, %), B (X Ty (X)) )

and as before for independent variables it is zero. It can also be
extended to multiple variables easily

les (X, k)_DCS f (Xg, .. Hf (%))
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Relation between D-g and Renyi’s relative entropy

There is a very interesting interpretation of the Dg in terms of Renyi’s
entropy. Lutwak defines Renyi’s relative entropy as

o0t eoe ([ g 00}
o

DRa(f’g):Iog

for a=2 this gives exactly D¢g, SO

Des (X,Y) =log(] f(x)g(x)dx) —log(L/ 2] f (x)*dx) - log(L/ 2] g(x)*dx) =
=H, (X;Y) =1/2H,(X) =1/ 2H,(Y)
where the first term can be shown to be quadratics Reny’s cross
entropy.
There is a striking similarity between D-g and Shannon’s mutual infor-

mation, but notice that here we are dealing with Renyi’'s quadratic
entropy.
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Geometric Interpretation of Quadratic Mutual Information

Let us define
[V = ”fxlxz(xb Xp) dey0x,
Vv = ”(fxl(x1)fx2(xz))2dX1dX2

V, = j j fix, (X1: %)y (X)) (%)l e,

N

therefore QMIgp and QMIgp can be rewritten as

lep = V-2V, +Vy
lcs = logV;—-2logV, +logV,,

The Figure illustrates these distances in the simplex

A

fx, %, (X1 X2) |- ( Euclidean Distance)

/
P// I (K-L Divergence)

v, /
./\fxl(xl)fxz(xz)

A .

0 \ ]
les = —log((cos6)’)  V, = cosb, V,V,,
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Euclidean and Cauchy Schwarz divergences

The three potentials needed are
N
ZGﬁU(Xf (1) — x4 (1))

i=]j

i, .
N

s

> 2G5, (% (i) =% (1))

N
2

=

—

‘ =

N
>, 2.6 5, (X¢ () =% (D)°

2

=z

Il
LN

and the divergences and forces are written as

—

Dep(,9) =Vep =V, +\7 _2\7c Nep _ Vs + N _28\7‘3

va x o
Des(f,9) =Ves —|09 Ng 1 avf 1 8V,
Ve ox; Vi % \7 a V. ox
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Quadratic Mutual Information

The QMIls are a bit more detailed because now we have two deal with
the joints, the marginals and their product. But everything is still addi-
tive. The three PDFs are

[~ N
Fix, 0.5) =8, (= ()
i=1
~ N
Fi, (06) = Do (4 = ()
i=1

fr () =236, (% %, (1)
N
i=1

they create the following fields

N N N N
VF%ZZ J2o (X(1) = X(J))—%ZZG@,(M(D—Xl(J))GﬁG(Xz(i)—Xz(J'))

i=1 j=1

R A 1 N N
Vy, =V,  with V, = FZZG (% (1) =% (7)), k=12
i=1l j=1

~ N N N
Ve =i__ [ﬁjzﬂe&(xl(i)—xﬂj))}{ﬁjzzle@(xz (i) - xz(j»j (2.104)
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let us exemplify for Vs

Ve = [ £ ) F () F ) ek

N N N
— j j E > "G, (% — % (K))G, (% - xz(k))}& > G, (% - Xl(i))}{lil D G, (% = Xo( j))}dxldxz
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Notice that V¢ has complexity O(N3). Finally we have
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The interactions are always based on the marginals, but there are
three levels: the level of the individual marginal samples (joint space),
the level of the marginal sample and marginal fields (the CIP) and the

product of the two marginal fields. This field can be generalized to any
number of variables

lep (Xgye X) = QZZHVKGJ)——ZH h@+TT Vi
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The information forces for each field are also easily derived
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These expressions are going to be very useful when adapting systems
with divergences or quadratic mutual information.
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Fast Information and Cross Information Potential Calculations

One of the problems with this IP estimator methodology is the compu-

tational complexity which is O(N?) or O(N3). There are two ways to get
approximations to the IP and CIP with arbitrary accuracy: The Fast
Gauss Transform and the Incomplete Cholesky decomposition. They
both transform the complexity to O(NM) where M <<N.

Fast Gauss Transform

The FGT takes advantage of the fast decay of the Gaussian function
and can efficiently compute weighted sums of scalar Gaussians.

S(y) =37 we iz

The savings come from the shifting property of the Gaussian function
which reads

e_(yja_yijz :e_(yj_yc_a(yi_yC)Jz — e_£yi;y°J2 Z:.O i( Yi—Ye )an(Yj - YCJ h(y) :(_l)ndan(—Xz)

Onll & o dx"

and the efficient approximation of the Hermite polynomials with a small
order p.
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The shifting property is useful because there is no need to evaluate
every Gaussian at every point. Instead a p term sum is computed
around a small number y,. of cluster centers with O(Np) computation.

These sums are then shifted to the y; desired locations and computed

In another O(Mp) operations. Normally the centers c are found using
the furthest point algorithm which is efficient.

The information potential calculation (M=N) can be immediately given
as

1 N, (Y- Ve, Yi—Ye, )
V(y)zZJNZ\/;ZZ n!h”L 12 C jcn(b) cn(b)_z[JT‘ch

o) y, B

which requires O(NpB) calculations. p is normally 4 or 5 (independent
of N), and B, the number of clusters is also relatively small (~10), but
with a weak dependence on N.

The problem with this algorithm is if the data is multidimensional

because the complexity p changes to p® where D is the dimension. In
order to cope with high dimensions, a vector Taylor series has been
proposed to approximate the high dimensional Gaussian as
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exp —M =exp _M exp| — ||y' _C||2 exp 2(yj _C)'(yi _C)
4c* 4o? 42 452

and the cross term is approximated by a Taylor expansion as

(yj —C)-(yi —C) 2|05| yj—C o yi—C a a!:allaz!...ad!
exp[z 402 _ZQJ o0 [ Zgj +5((Z) ‘d:%+%+..+%

a>0

Now the IP for multidimensions becomes

Vi (y) = (4ﬂ02)d > ZZZC exp[ ly JGCBH }( ZGCB ja

j=1 B >0

C,(B)= %{%exp{— ||y‘4_0CZB i ]( in_O-CB )“}

For a D dimensional data set the calculation is O(NBr, p) instead of

O(NBrP) with r = (P+D) = %ﬂ, but normally p must be larger than

before for the same precision.
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Incomplete Cholesky Decomposition

It turns out that the eigenvalues of the matrix created by the pairwise
evaluation of the Gaussian is full rank, but the eigenspectrum decays
very fast. Hence we can take advantage of this fact.

For a NxN symmetric matrix K=G'G, where G is a lower triangular

matrix of positive diagonal entries. When the eigenspectum falls fast
we can approximate K by NxD lower triangular matrix ¢ such that
K-6"¢l<¢ There are ways of computing ¢ effectively. The computation
complexity of the procedure becomes O(ND).

The IP can be computed as
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However the CIP is not a positive definite matrix, so we need to extend

_ K XX K XY
K XY KYY

KZZ
Kxx to create a positive definite matrix where Kyy denotes
the Gram matrix for the CIP. The calculation of the CIP becomes
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with complexity O(ND?). The divergence measures can be computed
efficiently as

Dep 2(ech;ZZ)(c; _e,) + 2(egcazz)(c; ,e,)— 2(e]cszz)(c; 2e,)

D —lo (el Gzz )(Gzz 91)(9;622 )(Gzz e,)
cs =100
(€7G,,)GLe,)f




