Information theoretic learning models

November 3, 2010
Motivation: Optimal adaptive filtering $\Rightarrow E[Xe] = 0$

Uncorrelated is not independent! Consider $X \sim U[-1, 1]$ and $Y = X^2$.
Information: Which has more information?
1. NN project is due today. 2. NN project is not due today.

If two events has probability p and q of occurring, then

1. $I(p), I(q) \geq 0$,
2. $I(1) = 0$,
3. $I(p) < I(q)$ if $p > q$.

Take $I(p) = -\log p$
Entropy: Entropy is a measure of uncertainty.

Let X take values $\{x_1, \ldots, x_k\}$ with probability $\{p_1, \ldots, p_k\}$.

If $p_1 = 1$ and $p_2 = \ldots = p_k = 0$, only one event occur \Rightarrow No uncertainty \Rightarrow Zero entropy

If $p_1 = \ldots = p_k = \frac{1}{k}$, all events are equally probable \Rightarrow Max uncertainty \Rightarrow Max entropy
Desired properties

1. $H(P) = H(p_1, \ldots, p_k)$ is symmetric
2. $H(P)$ is continuous
3. $H(P \ast Q) = H(P) + H(Q)$ Additivity

Shannon’s entropy $H(P) = \sum p_k I(p_k)$

Rényi’s entropy

$$H(P) = \frac{1}{1 - \alpha} \log \sum p_k^\alpha$$

Equivalent to $H(P) = g^{-1} \left(\sum p_k g(I(p_k)) \right)$ with $g(x) = 2^{(1-\alpha)x}$. Shannon’s entropy is Rényi’s entropy for $\alpha \to 1$

Note, $0 \log 0 = 0$
Conditional entropy:

1a Dr. Principe is in town next Monday.

2 Dr. Principe is teaching next Monday.

1b You didn’t finish your project.

\[
H(X|Y) = \sum P(X = q_k)H(X|Y = q_k)
\]

\[
= - \sum P(Y = q_k) \sum P(X = p_j|Y = q_k) \log P(X = p_j|Y = q_k)
\]

\[
= - \sum \sum P(X = p_j, Y = q_k) \log \frac{P(X = p_j, Y = q_k)}{P(Y = q_k)}
\]

\[
= - \sum \sum P(X = p_j, Y = q_k) \log \frac{P(X = p_j, Y = q_k)}{P(X = p_j)P(Y = q_k)} + H(X)
\]

\[
= - MI(X, Y) + H(X)
\]

MI is mutual information!
Mutual information is zero ⇔ Random variables are independent
Differential entropy: \(H(X) = \int f_X(x) \log f_X(x) \, dx \)

\(H(X + c) = H(X) \) and \(H(aX) = H(X) + \log |a| \)

If \(X \sim \mathcal{U}[0, 1] \), \(H(X) = 0 \) and if \(X = c \), \(H(X) = -\infty \)
Conditional entropy: $H(X|Y)$

Mutual information:

$MI(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = H(X) + H(X) - H(X, Y)$

$$MI(X, Y) = \int \int f_{XY}(x, y) \log \frac{f_{XY}(x, y)}{f_X(x)f_Y(y)} dxdy$$

MI is nonnegative! MI is invariant to invertible transformation.
InfoMax: Train a network such that the mutual information \(I(X, Y) \) between input \(X \) and \(Y \) is maximized.

\[
I(X, Y) = H(Y) - H(Y|X)
\]

Information theoretic learning works with other “forms” of MI.

\[
QMI(X, Y) = \int \int (f_{XY}(x, y) - f_X(x)f_Y(y))^2 dx dy
\]
ICA

Assumptions: Mutual independence of sources, square mixing matrix, noise free model, zero mean, unit covariance.
InfoMax: Train a network such that the mutual information $I(X, Y)$ between input X and Y is maximized.

$$I(X, Y) = H(Y) - H(Y|X).$$

If $Y = G(X) + N$ then $H(Y|X) = H(N)$ i.e. maximizing $I(X, Y)$ implies maximizing $H(Y)$.
\[Y = \frac{1}{1 + \exp(-(aX + b))} \]

\[f_Y(y) = \frac{f_X(x)}{|\frac{\partial y}{\partial x}|} \]

\[\Rightarrow H(Y) = \mathbb{E} \left[\log \left| \frac{\partial y}{\partial x} \right| \right] + H(X) \]

Stochastic gradient rule

\[\Delta a \propto \frac{1}{a} + x(1 - 2y) \]

\[\Delta b \propto 1 - 2y \]
Multivariate case

\[\Delta A \propto \left[A^\top \right]^{-1} + (1 - 2y)x^\top \]

\[\Delta B \propto 1 - 2y \]

\[[A^\top]^{-1} \text{ avoids redundancy} \]
In the context of ICA

\[I(y_1, y_2) = H(y_1) + H(y_2) - H(y_1, y_2) \]

i.e. maximizing \(H(y_1, y_2) \) implies minimizing \(I(y_1, y_2) \)

What happen to the individual entropies?

Choose nonlinearity such that it matches the source pdf.
\[f_Z(z) = \frac{f_S(s)}{\left| \frac{dz}{dy} \right|} \]

where

\[\left| \frac{dz}{dy} \right| = DWA \]

where \(D = \text{diag}(\frac{\partial z_1}{\partial y_1}, \frac{\partial z_2}{\partial y_2}) \)
\[
H(Z) = H(S) - \left[\log |A| + \log |W| + \sum_{i=1}^{2} \log \left(\frac{\partial z_i}{\partial y_i} \right) \right]
\]

If \(g_i(y_i) = 1/(1 + e^{-y_i}) \)

\[
\frac{\partial H(Z)}{\partial W} = W^{-T} + (1 - 2z)x^{T}
\]