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Motivation: Optimal adaptive filtering ⇒ E[Xe] = 0

Uncorrelated is not independent! Consider X ∼ U[−1, 1] and
Y = X 2.



Information: Which has more information?
1. NN project is due today. 2. NN project is not due today.

If two events has probability p and q of occurring, then

1. I (p), I (q) ≥ 0,

2. I (1) = 0,

3. I (p) < I (q) if p > q.

Take I (p) = − log p



Entropy: Entropy is a measure of uncertainty.

Let X take values {x1, . . . , xk} with probability {p1, . . . , pk}.

If p1 = 1 and p2 = . . . = pk = 0, only one event occur ⇒ No
uncertainty ⇒ Zero entropy

If p1 = . . . = pk = 1
k
, all events are equally probable ⇒ Max

uncertainty ⇒ Max entropy



Desired properties

1. H(P) = H(p1, . . . , pk) is symmetric

2. H(P) is continuous

3. H(P ∗ Q) = H(P) + H(Q) Additivity

Shannon’s entropy H(P) =
∑

pk I (pk)

Rényi’s entropy

H(P) =
1

1 − α
log

∑

pα
k

Equivalent to H(P) = g−1 (
∑

pkg(I (pk))) with g(x) = 2(1−α)x .
Shannon’s entropy is Rényi’s entropy for α → 1

Note, 0 log 0 = 0



Conditional entropy:

1a Dr. Principe is in town next Monday.

2 Dr. Principe is teaching next Monday.

1b You didn’t finish your project.

H(X |Y )

=
∑

P(X = qk)H(X |Y = qk)

= −
∑

P(Y = qk)
∑

P(X = pj |Y = qk) log P(X = pj |Y = qk)

= −
∑

k

∑

j

P(X = pj , Y = qk) log
P(X = pj , Y = qk)

P(Y = qk)

= −
∑

k

∑

j

P(X = pj , Y = qk) log
P(X = pj , Y = qk)

P(X = pj)P(Y = qk)
+ H(X )

= − MI (X , Y ) + H(X )

MI is mutual information!



Mutual information is zero ⇔ Random variables are independent

H(X,Y)

H(X)

H(X|Y)

H(Y)

I(X,Y) H(Y|X)



Differential entropy: H(X ) =
∫

fX (x) log fX (x)dx

H(X + c) = H(X ) and H(aX ) = H(X ) + log |a|

If X ∼ U [0, 1], H(X ) = 0 and if X = c , H(X ) = −∞



Conditional entropy: H(X |Y )

Mutual information:

MI (X , Y ) = H(X )−H(X |Y ) = H(Y )−H(Y |X ) = H(X )+H(X )−H(X , Y

MI (X , Y ) =

∫∫

fXY (x , y) log
fXY (x , y)

fX (x)fY (y)
dxdy

MI is nonnegative! MI is invariant to invertible transformation.



InfoMax: Train a network such that the mutual information
I (X , Y ) between input X and Y is maximized.

I (X , Y ) = H(Y ) − H(Y |X )

Information theoretic learning works with other “forms” of MI.

QMI (X , Y ) =

∫∫

(fXY (x , y) − fX (x)fY (y))2dxdy
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Assumptions: Mutual independence of sources, square mixing
matrix, noise free model, zero mean, unit covariance.



InfoMax: Train a network such that the mutual information
I (X , Y ) between input X and Y is maximized.

I (X , Y ) = H(Y ) − H(Y |X ).

If Y = G (X ) + N then H(Y |X ) = H(N) i.e. maximizing I (X , Y )
implies maximizing H(Y )



Y =
1

1 + exp(−(aX + b))

fY (y) =
fX (x)
∣

∣

∣

∂y
∂x

∣

∣

∣

⇒H(Y ) = E

[

log

∣

∣

∣

∣

∂y

∂x

∣

∣

∣

∣

]

+ H(X )

Stochastic gradient rule

∆a ∝
1

a
+ x(1 − 2y)

∆b ∝ 1 − 2y



Multivariate case

∆A ∝
[

A⊤

]−1
+ (1 − 2y)x⊤

∆B ∝ 1 − 2y

[

A⊤
]−1

avoids redundancy



In the context of ICA

I (y1, y2) = H(y1) + H(y2) − H(y1, y2)

i.e. maximizing H(y1, y2) implies minimizing I (y1, y2)

What happen to the individual entropies?

Choose nonlinearity such that it matches the source pdf.



InfoMax Bell & Sejnowski

Mixing A Demixing W Nonlinearity G
S X Y Z

fZ (z) =
fS(s)
∣

∣

∣

dz
dy

∣

∣

∣

where
∣

∣

∣

∣

dz

dy

∣

∣

∣

∣

= DWA

where D = diag
(

∂z1
∂y1

, ∂z2
∂y2

)



H(Z ) = H(S) −

[

log |A| + log |W | +
2

∑

i=1

log

(

∂zi

∂yi

)

]

If gi (yi ) = 1/(1 + e−yi )

∂H(Z )

∂W
= W−⊤ + (1 − 2z)x⊤


