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Motivation: Optimal adaptive filtering = E[Xe] =0

Uncorrelated is not independent! Consider X ~ U[—1,1] and
Y = X2,



Information:  Which has more information?
1. NN project is due today. 2. NN project is not due today.

If two events has probability p and g of occurring, then

1. 1(p).1(q) = 0,
2. 1(1) =0,
3. 1(p) < I(q) if p>gq.

Take /(p) = —log p



Entropy: Entropy is a measure of uncertainty.

Let X take values {x1,...,xx} with probability {p1,..., pk}.

If pp =1and pp =...= px =0, only one event occur = No
uncertainty = Zero entropy

fpr=...=px = % all events are equally probable = Max
uncertainty = Max entropy



Desired properties

1. H(P) = H(p1, ..., pk) is symmetric
2. H(P) is continuous
3. H(P Q) = H(P) + H(Q) Additivity

Shannon's entropy H(P) = > pkl(pk)

Rényi's entropy

H(P) =

—log > _pf

Equivalent to H(P) = (Z prg(1(pr))) with g(x) = 2(1—a)x,
Shannon'’s entropy is Reny| s entropy for a — 1

Note, Olog0 =0



Conditional entropy:
1la Dr. Principe is in town next Monday.
2 Dr. Principe is teaching next Monday.
1b You didn't finish your project.
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MI is mutual information!



Mutual information is zero < Random variables are independent
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Differential entropy: H(X) = [ fx(x) log fx(x)dx

H(X + ¢) = H(X) and H(aX) = H(X) + log |a|

If X ~U[0,1], H(X) = 0 and if X = ¢, H(X) = —oc0



Conditional entropy: H(X|Y)

Mutual information:

MI(X,Y) = HX)—H(X|Y) = H(Y)—H(Y|X) = HX)+H(X)—H(X, )

1(X,Y) //fxyxy Iogf:( gfy())d dy

Ml is nonnegative! Ml is invariant to invertible transformation.



InfoMax: Train a network such that the mutual information
1(X,Y) between input X and Y is maximized.

I(X,Y) = H(Y) = H(Y|X)

Information theoretic learning works with other “forms” of MI.

QMI(X,Y) = //(fXY(Xa)’) — fx(x)fy (y))dxdy
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Assumptions: Mutual independence of sources, square mixing
matrix, noise free model, zero mean, unit covariance.



InfoMax: Train a network such that the mutual information
1(X,Y) between input X and Y is maximized.

I(X,Y) = H(Y) = H(Y|X).

If Y =G(X)+ N then H(Y|X) = H(N) i.e. maximizing /(X,Y)
implies maximizing H(Y)
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Multivariate case
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In the context of ICA

I(y1,y2) = H(y1) + H(y2) — H(y1, y2)

i.e. maximizing H(yi, y2) implies minimizing /(y1, y2)

What happen to the individual entropies?

Choose nonlinearity such that it matches the source pdf.



InfoMax Bell & Sejnowski
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