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Statistical Learning Theory

In the methodology of science there are two primary 

methodologies to create undisputed principles 

(knowledge):

Deduction – starts with an hypothesis that must be 

scientific validated to arrive at a general principle that 

then can be applied to many different specific cases.

Induction – starts from specific cases to reach 

universal principles. Much harder than deducation.

Learning from samples uses an inductive principle 

and so must be checked for generalization.  



Statistical Learning Theory

Statistical Learning Theory uses mathematics to 

study induction. 

The theory has received lately a lot of attention and 

major advances were achieved. 

The learning setting needs to be first properly 

defined. Here we will only treat the case of 

classfication. 



Empirical Risk Minimization (ERM) 

principle

Let us consider a learning machine

x,d are real r.v. with joint distribution P(x,y). F(x) is a 

function of some parameters w, i.e. f(x,w). 
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Empirical Risk Minimization (ERM) 

principle

How can we find the possible best learning machine 

that generalizes for unseen data from the same 

distribution?

Define the Risk functional as

L(.) is called the Loss function, and minimize it w.r.t. 

w achieving the best possible loss. 

But we can not do this integration because the joint 

is normally not known in functional form.  
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Empirical Risk Minimization (ERM) 

principle

The only hope is to substitute the expected value by the 

empirical mean to yield 

Giovani and Cantelli proved that the ER converges to the 

true Risk, and Kolmogorov proved the convergence rate is 

exponential. So there is hope to achieve inductive 

machines. 

What should the best loss function be for classification?
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Empirical Risk Minimization (ERM) 

principle

The only hope is to substitute the expected value by the 

empirical mean to yield 

Giovanni and Cantelli proved that the ER converges to the 

true Risk functional, and Kolmogorov proved that the 

convergence rate is exponential. 

So there is hope to achieve inductive machines. 
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Empirical Risk Minimization (ERM) 

principle

What should the best loss function be for classification?

We know from Bayes theory that the classification error is 

the integral over the tails of the likelihoods, but this is very 

difficult to do in practice. 

In the confusion tables, what we do is to count errors, so 

this seems to be a good approach. Therefore the ideal Loss

is

Which makes the Risk   

otherwise
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Empirical Risk Minimization (ERM) 

principle

Again, the problem is that the l0/1 loss is very difficult to 

work in practice. The most widely used family of losses are 

the polynomial losses that take the form 

Let us define the error as                         . If d={-1,1} and 

the learning machine has an output between [-1,1], the 

error will be between [-2,2]. Errors beyond |e|>1 correspond 

to wrong class assignments. 

Sometimes we define the margin as                     . The 

margin is therefore in [-1,1] and for >0 we have perfect 

class assignments. 
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Empirical Risk Minimization (ERM) 

principle

In the space of the margin the l0/1 loss and the l2 norm look 

as in the figure. 

The hinge loss is a l1 norm of the error. Notice that the 

square loss is convex, but the hinge is a limiting case, and 

l0/1 is definitely non convex. 



Empirical Risk Minimization (ERM) 

principle

It turns out that the quadratic loss is easy to work with for 

the minimization (we can use gradient descent). The hinge 

loss requires dynamic programming in the minimization, but 

the current availability of fast computers and optimization 

software is becoming practical. 

The l0/1 loss is still impractical to work with. 

The down side of the quadratic loss (our well known MSE) 

is that machines trained with it are unable to control 

generalization, so they do not lead to useful inductive 

machines. The user must find additional ways to guarantee 

generalization (as we have seen – early stopping, weight 

decay). 



Correntropy:
A new generalized similarity measure

Define correntropy of two random variables X,Y as 

by analogy to the correlation function. K is the Gaussian 

kernel. 

The name correntropy comes from the fact that the 

average over the dimensions of the r.v. is the 

information potential (the argument of Renyi’s entropy)

We can estimate readily correntropy with the empirical 

mean. 
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Correntropy:
A new generalized similarity measure

Some Properties of Correntropy:

It has a maximum at the origin (            )

It is a symmetric positive function

Its mean value is the argument of the log of 

quadratic Renyi’s entropy of X-Y (hence its name)

Correntropy is sensitive to second and higher order 

moments of data (correlation only measures second 

order statistics)

Correntropy estimates the probability of X = Y. 

2/1

0

2

2 !2

)1(
),(

n

n

nn

n

YXE
n

yxv



Correntropy:
A new generalized similarity measure

Correntropy as a cost function versus MSE.    
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Correntropy:
A new generalized similarity measure

Correntropy induces a metric in the sample space 

(CIM) defined by  

Correntropy uses different

L norms depending on the 

actual sample distances.

This can be very useful for 

outlier’s control and also to 

improve generalization
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The Correntropy Loss (C-loss) Function 

We define the C-loss function as 

In terms of the classification margin 

is a positive scaling constant that guarantees

The expected risk of the C-Loss function is  

Clearly, minimizing C-Risk is equivalent to maximizing 

the similarity in the correntropy metric sense 

between the true label and the machine output. 
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The Correntropy Loss (C-loss) Function 

The C-Loss for several values of 

The C-loss is non convex, but approximates better the 

l0/1 loss and it is Fisher consistent. 



The Correntropy Loss (C-loss) Function 
Training with the C-Loss

Can use backpropagation with a minor modification: 

the injected error is now the partial of the C-Risk 

w.r.t. the error

or

All the rest is the same! 
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The Correntropy Loss (C-loss) Function 
Automatic selection of the kernel size

An unexpected advantage of the C-Loss is that it allows 

for an automatic selection of the kernel size.

We select = 0.5 to give maximal importance to the 

correctly classified samples



The Correntropy Loss (C-loss) Function 
How to train with the C-loss

The only disadvantage of the C-loss is that the 

performance surface is non convex and full of local 

minima.

I suggest to first train with MSE for 10-20 epochs, and 

then switch to the C-loss

Alternatively can use the composite cost function

where N is the number of training iterations, and is set 

by the user. 

)()()1()( 2 wR
N

wR
N

wR C



The Correntropy Loss (C-loss) Function 
Synthetic example: two Gaussian classes

Notice how smooth is the separation surface



The Correntropy Loss (C-loss) Function 
Synthetic example: more difficult case

Notice how smooth is the separation surface



The Correntropy Loss (C-loss) Function 
Wisconsin Breast Cancer Data Set

C-loss does NOT over train, so generalizes much better 

than MSE



The Correntropy Loss (C-loss) Function 
Pima Indians Data Set

C-loss does NOT over train, so generalizes much better 

than MSE



The Correntropy Loss (C-loss) Function 
But the point of switching affects performance



Conclusions

The C-loss has many advantages for classification:

• Leads to better generalization, as samples near the 

boundary have less impact on training (the major cause 

for overtraining with the MSE).

• Easy to implement - can be simply switched after 

training with MSE.

• Computation complexity is the same as MSE and 

backpropagation.

The open question is the search of the performance 

surface. The switching between MSE and C-loss 

afffects the final classification accuracy.  


