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The goal of this chapter is to introduce the concepts of Hebbian learning and its multiple 

applications. We will show that the rule is unstable but through normalization is very 

useful. Hebbian learning is used to associate an input to a given output through a 

similarity metric. A single linear PE net trained with Hebbian rule finds the direction in 

data space where the data has the largest projection, i.e. such network transfers most of 

the input energy to the output.  

This concept can be extended to multiple PEs giving rise to the principal component 

analysis (PCA) networks. These nets can be trained on-line and produce an output which 

preserve the maximum information from the input as required for signal representation. 

By changing the sign of the Hebbian update we also obtain a very useful network that 

decorrelates the input from the outputs, i.e. it can be used for finding novel information. 

Hebbian can be even related to the LMS learning rule showing that correlation is 

effectively the most widely used learning principle. Finally, we show how to apply 

Hebbian learning to associate patterns, which gives rise to a new and very biological form 

of memory called associative memory.  

• 1.Introduction  

• 2. Effect of the Hebb update  

• 3. Oja’s rule  
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• 4. Principal Component Analysis  

• 5. Anti Hebbian Learning  

• 6. Estimating crosscorrelation with Hebbian networks  

• 7. Novelty filters  

• 8. Linear associative memories (LAMs)  

• 9. LMS learning as a combination of Hebb rules  

• 10. AutoAssociation  

• 11. Nonlinear Associative memories  

• 12. Conclusions  

 

Go to next section  

1. Introduction 
 

The neurophysiologist Donald Hebb enunciated in the 40’s a principle that became very 

influential in neurocomputing. By studying the communication between neurons, Hebb 

verified that once a neuron repeatedly excited another neuron, the threshold of excitation 

of the later decreased, i.e. the communication between them was facilitated by repeated 

excitation. This means that repeated excitation lowered the threshold, or equivalently that 

the excitation effect of the first neuron was amplified (Figure 1).  

neuron 1

neuron 2

synapse

jth

PE

ith PE

wij
xj

yi

  

Figure 1. Biological and modeled artificial system 

One can extend this idea to artificial systems very easily. In artificial neural systems, 
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neurons are equivalent to PEs, and PEs are connected through weights. Hence, Hebb’s 

principle will increase the common weight wij when there is activity flowing from the   

PE to the   PE. If we denote the output to the   PE by yi and the activation of the 

  PE by xj, then 

j th

i th i th

j th

Δw xij j i= η y     Equation 1 

where η is our already known step size which controls what percentage of the product is 

effectively used to change the weight. There are many more ways to translate  Hebb’s 

principle in equations, but Eq. 1 is the most commonly used and is called Hebb’s rule.  

Unlike all the learning rules studied so far (LMS and backpropagation) there is no desired 

signal required in Hebbian learning. In order to apply Hebb’s rule only the input signal 

needs to flow through the neural network. Learning rules that use only information from 

the input to update the weights are called unsupervised . Note that in unsupervised 

learning the learning machine is changing the weights according to some internal rule 

specified a priori (here the Hebb rule). Note also that the Hebb rule is local to the weight.  

Go to the next section  

2. Effect of the Hebb update 
 

Let us see what is the net effect of updating a single weight w in a linear PE with the 

Hebb rule. Hebbian learning updates the weights according to  

( ) ( ) ( ) ( )w n w n x n y n+ = +1 η    Equation 2 

where n is the iteration number and η a stepsize. For a linear PE, y = wx, so  

( ) ( ) ( )[ ]w n w n x n+ = +1 1 2η    Equation 3 

If the initial value of the weight is a small positive constant (w(0)~0), irrespective of the 
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value of η>0 and of the input sign, the update will always be positive. Hence, the weight 

value will increase with the number of iterations without bounds, irrespective of the value 

of η. This is unlike the behavior we observed for the LMS or backpropragation, where the 

weights would stabilize for a range of step sizes. Hence, Hebbian learning is intrinsically 

unstable, producing very large positive or negative weights. In biology this is not a 

problem because there are natural limitations to synaptic efficacy (chemical depletion, 

dynamic range, etc). 

NeuroSolutions 1 

6.1 Training with the Hebbian rule 

In this example, we introduce the Hebbian Synapse. The Hebbian Synapse 

implements the weight update of Equation 2. The Hebbian network is built from an 

input Axon, the Hebbian Synapse and an Axon, so it is a linear network. Since the 

Hebbian Synapse, and all the other Unsupervised Synapses (which we will 

introduce soon), use an unsupervised weight update (no desired signal), they do 

not require a backpropagation layer.  The weights are updated on a sample by 

sample basis.  

  
This example shows the behavior of the Hebbian weight update. The weights with 

the Hebbian update will always increase, no matter how small the stepsize is.  We 

have placed a scope at the output of the net and also opened a MatrixViewer to 

observe the weights during learning. The only thing that the stepsize does is to 

control the rate of increase of the weights.   

Notice also that if the initial weight is positive the weights will become increasingly 

more positive, while if the initial weight is negative the weights become 

increasingly more negative.  
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 NeuroSolutions Example 

2.1. The multiple input PE 
Hebbian learning is normally applied to single layer linear networks. Figure 2 shows a 

single linear PE with D inputs, which will be called the Hebbian PE. The output is 

w1
w2

•
•
•

wD

y

∑

x1

x2

xD

  
Figure 2. A D input linear PE 
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   Equation 4 

According to the Hebb’s rule, the weight vector is adapted as  

Δw
x y

x yD

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

η
1

...

    Equation 5 

It is important to get a solid understanding for the role of Hebbian learning, and we will 

start with a geometric interpretation. Eq. 4 in vector notation (vectors are denoted by bold 

letters) is simply  

y T T= =w x x w    Equation 6 

i.e. the transpose of the weight vector is multiplied with the input (which is called the inner 

product) to produce the scalar output y. We know that the inner product is computed as 

the product of the length of the vectors times the cosine of their angle θ,  

( )y = w x cos θ    Equation 7 

So, assuming normalized inputs and weights, a large y means that the input x is “close” 
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to the direction of the weight vector (Figure 3), i.e. x is in the neighborhood of w.  

w
x

y
θ

  
Figure 3. The output of the linear PE in vector space 

A small y means that the input is almost perpendicular to w (cosine of 90 degrees is 0), 

i.e. x and w are far apart. So the magnitude of y measures similarity between the input x 

and the weight w using the inner product as the similarity measure.  

This is a very powerful interpretation. During learning the weights are exposed to the data 

and condense all this information in their value. This is the reason the weights should be 

considered as the long-term memory of the network. long and short term memory  

The Hebbian PE is a very simple system that creates a similarity measure (the inner 

product, Eq. 7 ) in its input space according to the information contained in the weights. 

During operation, once the  weights are fixed, a large output y signifies that the present 

input is “similar” to the inputs x that created the weights during training. We can say that 

the output of the PE responds high or low according to the similarity of the present input 

with what the PE “remembers” from training. So, the Hebbian PE implements a type of 

memory that is called an associative memory  

NeuroSolutions 2 

6.2 Directions of the Hebbian update 

This example shows how the Hebbian network projects the input onto the vector 

defined by its weights.  We use an input which is composed of samples that fall in 

an ellipse in 2 dimensions, and allow you to select the weights.  When you run the 

network, a custom DLL will display both the input (blue) and the projection of the 

input onto the weight vector (black)  The default is to set the weights to [1,0] 
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which defines a vector along the x-axis.  Thus you would be projecting the input 

onto the x-axis. Change the value of the weights which will rotate the vector. 

Notice that in any direction the output will track the input along that direction, i.e. 

the output is the projection of the input along that specified direction.  

Notice also the Megascope display. When the input data circles the origin, the 

output produces a sinusoidal component in time since the projection increases 

and decreases periodically with the rotation. The amplitude of the sinusoid is 

maximal when the weight vector is [1,0] since this is the direction that produces a 

larger projection for this data set.  

If we release the weights, i.e. if they are trained with Hebbian learning the weights 

will exactly seek the direction [1,0]. It is very interesting to note the path of the 

evolution of the weights (it oscillates around this direction). Note also that they are 

becoming progressively larger. 

 NeuroSolutions Example 

2.2. The Hamming Network as a primitive associative memory 
This idea that a simple linear network embeds a similarity metric can be explored in many 

practical applications. Here we will exemplify its use in information transmission, where 

noise normally corrupts messages. We will assume that the messages are strings of 

bipolar binary values (-1/1), and that we know what are the strings of the alphabet (for 

instance the ASCII code of the letters). A practical problem is to find from a given string of  

5 bits received, which was the string sent. We can think of a n-bit string as a vector in 

n-dimensional space. The ASCII code for each letter can also be thought as a vector. So 

the question of finding the value of the received string is the same as asking which is the 

closest ASCII vector to the received string (Figure 4)? Using the argument above, we 

should find the ASCII vector in which the bit string  produces the largest projection. 
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a=[-1,-1,-1,-1,1]
b=[-1,-1,-1,1,-1]
.....
z=[1,1,-1,1,-1]

z

c

a
constellation (coded in the weights)

received
vector

find best match

  
Figure 4. The problem of finding the best match to the received character in vector spaces 

A linear network can be constructed with as many inputs as bits on an ASCII code (here 

we will only use 5 bits, although the ASCII code is 8 bits long) and a number of outputs 

equal to the size of the alphabet (here 26 letters). The weights of the network will be hard 

coded as the bit patterns of all ASCII letters. More formally, the inputs are vectors 

 , the output is a scalar and the weight matrix S is built from rows 

that are our ASCII codes represented by 

x = [ , ,... ]x x x T
1 2 5

si i i is s s= [ , ,..... ]1 2 5  , with i=1,..,26. The 

output of the network is y Sx=  . 

The remaining question is how to measure the distance between the received vector and 

each of the ASCII characters. Since the patterns are binary, one possibility is to ask how 

many bit flips are present between the received string and all the ASCII characters. One 

should assign the received string to the ASCII character that has the least number of bit 

flips. This distance is called the Hamming distance - HD (also known as the Manhattan 

norm or L1 norm).  

When a character is received each output i of the network is the scalar product of the 

input with the corresponding row vector si. This scalar product can be written as the total 

number of positions in which the vectors agree minus the number of positions they differ 

which is quantified as their HD. Since the number of positions they agree is 5-HD, we 

have 
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    ),(5 xsHD i−=xsi   
This equation sates that if we add a bias equal to 5 to each of the outputs of our net, we 

can directly interpret the network output as an Hamming distance (to be exact the 

weights should be multiplied by 0.5, and the bias should be 0.5 to obtain the HD).  A 

perfect match will provide an output of 5. So one just needs to look for the highest output 

to know what was the character that was sent.  

NeuroSolutions 3 

6.3 Signal detection with Hamming networks 

In this example we create the equivalent of an Hamming net which will recognize 

the binary ASCII of 5 letters (A,B,L,P,Z).  The input to the network is the last 5 bits 

of each letter.  For instance, A is -1.-1,-1,-1,1, B is -1,-1,-1,1,-1, etc.   

Because we know ahead of time what the letters will be, we will set the weights to 

the expected ASCII code of each letter. But here we are not going to use the 

Hamming distance but the dot-product distance of Hebbian learning. According to 

the associative memory concept, when the input and the weight vector are same, 

the output of the net will be the largest possible. For instance, if -1,-1,-1,-,1,1 is 

input to the network, the first PE will respond with the highest possible input. 

Single step through the data to see that in fact the net gives the correct response. 

Notice also that the other outputs are not zero since the distance between each 

weight vector and the input is finite (it depends on the Hamming distance between 

the input and weight vectors).  

When noise corrupts the input, this network can be used to determine which letter 

the input was most likely to be. Noise will affect each component of the vector, but 

the net will assign the highest output to the weight vector that lies closer to the 

noisy input. When noise is small this still provides a good assignment. Increase 

the noise power to see when the system breaks down. It is amazing that such a 

simple device still provides the correct output most of the time when the variance 

of the noise is 2.  
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 NeuroSolutions Example 
Note that here we utilized the inner product metric intrinsic to the Hebbian network 

instead of the Hamming distance, but the result is very similar. In this example the weight 

matrix was constructed by hand due to the knowledge we have about the problem. In 

general the weight matrix has to be adapted, and this is where the Hebbian learning is 

important. Nevertheless this example shows the power of association for information 

processing.         

2.3. Hebbian rule as correlation learning 
There is a strong reason to translate Hebb’s principle as in Eq. 1 . In fact, Eq. 1 

prescribes a weight correction according to the product between the jth and the ith PE 

activations. Let us substitute Eq. 6 in Eq. 5 to obtain the vector equivalent   

( ) ( ) ( ) )()()( nnnnnyn T wxxw η=η=Δ x     Equation 8 

In on-line learning the weight vector is repeatedly changed according to this equation 

using a different  input sample for each n. However in batch, after iterating over the input 

data of L patterns, the cumulative weight is the sum of the products of the input with its 

transpose 

∑
=

=
L

n

T nnL
1

)()()0()( xxww
   Equation 9 

Eq. 9 can be thought of as a sample approximation to the autocorrelation of the input 

data which is defined as [ ]R xxx
TE=

  where E[.] is the expectation operator (see 

Appendix). Effectively the Hebbian algorithm is updating the weights with a sample 

estimate of the autocorrelation function  

)0(ˆ)( wRw xL η=    Equation 10 

Correlation is a well known operation in signal processing and in statistics, and it 

measures the second order statistics of the random variable under study. First and 
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second order statistics are sufficient to describe signals modeled as Gaussian 

distributions as we saw in Chapter II (i.e. first and second statistics is what is needed to 

completely describe the data cluster). Second order moments also describe many 

properties of linear systems, such as the adaptation of the linear regressor studied in 

Chapter I.  

2.4. Power, Quadratic Forms and Hebbian Learning 
As we saw the output of a linear network is given by Eq. 6. We will define the power 

energy, power and variance at the output given the data set  as )}(),....,2(),1({ Lxxx

∑∑
==

=≈==
L

n

T
L

n
x

T nn
L

whereny
L

P
11

2 )()(1)(1 xxRRwRw x
   Equation 

11 

P in Eq. 11 is a quadratic form, and it can be interpreted as a field in the space of the 

weights. Since R is positive definite we can further say that this field is a paraboloid 

facing upwards passing through the origin of the weight space (Figure 5). 

w1 w 2

P=const

gradient ∇ P R w=

P w TRw=

  
Figure 5. The power field as a performance surface 

Let us take the gradient of P with respect to the weights 

Rw
w

2=
∂
∂

=∇
PP

  
We can immediately recognize that this equation provides the basic form for the Hebbian 
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update of Eq. 10. If we recall the performance surface concept of Chapter I, we see 

immediately that the power field is the performance surface for Hebbian learning. So we 

conclude that when we train a network with the Hebbian rule we are doing gradient 

ASCENT (seeking the maximum) in the power field of the input data. The sample by 

sample adaptation rule of Eq. 8 is merely a stochastic version and follows the same 

behavior. Since the power field is unbounded upwards we can immediately expect that 

Hebbian learning will diverge, unless some type of normalization is applied to the update 

rule. Instability of Hebbian This is a shortcoming for our computer implementations 

because due to the limited dynamic range it will produce overflow errors. But there are 

many ways to normalize the Hebbian update.  

NeuroSolutions  4 

6.4 Instability of Hebbian 

This example shows that the Hebbian update rule is unstable since the weights 

grow without bound.  We use a simple 2D input example to show that the weight 

vector grows. We have opened a MatrixViewer to see the weights, and we also plot 

the tip of the weight vector in the ScatterPlot as a blue dot (think of the weight 

vector as going from the origin to the blue dot). Notice however, that the weight 

vector diverges always along the same direction. This is not by chance. Although 

unstable the Hebbian network is finding the direction where the output is the 

largest. The more you train the network, the larger the weights get. Repeat several 

times to observe the behavior we describe. So the Hebbian update is not practical.   

 NeuroSolutions Example 

2.5 Data representations in multidimensional spaces  
An important question is what does the direction of the gradient ascent represent? In 

order to understand the answer to this question we have to talk about data 

representations in multidimensional spaces. We normally collect information about the 

real world events with sensors. Most of the times the data to model a real world 

phenomenon is multidimensional, that is, we need several sensors (such as temperature, 
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pressure, flow, etc.). This immediately says that the state of the real world system is 

multidimensional, in fact a point in a space where the axes are exactly our measurement 

variables. In Figure 6 we show a two dimensional example. So the system states create a 

cloud of points somewhere in this measurement space.  

An alternative to describe the cloud of points is to define a new set of axes that are 

“glued” to the cloud of points instead of with the measurement variables. This new 

coordinate system is called a data dependent coordinate system. From the Figure 6 we 

see that the data dependent representation moves the origin to the center (the mean) of 

our cloud of samples. But we can do more. We can also try to align one of the axes with 

the direction where the data has the largest projection. This is called the “principal” 

coordinate system for the data. For simplicity we also would like the principal coordinate 

system to be orthogonal (more on this later). Notice that the original (measurement) 

coordinate system and the principal coordinate system are related by a translation and a 

rotation, which is called an affine transform in algebra. If we know the parameters of this 

transformation we have captured a lot about the structure of our cloud of data. 

o o
o oo

o
o

o
o

o

measurement 1

m
ea

su
re

m
en

t 2

Princ ipal  coordina te
system

  
Figure 6. The principal coordinate system  

What we gain with the principal coordinate system is knowledge about the structure of 

the data and versatility. We may say, I want to represent my data into a smaller 

dimensional space to simplify the problem, or to be able to visualize the data, etc. 

Suppose that we are interested in preserving the variance of the cloud of points, since 
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variance is associated with information Information and Variance . To make the point 

clear let us try to find only a single direction (i.e. a one dimensional space) to represent 

most of the variance on our data. What direction should we use? If you think a bit, the 

principal coordinate system is the one that makes more sense, because we aligned one 

of the axes with the direction where the data has the largest variance. In this coordinate 

system we should then choose the axis where the data has the largest projected 

variance. 

Now let us go back to the Hebbian network. The weights of the network trained with the 

Hebbian learning rule find the direction of the input power gradient. The output of the 

Hebbian network (the projection of the input into the weight vector) will then be the 

largest variance projection. Or in other words, the Hebbian network finds the axis of the 

principal coordinate system where the projected variance is the largest, and gives it as 

the output. What is amazing is that the simple Hebbian rule automatically finds this 

direction for us with a local learning rule! 

So even tough Hebbian learning was biologically motivated, it is a way of creating 

network weights that are tuned to the second order statistics of the input data. Moreover, 

the network does this with a rule that is local to the weights. We can further say that 

Hebbian extracts the most of the information about the input, since from all possible 

linear projections it find the one that maximizes the variance at the output (which is 

synonym of information for Gaussian distributed variables).  

Go to the next section  

3. Oja’s rule 
Perhaps the simplest normalization to Hebb’s rule was proposed by Oja . Let us divide 

the new value of the weight in Eq. 2 by the norm of the new weight vector connected to 

the PE, i.e. 
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( )
( ) ( ) ( )

( ) ( ) ( )
w n

w n y n x n

w n y n x n
i

i i

i i
i

+ =
+

+∑
1

2

η

η( )
  Equation 12 

We see that this expression effectively will normalize the size of the weight vector to one. 

So if a given weight component increases, the others have to decrease to keep the 

weight vector at the same length. So weight normalization is in fact a constraint. 

Assuming the step size small, Oja approximated the update of Eq. 12 by 

( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )w n w n y n x n y n w n w n y n x n y ni i i i i i+ = + − = − +1 1 2η η η  
 Equation 13 

producing the Oja’s rule  derivation of Oja’s rule. Note that this rule can still be 
considered Hebbian update with a normalized activity xi(n)=xi(n)-y(n)wi(n). The 
normalization is basically a “forgetting factor” proportional to the output square (see Eq. 
13).  

This equation describes the fundamental problem of Hebbian learning. In order to avoid 
unlimited growth in the weights, we applied a forgetting term. This solves the problem of 
weight growth but creates another problem. If the pattern is not presented frequently it 
will be forgotten since the network forgets old associations.  
NeuroSolutions  5 

6.5 Oja’s rule 

This example introduces the Oja’s Synapse (look at the synapse with the label Oja).  

The network is still a linear network, but the Oja’s synapse implements Oja’s 

weight update described in Eq. 13. The overall network function is similar to the 

Hebbian network except that now the weights stabilize producing a vector in the 

direction of maximum change. The input data is the same as in the previous case. 

Notice that now the weights of the single output network produce a vector oriented 

along the largest axis of the cloud of input samples (45 degrees). This is the 

direction which produces the largest possible output. Randomize the weights 

several times during learning to see that the network quickly finds this direction. 

Depending upon the sign of the initial weights, the final weights will be both 

positive or both negative, but the direction does not change.  
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The stepsize controls now the speed of convergence. If the stepsize is too large, 

the iteration will blowup as in the gradient descent learning case. Large stepsizes 

also produce rattling of the final weights (note that the weights form a linear 

segment) which should be avoided. If the stepsize is too small, the process will 

slowly converge. The best is to start the adaptation large and anneal its value to a 

small constant to fine tune the final position of the weights.  This can be 

accomplished with the scheduler.  

 NeuroSolutions Example 

3.1 Oja’s rule implements the principal component network 
What is the meaning of the weight vector of a neural network trained with Oja’s rule? In 

order to answer this question let us study a single linear PE network with multiple inputs 

(Figure 2) using the ideas of vector spaces. The goal is to study the projection defined by 

the weights created with the Oja’s rule. We already saw that Hebbian finds the direction 

where the input data has the largest projection. But the weigh vectors grows without limit. 

Now with Oja’s rule we found a way to normalize the weight vector to 1. If you recall, 

vectors of length 1 are normally used for axes of coordinate systems. We should expect 

that this normalization would not change the geometric picture we developed for the 

Hebbian network. In fact, it is possible to show that Oja’s rule finds a weight vector w=e 

which satisfies the relation  proof of eigen-equation  

Re e0 0= λ 0    Equation 14 

where R is the autocorrelation function of the input data, and λ is a real value scalar. This 

equation was already encountered in Chapter I and tells us that e0 is an eigenvector of 

the autocorrelation function, since rotating e0 by R (the left side) produces a vector 
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colinear with itself. We can further show that in fact λ0 is the largest eigenvalue of R so e0 

is the eigenvector that corresponds to the largest eigenvalue. We should expect this 

since from the eigendecomposition theory we know that the scalar is exactly the variance 

of the projected data on the eigendirection, and Oja’s rule seeks the gradient direction of 

the power field. We conclude that training the linear PE with the Oja’s algorithm produces 

a weight vector that is aligned with the direction in the input space where the input data 

cluster produces the largest variance (the largest projection).  

Figure 7 shows a simple case for 2D. It shows a data cluster (black dots) spread along 

the 45° line. The principal axis of the data is the direction in 2D space where the data has 

its largest power (projection variance). So imagine a line passing through the center of 

the cluster and rotate it so that the data cluster produces the largest spread in the line. 

For this case the direction will be close to 45°. The weight vector of the network of Figure 

2 trained with Oja’s rule coincides exactly with the principal axis, also called the principal 

component. The direction perpendicular to it (the minor axis) will produce a much smaller 

spread. For zero mean data, the direction of maximum spread coincides with the 

direction where most of the information about the data resides. The same thing happens 

when the data exists in a larger dimensionality space D, but we can not visualize it 

anymore.  

largest spread

principal
direction

minor
direction

smallest
spread

projection

x1

x2

  
Figure 7.  Projection of a data cluster onto the principal components 

If you relate this figure with the NeuroSolutions example, the Oja’s weight vector found 
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exactly the direction where the data produced the largest projection. This is a very 

important property because the simple one PE network trained with Oja’s rule is 

extracting the most information that it can from the input, if we think that information is 

associated with power of the input. In engineering applications where the input data is 

normally corrupted by noise, this system will provide a solution that will maximize the 

signal-power (of the largest sinusoidal component) to noise-power ratio definition of 

eigenfilter  

Go to the next section  

4. Principal Component Analysis 
We saw that Oja’s rule found a unity weight vector that is colinear with the principal 

component of the input data. But how can we find still other directions where the data 

cluster has still appreciable variance? We would like to create more axes of the principal 

coordinate system mentioned in section 2.5. For simplicity we would like to create an 

orthogonal coordinate system (i.e. all the vectors are orthogonal to each other) with unit 

length vectors (orthonormal coordinate system). How can we do this? Principal 

Component Analysis answers this question. 

Principal Component Analysis or PCA for short is a very well known statistical procedure 

that has important properties. Suppose that we have input data of very large 

dimensionality (D dimensions). We would like to project this data to a smaller 

dimensionality space M (M<D), a step that is commonly called feature extraction. 

Projection will always distort somewhat our data (just think of a 3-D object and its 2-D 

shadow). Obviously we would like to do this projection to M dimensional space 

preserving maximally the information (variance from a representation point of view) about 

the input data. The linear projection that accomplishes this goal is exactly the PCA. PCA, 

SVD, and KL transforms .  

PCA produces an orthonormal basis that is built from the eigenvectors of the input data 

autocorrelation function. The projections onto each basis are therefore the eigenvalues of 
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R. If one orders the eigenvectors by descending order of the eigenvalues, and we 

truncate them at M (with M<D) then we will project the input data to a linear space of 

(smaller) dimensionality M. In this space the projection onto each axis will produce the M 

largest eigenvalues, so there is no better linear projection to preserve the input signal 

power. The outputs of the PCA represent the input into a smaller subspace so they are 

called features. So PCA is the best linear feature extractor for signal reconstruction. The 

error e in the approximation when we utilize M features is exactly given by 

e i
i M

D
2

1
=

= +
∑λ

   Equation 15  

Eq. 15 tells that the error power is exactly equal to the sum of the eigenvalues that were 

discarded. For the case of Figure 7, the minimum error in representing the 2-D data set in 

an 1-D space is obtained when the principal direction is chosen as the projection axis. 

The error power is exactly given by the projection on the minor direction. If we decided to 

keep the projection in the minor direction, the error incurred would have been much 

higher. This method is called subspace decomposition and it is widely applied in signal 

processing and statistics to find the best sub-space of a given dimension that preserves 

maximally data information. There are well known algorithms that compute analytically 

the PCA, but they have to solve matrix equations (Singular value decomposition ).  

Can we build a neural network that implements PCA on-line, with local learning rules? 

The answer is affirmative. We have to use a linear network with multiple outputs (equal to 

the dimension M of the projection space) as in Figure 8.  
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Figure 8.  A PCA network to project the data from D to M dimensions. 

The idea is very simple. First, we compute the largest eigenvector as done above with 

Oja’s rule. Then we project the data onto a space perpendicular to the largest 

eigenvector and we apply the algorithm again to find the second largest principal 

component, and so on until order M D≤  . The projection onto the orthogonal space is 

easily accomplished by subtracting the output of all previous output components (after 

convergence) from the input. This method is called the deflation method and mimics the 

Gram-Schmidt orthogonalization procedure Gram-Schmidt orthgonalization .  

What is interesting is that the deflation method can be accomplished easily by modifying 

slightly Oja’s learning rule as was first done by Sanger . We are assuming that the 

network has M outputs each given by 

( ) ( ) ( )y n w n x n i Mi ij j
i

D

= =
=
∑ 1

1
,...

   Equation 16 

and D inputs ( M D≤  ). To apply Sanger’s rule the weights are updated according to 

( ) ( ) ( ) ( ) ( )Δw n y n x n w n y nij i j kj k
k

i

= −
⎡

⎣
⎢

⎤

⎦
⎥

=
∑η

1    Equation 17 

This rule resembles the Oja’s update, but now the input to each PE is modified by 

subtracting the outputs from the preceding PEs times the respective weights. This 

implements the deflation method , after the system converges. The weight update of Eq. 
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17 is not local since we need all the previous network outputs to compute the weight 

update to weight wij. However, there are other rules that use local updates (such as the 

APEX algorithm Diamantaras ).  

As we can expect from Eq. 17 and the explanation there is a coupling between the 

modes, i.e. only after convergence of the first PE weights will the second PE weights 

converge completely to the eigenvector that corresponds to the second largest 

eigenvalue . There are other on-line algorithms for the same purpose, such as the lateral 

inhibition network and the recursively computed APEX, but for the sake of simplicity they 

will be omitted here.  

A two output PCA network will have weight vectors that correspond to the principal and 

minor component of Figure 5. The two outputs will correspond to the largest and smallest 

eigenvalues respectively. The interesting thing about subspace projections is that in 

many problems the data is already restricted to a (unknown) subspace, so PCA can 

effectively perform data compression preserving the major features of the data. 

NeuroSolutions  6 

6.6 Sanger’s and PCA 

This example introduces Sanger’s rule (look at the synapse with the label Sang in 

the breadboard ). Sanger’s rule does Principal Component Analysis (PCA).  The 

dimension M of the output determines the size of the output space, i.e. the number 

of eigenvectors and also the number of features used to represent the input data. 

PCA finds the M weight vectors which capture the most information about the 

input data.  For instance, a 3 output Sanger’s network will find 3 orthogonal 

vectors, the principal axis which captures the more information than any other 

vector in the input space, along with the two vectors which capture the second 

most and third most information.  In this example, we take a high dimensional 

input, 8x8 images of the 10 digits, and project them onto their M Principal 

components.  M is a variable that you can control by setting the number of 

outputs of the Sanger’s network.  The outputs of the PCA network are the features 
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obtained by the projection.   

  
We then use a custom DLL to recreate the digits using only the M features.  This 

DLL takes the output of the Sanger’s network and multiplies it by the transpose of 

W, so it recreates a 64 output image. This image shows us how much of the 

original information in the input we have captured in the M dimensional subspace.  

When the two images are identical, we have preserved in the features the 

information contained in the input data.   

The display of the eigenvectors (the PCA weights) is not easy since they are 

vectors in a 64 dimensional space. After convergence they are orthogonal. We can 

use the Hinton probe to visualize their value, but it is difficult to find patterns (in 

fact the signs should alternate more frequently towards the higher order meaning 

that finer details is being encoded). Try different values for the subspace 

dimension (M), and verify that PCA is very robust, i.e. even with just a few 

dimensions the reconstructed digits can be recognized.  

A word of caution is needed at this point. The PCA finds the subspace that best 

represents the ensemble of digits, so the best discrimination among the digits in 

the subspace is not guaranteed with PCA. If the goal is discrimination among the 

digits then a classifier should be designed for that purpose.   PCA is a linear 

representation mechanism, and only guarantees that the features contain the most 

information for reconstruction.   

 NeuroSolutions Example 
The PCA decomposition is a very important operation in data processing because it 

provides knowledge about the hidden structure (latent variables) of the data. As such 

there are many other possible formulations for the problem. PCA derivation 
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4.1. PCA for data compression 
PCA is the optimal linear feature extractor, i.e. there is no other linear system that is able 

to provide better features for reconstruction. So one of the obvious PCA applications is 

data compression. In data compression the goal is to be able to transmit as fewer bits per 

second as possible preserving as much as the source information as possible. So this 

means that we must “squeeze” in each bit as much information as possible from the 

source. We can model data compression as a projection operation where the goal is to 

find a set of basis that produce a large concentration of signal power in only a few 

components. 

In PCA compression the receiver must know the weight matrix containing the 

eigenvectors since the estimation of the input from the eigenvalues is done by  

~x W y= T
   Equation 18 

The weight matrix is obtained after training with exemplars from the data to be 

transmitted. It has been shown that for special applications this step can be completed 

efficiently and is done only once. So the receiver can be constructed before hand. The 

reconstruction step requires MxD operations where D is the input vector dimension and 

M is the size of the subspace (number of features).  

4.2. PCA features and classification 
We may think that a system able to preserve optimally signal energy in a subspace 

should also be the optimal projector for classification. Unfortunately this is not the case. 

The reason can be seen in Figure 9. We have here represented two classes. When the 

PCA is computed no distinction is made between the samples of each class so the 

optimal 1-D projection for reconstruction (the principal direction) is along the x1 axis. 

However it is easy to see that the best discrimination between these two clusters is along 

the x2 axis which from the point of view of reconstruction is the minor direction.  

So PCA chooses the projections to best reconstruct the data in the chosen subspace. 

This may or may not coincide with the projection for best discrimination. A similar thing 
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happened when we addressed regression and classification (first example of Chapter II). 

A linear regressor can be used as a classifier, but there is no guarantee that it produces 

the optimal classifier (which by definition minimizes the classification error). 

 

x1 (principal direction)

x2 (minor direction)

class 1

class 2

perfect
classification
with x2

not perfect classification
with x1

  

Figure 9. The relation between  eigendirections and classification 

However, PCA is appealing for classification since it is a simple procedure, and 

experience has shown that it normally provides good features for classification. But this 

depends upon the problem and there is no guarantee that classifiers based on PCA 

features work well. 

NeuroSolutions   7 

6.7 PCA for preprocessing 

In this example we use PCA to find the best possible linear projection in terms of 

reconstruction and then we use a MLP to classify the data into one of 10 classes 

(the digits). Notice that in fact this problem was already solved in Chapter III with 

the perceptron and we obtained perfect classification using the input data directly.  

The only way we can do a fair comparison is to limit the number of weights in the 

two systems to the same value and compare performance.    
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 NeuroSolutions Example 

Go to the next section  

5. Anti-Hebbian Learning 
We have seen that Hebbian learning discovers the directions in space where the input 

data has the largest variance. Let us do a very simple modification to the algorithm and 

include a minus sign in the weight update rule of Eq. 1 , i.e.  

Δw xij j i= −η y    Equation 19 

This rule is called the anti-Hebbian rule. Let us assume that we train the system of Figure 

2 with this rule. What do you expect this rule will do?  

The easiest reasoning is to recall that the Hebbian network maximizes the output 

variance by doing gradient ascent in the power field. Now with the negative sign in the 

weight update equation, the adaptation will seek the minimum of the performance surface, 

i.e. the output variance will be minimized. Hence, the output of the linear network trained 

with anti-Hebbian will always produce zero output, because the weights will seek the 

directions in the input space where the data cluster have a point projection. This is called 

the null (or orthogonal) space of the data. The network finds this direction by doing 

gradient descent in the power field. 

If the data fills the full input space then the weights will have to go to zero. On the other 

hand, if the data exists in a subspace, the weights will find the directions where the data 

projects to a point. For Figure 7 anti-Hebbian will provide zero weights. However, if the 

data was one dimensional, i.e. along the 45 degree line, then the weights will be placed 

along the 135 degree line.  

NeuroSolutions   8 

6.8 Anti-Hebbian learning 

In this example we use the Hebbian synapse with a negative stepsize to implement 

an anti-Hebbian network.  The anti-Hebbian rule minimizes the output variance, 
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thus it will try to find a vector which is orthogonal to the input (the null space of 

the input) such that the projection of the data onto the weight vector is always 

zero. 

There are two cases of importance. Either the data lies in a subspace of the input 

space in which case the zero output can be achieved by adapting the weight vector 

perpendicular to the subspace where the input lies.  Or in the second case the 

input samples covers the full input space, so the only way to get a zero output is to 

drive the weights to zero.  

Notice how fast the anti-Hebbian trains. If the data moves in the input space, notice 

that the weights are always finding the direction orthogonal to the data cluster.  

 NeuroSolutions Example 
This behavior of anti-Hebbian learning can be translated as decorrelation, i.e. a linear PE 

trained with anti-Hebbian learning decorrelates the output from its input. We must realize 

that Hebbian and anti-Hebbian have complementary roles in projecting the input data, 

that are very important for signal processing. For instance the new high resolution 

spectral analysis techniques (such as MUSIC and ESPRIT Kay ) are based on ways of 

finding the null space of the data and so they can be implemented on-line using 

anti-Hebbian learning. We will provide an example in Chapter IX.  

5.1. Convergence of anti-Hebbian rule 
Another interesting thing is that the convergence of the anti-Hebbian rule can be 

controlled by the step size, like in LMS or backpropagation. This means that if the step 

size is too large the weights will get progressively larger (diverge), but if the step size is 

below a given value the adaptation will converge. In fact from the fact that the power field 

is a paraboloid in weight space, we know it has a single minimum. Hence the situation is 

like gradient descent that we studied in Chapter I. What is the value under which the 

weights converge to finite values? 

The anti-Hebbian update for one weight is 
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( ) ( ) ( )( )w n w n x n+ = −1 1 2η    Equation 20 

So, if we take expectations and project into the principal coordinate system as we did in 

Chapter I to compute the largest stepsize for the LMS, we can conclude that  

( ) ( ) ( )w n w n+ = −1 1 ηλ   Equation 21 

which is stable if  

η
λ

<
2

   Equation 22 

where λ is the eigenvalue of the autocorrelation function of the input. We can immediately 

see the similarity to the convergence of the LMS rule. For a system with multiple inputs 

the requirement for convergence has to be modified to 

η
λ

<
2

max    Equation 23 

where λ max is the largest eigenvalue of the input autocorrelation function as for the LMS 

case.  

NeuroSolutions   9 

6.9 Stability of Hebbian 

This example shows that the anti-Hebbian rule is stable for the range of values 

given by Eq. 23 when random data is utilized. Just change the stepsize to see what 

is the compromise rattling speed of convergence achieved with the anti-Hebbian.  

Since the weight update is sample by sample, when the data has deterministic 

structure divergence may occur at step sizes smaller than the ones predicted by 

Eq. 23. The same behavior was encountered in the LMS.   

 NeuroSolutions Example 
Go tothe next section  
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6. Estimating crosscorrelation with Hebbian 
networks 

Suppose that we have two data sets formed by P exemplars of N dimensional data 

x1,....xN and d1,... dM, and the goal is to estimate the crosscorrelation between them. The 

crosscorrelation is a measure of similarity between the two sets of data which extends 

the idea of correlation coefficient (see Appendix and Chapter I ).  

In practice we are often faced with the question how similar is this data set to that other 

one. Crosscorrelation helps exactly to answer this question. Let us assume that the data 

samples are ordered by their indices. The crosscorrelation for index i, j is  

( ) MjNidx
L

jir
L

k
kjkixd <<<<= ∑

=

0,01,
1

,,
  Equation 24 

where L is the number of patterns, N is the size of the input vector and M is the size of 

desired response vector. The fundamental operation of correlation is to cross multiply the 

data samples and add the contributions. Define the average operator  

[ ] ∑
=

=
L

k
ku

L
A

1

1u
   Equation 25 

The crosscorrelation can then be defined as  

( ) [ ]r i j Axd i j, = x d
   Equation 26 

where the vector  is built from the  sample of all the 

patterns in the input set (likewise for d). The crosscorrelation matrix Rxy is built from all 

possible shifts i, j, i.e  

x i i i iP
Tx x x= [ , ,...., ]1 2 i th

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

NNNN

N

xd A
dxdxdx

dxdxdx
R

21

12111

.........

  Equation 27 

The crosscorrelation vector used in regression (Chapter I ) is just the first column of this 

matrix. Now let us relate this formalism to the calculations of a linear network trained with 
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Hebbian learning. Assume we have a linear network with N inputs x and N outputs y 

(Figure 10) 
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Figure 10. A multiple input multiple Hebbian network 

In order to compute the cross correlation between x and the data set d, we will substitute 

the network output y in the Hebbian rule by the data set d, i.e. 

Δw xij j i= η d

xk

   Equation 28 

which implements what we call forced Hebbian learning. We can write the output yj as Eq. 

4 but now with two indices i and j 

y wj k j
k

N

=
=

∑ ,
1    Equation 29 

The weight wi,j when adapted with forced Hebbian learning takes the form 

( ) ( ) ( ) ( )w n w n x n d ni j i j j i, ,+ = +1 η    Equation 30 

If wij(0)=0 after L iterations we get  

( ) ( ) ( )∑
=

η=
L

n
ijji ndnxLw

1
,

   Equation 31 

So by comparing Eq.24 with Eq. 31 we conclude that the weight wij trained with forced 

Hebbian learning is proportional after P iterations to the crosscorrelation element rij. If 

η=1/L and the initial conditions are zero this is exactly rij. Notice also that the elements of 

the crosscorrelation matrix are precisely the weights of the linear network (Eq. 27 ). For 
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this reason the linear network trained with forced Hebbian learning is called a correlator 

or a linear associator. Hence, forced Hebbian learning is an alternate, on-line way of 

computing the crosscorrelation function between two data sets.  

NeuroSolutions   10 

6.10 Forced Hebbian computes crosscorrelation 

In this example we show how forced Hebbian learning simply computes the 

crosscorrelation of the input and desired output. We have a 3 input network which 

we would like to train with a desired response of 2 outputs. We have created a data 

set with 4 patterns. The crosscorrelation computed according to Eq. 24 is  

r(0,0)= 0.5 ; r(0,1)=r(1,0)=0; r(1,1)=0.25; r(0,2)=0.5 ;r(1,2)=0.25 

Let us use the Hebbian network and take a look at the final weights.  Notice that 

we started the weights with a zero value, and stopped the network after 10 

iterations of each batch (4 patterns) with a stepsize of 0.025 (1/4x10). 

 NeuroSolutions Example 
There are two important applications of this concept that we will address in this chapter. 

One uses crosscorrelation with anti-Hebbian learning to find “what is different” between 

two data sets, and can be considered a novelty filter. The other is possibly even more 

important and is a memory device called an associative memory.  

Go to the next section  

7. Novelty Filters and Lateral Inhibition 
Let us assume that we have two data sets x and d. Taking x as the input to our system, 

we want to create an output y as dissimilar as possible to the data set d (Figure 11). This 

function is very important in signal processing (decorrelation) and in information 

processing (uncorrelated features), and it seems to be at the core of biological 

information processing. We humans filter out with extreme ease what we know already 

from the sensor input (either visual or acoustic). This avoids information overload. It 

 32 



seems that what we do first is to equalize the incoming information with what is expected, 

such that unexpected things stand out. 

x

d

y

d

x

y

  
Figure 11. The function of a decorrelation system 

We may think that the incoming data is represented by x, and what we already know is 

represented by d. So novelty is the part of x that is not represented in d. From a point of 

view of vector operations, this is equivalent to finding a rotation to x such that y is 

orthogonal to d. The system of Figure 10 with the learning rule of Eq. 19 where d 

substitutes y (i.e.  ) does exactly this job.  xdw η−=Δ
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6.11 Novelty filter with anti-Hebbian learning 

In this example, we show an example of a novelty filter.  We have created a three 

dimensional input signal which represents the output of a system under normal 

operating conditions.  This system could be a car (outputs = velocity, acceleration, 

and turning angle), a power plant, or any other system.  We will train the novelty 

filter on this data and the anti-Hebbian learning will learn it’s null space – the 

vector where the input projection is always very close to zero.  The weights are 

fixed at this point.  

When the system changes slightly (abnormal system operation) and its output is 

fed to the trained novelty filter, the filter output is no longer close to zero because 

the new signal is no longer in the null space of the filter weights.  This indicates 

that the system is no longer operating normally. We will change the parameters of 

the system midway in the experiment. From the filter output you should be able to 

pin point where the change occurred. Notice that the system output looks basically 
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unchanged throughtout the segment, so it would be difficult to find the change in 

parameters. 

 NeuroSolutions Example 

7.1 Lateral Inhibition 
Another very useful strategy to decorrelate signals is to create lateral connections 

between PEs adapted with anti-Hebbian learning (see Foldiak ). We will analyze the 

topology depicted in Figure 12. In the Figure, c is the lateral inhibition connection from yi 

to yj. We use the + superscript to mean the pre-activity of the PEs. Note that  
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Figure 12. Lateral inhibition connections 

The crosscorrelation between yi and yj is  . 

If the power of yi is greater than zero, then there is always a value  
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which will decorrelate yi and yj, i.e. will make R(yi,yj)=0. Notice that this value is the 

negative of the crosscorrelation between the ith and jth PE activations. So if we use the 

anti-Hebbian learning with a small stepsize, the outputs will be decorrelated. Notice that 

one of the characteristics of the PCA is that the outputs were orthogonal, i.e. the outputs 

were uncorrelated. The lateral inhibition is basically achieving the same thing, however 
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the variance of the outputs are not being constrained, nor the weight vectors.  

The interesting thing about lateral inhibition is that it can provide an alternative method to 

construct  networks that find the principal component space with a local learning rule, or 

even provide whitening transforms (i.e. a transform that not only orthgonalize the input 

data but also normalize the eigenvalues).  

7.2 APEX model for PCA 
Diamantaras has shown that the network of Figure 13 implements PCA when the weights 

are adapted according to  
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Note that the weight is adapted using Oja’s rule, while the anti-Hebbian learning is used 

to adapt the lateral connections. Note that all the quantities are local to the weights, so 

the rule is actually local. 
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Figure 13. The APEX topology for PCA 

7.3 Whitening Transform 
A whitening transform is a very important linear transformation in adaptive systems, 

because it transforms any data described by an autocorrelation R with a large eigenvalue 

spread into an orthonormal matrix, i.e. a matrix with all the eigenvalues equal to a 

constant. For whitened data the LMS algorithm is as fast as Newton’s method since the 
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eigenvalue spread is 1. So whitening the input data, will drastically improve the speed of 

linear learning systems using first order methods. We present now a topology and 

learning rule that will produce a whitening transform (see Silva ). 

The network that implements the whitening transform is as Figure 13. The idea of the 

algorithm is very similar to the Gram-Schmidt procedure (Figure 14), but it adapts all the 

vectors at the same time, yielding a symmetric adaptation structure. The adaptation rule 

reads  

∑
=

η−η+=+
D

k
kjkiijij nwnynynwnw

1
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Notice that this formula specifies a weight update which is not local to the weights. 

However with lateral inhibition we can easily implement it in a single layer network 

(Figure 13). Notice that the sum over k can be implemented by bringing a lateral inhibition 

connection from the kth PE to the ith PE with a weight copied from the forward 

connections and connecting the jth input with the kth PE. Silva discusses another 

implementation and also proves the convergence of the algorithm.  The interesting thing 

of this transformation is that it creates an orthonormal space at the output by equalizing 

the eigenvalues instead of by rotating the axis as done in PCA (Figure 14). This was 

reported much faster than PCA for a variety of problems (and PCA does not guarantee 

an orthonormal basis).  

init ial  
distribution

final  
distribution

x1(n)

x2(n)

  
Figure 14. Whitening transform and the corresponding weight update 
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Go to the next section  

8. Linear associative memories (LAMs) 
Information processing requires memorization of information. In digital computers one 

memory location stores one bit of information, so the information is stored individually. An 

interesting question is to seek ways to store information in a more global way, i.e. have 

several PEs store many bit (data) patterns. And then ask the question what system is 

more efficient and robust to noise.  

The linear associator also called a linear associative memory (LAM) provides an 

alternative computer memory paradigm. The research has strong ties to psychology 

since it is today pretty well accepted that the brain does not store each bit of information 

separately in each neuron. Many neurons (cell assembly) store many patterns.  

The system of Figure 10 with the Hebbian rule (Eq. 1 ) can be used as an associative 

memory, i.e. a device that can be trained to associate an input x to a response d. Then in 

the absence of d, x can produce an output y that resembles d. So the question is how 

can information be stored globally and how can one retrieve it? 

We will utilize the matrix notation for convenience. Let the input of N elements be 

denoted as a vector x. Likewise y is the N component output vector. The output being 

linear can be obtained as y Wx=   where W is the weight matrix. The Hebbian 

learning constructs each weight according to Eq. 1 , which can be written in matrix 

notation as the outer product, i.e. W dx= T
 . So, when the input x is entered in the 

linear associator the output created by the system is  

y dx x d= ∝T
   Equation 32 

which is proportional to the original output utilized in the training (remember that   

is a constant equal to the length of the vector x).  

x xT

The interesting question is what happens when more than one input vector is stored in 

 37



the memory? Can we still recover each one of the inputs or is the output contaminated by 

the other inputs? 

NeuroSolutions   12 

6.12 LAM application  

In this example we use a linear associative memory (LAM) to associate area codes 

(3 digits) with prices for long distance phone calls (2 digits).  When we input an 

area code, we would like the network to output the correct price for the 

corresponding long distance phone call rate. So during training we will use 

hetero-association to train the LAM. We have encoded the area codes and rates as 

binary digits (12 and 8 bits respectively). Hence this LAM will have 12 inputs and 8 

outputs. 

We have created input files which contain a set of 3 binary encoded area codes 

and prices.  We have also added a custom DLL which will allow us to display a 

sequence of binary digits as the equivalent number. Once the network is trained, 

we can present the area code and the system will produce at the output the 

corresponding long distance call rate.  

It is interesting to ask where is the information stored. The answer is in the weights, 

throughout the network. This is rather different from the storage we use in digital 

computers where the memory is addressed. If one looses the address the item 

stored can never be recovered. Here we are recalling the output by providing the 

input (i.e. the content of the memory, so these memories are called content 

addressable). 

Content addressable memories are very robust. Just go with a matrix editor and 

zero one (or several weights), and observe that the output barely changes (notice 

that the numbers displayed are subject to an encoding, so they only change when 

there are drastic modifications in one of the bits).  If one bit was lost in the 

address or content of a computer memory, the original content would be 
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impossible to retrieve (except if coding - which is redundancy- was used).  

Another interesting thing is that these memories cover the input space with a 

similarity measure (the inner product metric as we have seen). For information in 

the form of numbers this is not that important since numeric information is 

normally precise. But for names, words, concepts, etc. similarity makes a lot of 

sense. (is his name Gary, Cary, Gerry, Larry, ????). To see this property of LAMs 

let us just change one of the input digits and see that the output is basically 

unchanged.  These are nice properties of LAMs which make them very good 

models for human memory in cognitive science.  

 NeuroSolutions Example 
8.1. Crosstalk in LAMs 

Let us assume that we have K input-output vector pairs  . The associative 

memory is trained by repeated presentation of each input, so using the principle of 

superposition the final weight matrix is the sum of the individual weight matrices 

x dk → k

k

k

W Wk=
=

∑
k

K

1    Equation 33 

where each  . Now when an input vector xl is presented to the network its 

output is 

W x xk k
T=

y Wx d x x d x x= = +
= ≠
∑l l l

T
l k

T
l

k k

K

1 1,    Equation 34 

The associative memory output is built up from two terms. The first, which is the true 

output for the input xl is added with a term that is called the crosstalk because it 

measures how much the other outputs interfere with the true one. But if the crosstalk 

term is small, Eq. 34 tells us that in fact the associative memory is able to retrieve the 

pattern that corresponded to x during training (the association).  
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The crosstalk is a function of how similar the input xl is to the other inputs xk. This can be 

better understood in a geometric setting. Assume that the input patterns are vectors in a 

N dimensional vector space. The output of the linear associator, being a product of a 

matrix by a vector (Eq. 34 ), rotates the input xl to obtain y. The goal is to obtain a 

rotation that produced the expected association to dl. What Eq. 34 is saying is that the 

actual output y is constructed by two terms. The first is the desired output d1 scaled by 

the length of xl, and a sum of contributions that depend on the inner product of all the 

other input patterns xk with xl. Figure 15 shows the construction for two vectors only.  

x1

x2

d1

y

x2
Tx1

W

  
Figure 15. Output with crosstalk 

If the inputs are all orthogonal, the inner product of xl and xk is zero (zero crosstalk), and 

the linear associator produces perfect recall. However, if the input patterns are not 

orthogonal, each one of the yk in the sum is multiplied by the projection of the input vector 

k on l, which can add up to a large number, rotating and changing the length of the true 

output d. If the crosstalk term is comparable to the first term, then the linear associator 

will produce an output that has nothing to do with the expected response d.  

This analysis brings immediately the concept of storage capacity, which is defined as the 

maximum number of patterns that can be stored and recalled without degradation. 

Associative memories, unlike computer memories have finite storage capacity. We know 

that in a space of dimension N, there are only N possible orthogonal directions, so perfect 

recall is limited to a number of patterns equal to the size of the input space (length of the 

input vector). In practical conditions the inputs may not be orthogonal to each other. So, if 

orthogonality is not enforced, the crosstalk term may be large even for a number of 
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patterns less than N. But it is always possible (although computationally expensive) to 

project a set of N vectors onto an N dimensional orthogonal basis (as we saw with the 

PCA). In fact, we do not need to perform PCA, we just need to find a spanning orthogonal 

set of vectors which is possible with simpler algorithms. So using such a preprocessor 

one can say that perfect recall can be achieved for a number of patterns equal to the size 

of the input layer. Therefore, the storage capacity of the linear associator equals N. When 

the number of patterns is larger than the space dimensionality a severe degradation of 

performance can be expected. 

NeuroSolutions  13 

6.13 LAM and crosstalk 

This example is exactly the same as before but now we have added more patterns 

which happen to be correlated (non-orthogonal). This will produce crosstalk. Run 

the network and observe that now the output values do not correspond to the 

desired response for two reasons. First the outputs that were zero have now non 

zero values (watch the size of the bars) and the desired values are not met 

anymore for some patterns. The errors get worse when the number of  ones in the 

patterns increase, and also when more patterns are included. This is the problem 

of the crosstalk.  

 NeuroSolutions Example 
This analysis gives the theoretical basis for associative memories. When we train such a 

system with a set of input-output vectors using the Hebbian learning, the network will 

produce an output similar to the individual output, provided the number of patterns is less 

than the input space dimensionality. Orthogonalization of the patterns may have to be 

performed to achieve perfect recall.  

LAMs are very different from computer memories. They are content addressable and 

global, while computer memories are location addressable and local. Hence they have 

very different properties: computer memory is precise (no crosstalk), it has no limitation of 
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size (just increase the width of the address bus), but it is brittle. Once a bit is in error the 

full memory system breaks down (which requires error correction). On the other hand, 

LAMs are very robust to errors in the weights, but they suffer from limited storage and 

crosstalk. They have also the wonderful property of association, i.e. the pattern that is 

closest to the input is recalled. How often have you wished to have the property of 

association when retrieving information from a computer database….  

In Chapter XI we will see another type of associative memory with recurrent connections 

that is able to clean crosstalk to a certain extent, clean the noise from the input, or even 

complete patterns partially occluded by feeding back the output to the input several times. 

In each iteration a better approximation of the stored pattern is obtained so the system 

can self-correct errors. The most famous of these recurrent memories is the Hopfield 

network. 

Go to the next section  

9. LMS learning as a combination of Hebb rules 
The LMS rule studied in Chapter I can be created by a combination of Hebbian type rules 

between the desired response and the learning system input. In fact, if we recall the LMS 

rule 

Δw xij j i= ηε    Equation 35 

and note that the error ε can be expressed by  

ε j jd y= j−    Equation 36 

we get 

( )Δw d x y xij j i j i= −η
   Equation 37 

i.e. the LMS rule is a combination of an Hebbian term between the desired response and 

the input, and an anti-Hebbian term between the PE output and its input. The first term 
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substitutes the system output by the desired response, so it is the forced Hebbian term. 

So LMS is a combination of a forced Hebbian and anti-Hebbian rules.  

We can interpret the LMS adaptation as a compromise between two different Hebbian 

forces: the forced Hebbian term that makes the output similar to the desired response, 

and the anti-Hebbian term that tries to decorrelate the input with the system output. The 

forced Hebbian term does gradient ascent on the performance surface and will be 

unstable as we saw above. The anti-Hebbian term decorrelates the input from the output 

and drives the output to zero, allowing a range of step sizes to produce convergence to 

the minimum of the performance surface. The anti-Hebbian term is what controls the 

convergence of the LMS algorithm since the product of desired and input responses in 

independent of the weights. So it is understandable that the range of stepsizes for 

convergence for the anti-Hebbian and LMS is the same.  

An important conclusion is that the Hebbian principle of correlation is also present in 

supervised learning. This simple derivation also calls our attention to the fact that the 

learning principles studied so far in neurocomputing (Hebbian, LMS, and 

backpropagation) are based on correlation learning (or compositions of correlation 

learning).  

We can alternatively think that the LMS is a “smart” forced Hebbian learning rule which at 

the same time approximates the system output to the desired response as Hebbian does, 

but does so without being unstable (for a range of stepsizes) due to the anti-Hebbian 

component.  Hence we can expect that the LMS will improve the forced Hebbian in the 

same way as Oja improved the Hebbian learning. 

9.1. Improving the performance of linear associative memories 
(OLAMs) 

An alternative to orthogonalization of the input patterns is to use different learning rules 

during training. We can interpret the individual output pattern as the desired response for 

the linear associator, and then train it with the error  
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ε = − = −d y d Wx    Equation 38 

This equation should remind us of the supervised learning procedure used in regression 

(Chapter 1), which lead to the design of the LMS algorithm. So supervised learning can 

be applied to train the linear associator for hetero-association. The output pattern 

becomes the desired response. Note that with LMS training the weights are being 

modified at each iteration by  

( ) ( ) ( ) ( ) ( ) ( ) ( )ΔW x d x y xn n n n n nT T= = −ηε η η nT
   Equation 39 

The first term is the desired forced Hebbian update which is combined with a term that 

decorrelates the present output y from the input (the anti-Hebbian term). If we compare 

Eq. 39 with Eq.28 we can conclude that the anti Hebbian term reduces the crosstalk term 

at each iteration. So training the associative memory with LMS is an efficient way to 

improve its performance in terms of reduced crosstalk for correlated input patterns. A 

LAM trained with LMS is called an Optimal Linear Associative Memory (OLAM ). 
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6.14 Optimal LAMs 

This example still uses the same basic network and files as the previous, but now 

we trained the LAM using LMS. Notice the difference in the breadboard (the 

backpropagation plane). Observe the network during training and watch the 

response approximate the ideal response obtained with the orthogonal patterns. If 

we train enough and the number of patterns is less than the size of the space, the 

ideal response will be obtained.   

 NeuroSolutions Example 
 

One issue that is worth raising is why are we interested in using forced Hebbian to train 

associative memories when LMS works better? From an engineering point of view 

optimal LAMs should be utilized. It turns out that the Hebbian paradigm has been utilized 

by cognitive scientists to study models of human memory. The mistakes associative 

 44 



memories make have the same general character of the human memory deficiencies.  

Associative memories trained with forced Hebbian become rather bad when the density 

of ones in the patterns is high, i.e. they work reasonably well only for sparse patterns. We 

can understand this since when the patterns have sparse nonzero values (e.g., only 5 

bits equal to one in 50 bit long patterns) they are very approximately orthogonal, so there 

is little crosstalk. It turns out that the human brain has so many neurons that very 

probably the encoding in the human memory is also sparse, so Hebbian learning makes 

sense. Moreover there is physiological evidence for the Hebbian learning while the 

biological implementation of  LMS is unclear at this stage.   

9.2 LAMs and Linear Regression 
You may have noticed the similarity of topologies between the LAM of Figure 10 and the 

linear regression problem we studied in Chapter I. The marked difference here is that we 

are interested in  multiple-input, multiple-output linear topologies, while in Chapter I we 

only studied the multiple-input single output case. But the desired response in multiple 

regression can also be a vector, in which case the topology for regression becomes 

exactly that of Figure 10. The desired response is effectively the forced response in 

LAMs. So the difference has to be found in other aspects.  

You may recall that in Chapter I we have used the LMS algorithm to find the optimal 

regression coefficients while in LAMs we utilized the Hebbian learning. But now that we 

also propose to utilize the LMS to optimally find the LAM weights even this difference is 

watered down. So what is the difference if any, when we use LMS to train a LAM or a 

linear regressor?  

The difference is very subtle. In linear regression we want to pass a single optimal 

hyperplane by ALL the desired samples, while in the LAMs we want to output a response 

which is as close as possible to EACH of the true forced responses. But the mapping 

system is the same, so as you might expect, it can not provide the two goals under 

general conditions.  
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This is where the number of exemplars comes into play. Notice that in LAMs we just saw 

that the number of exemplars must be less than the size of the input layer to guarantee a 

small crosstalk. In linear regression the opposite happens. We normally want (and have) 

more patterns than the size of the input layer of the regressor. So the real difference 

between a LAM and a regressor is the amount of data, which provides two distinct 

solutions to the problem. The solution to the LAM is the unconstrained case (more 

equations than data), while the regression solution is over-constrained (more data than 

equations). The solution obtained by the LMS for associative memories in fact is one of 

the infinitely many solutions (R is not full rank because we have less data than 

dimensions). It is interesting that the storage capacity quantifies the dividing line between 

the unconstrained and the constrained case. Optimal LAMs 

This gives also a new insight into our terminology of “memorization” when we discussed 

generalization in Chapter IV and V. The linear regressor can either provide memorization 

or to generalize the statistical properties of the input, desired response pairs. We see that 

the distinctive factor is the number of input samples. We described here practical 

applications for the two conditions. However, if we want to create a regressor and the 

data is less than the number of input dimensions, LMS will provide an associative 

memory, not a regressor!!! This clearly shows the risk and the weakness of MSE learning, 

and emphasizes the importance of capacity control (optimal hyperplanes) discussed in 

the support machine theory section. We conclude that the existence of crosstalk is critical 

for generalization.  

A similar thing happens to a nonlinear system. If we train it for function approximation 

with a small number of samples (either for nonlinear regression or classification) we may 

end up with an associative memory!!! And it will never generalize well. We can then 

expect that there are many nonlinear associative memory topologies we have not talked 

about…..  

Go to the next section  
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10. AutoAssociation 
There are basically two types of associative memories, the hetero-associators and the 

autoassociators. As we have just seen, hetero-association or simply association is the 

process of providing a link between two distinct sets of data (faces with names). 

Heteroassociation was just described and it is the most widely used associative memory 

paradigm. Autoassociation links a data set with itself. You may wonder where 

autoassociation will be useful. It turns out that autoassociation can be used for input 

reconstruction, noise removal and data reduction.  

In autoassociation the output pattern is equal to the input (substitute d by x in Figure 10), 

and the system is trained either with forced Hebbian or with LMS. If we substitute d by x 

in Eq.24 we see that the crosscorrelation function becomes the autocorrelation function, 

and so the weight matrix of Eq. 27 becomes the autocorrelation matrix of the input 

W xx= T    Equation 40  

So when a pattern is presented to the input and no crosstalk is present the 

autoassociator produces an output 

Wx xx x Rx x= → =T λ   Equation 41 

since   is a constant equal to the length of the input vector. If you recall, this is 

exactly the condition for a vector to be an eigenvector of a matrix, so we conclude that 

the autoassociator is performing an eigen-decomposition of the autocorrelation function, 

i.e. the outputs will be the eigenvalues of the autocorrelation function, and the weights 

are the associated eigenvectors. Hebbian as gradient search  

x xT

The problem is that if we train the system with the forced Hebbian learning and the inputs 

are not orthogonal, there will be crosstalk. However, if the learning rule is the LMS, the 

crosstalk will be decreased to virtually zero (one can show the solution exists unlike the 

case of hetero-association).  
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Notice that in the topology of Figure 10 there is no flexibility in the reconstruction. We can 

produce a more powerful network called an autoencoder (or autoassociator) if we include 

an extra layer of linear PEs as in Figure 16. The network is normally trained with 

backpropagation (although the PEs are linear) since there is no desired signal at the 

hidden layer. We normally impose a constraint that the top matrix  . Under 

this constraint we can show that the network will operate in the same way as the PCA 

network studied in section 4 . The signals zi are effectively the eigenvalues, and their 

number selects the size of the reconstruction space.  
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Figure 16. Autoassociator with   W W T
2 1=

With this constraint we can alternatively train the network using LMS to determine the top 

layer weights and then copy them to the transpose locations (reversal of the indices) in 

the input layer. For this case the weight update using the LMS rule for the top layer 

weights is 

( ) ( ) ( ) ( )( ) ( )Δw n x n w n z n z nij i ij j j= −η
   Equation 42 

which can be recognized as the Oja’s rule. The autoassociator is a linear system, so it 

has been analytically studied in depth (Baldi). We know now that the performance 

surface of the autoassociator is non-convex with saddle points but does not have local 

minima. This means that the convergence to the global minima can be ensured with the 

control of the learning rates. 
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It is possible to even lift the constraint of the transpose between the input and the output 

weight matrices, and simply train the network with backpropagation (we can not use 

straight LMS since we have a hidden layer). One can show that in this case the PCA 

solution is not always obtained, although the system still performs autoassociation, and 

the solution found by the hidden PEs exists always in the principal component space (but 

the outputs of the bottleneck layer are not necessarily orthogonal Baldi ). The interesting 

thing is that in some cases the autoassociator with no constraints on W2 is able to find 

projections that seem to preserve better the individuality of each input class, which 

makes it better for classification. However, no linear solution will be able to provide a 

better reconstruction error than the PCA. 
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6.15 Autoassociator and PCA 

This problem is a duplication of the reconstruction of digits using PCA, but now 

we will use an autoassociator trained with backpropagation. Notice the 

architecture with the hidden layer (called the bottleneck layer). This network 

effectively computes the PCA when the second weight matrix is restricted to be the 

transpose of the first weight matrix. In order for the system to train well we have 

added a minor amount of noise to the input. In this example there is no constraint 

in the weight matrices.  

Experiment with the number of the PEs in the bottleneck layer and compare the 

accuracy in the digits obtained with this autoassociator and the PCA with the same 

subspace. Notice that the reconstruction error is higher than PCA, but the digits 

seem to be better discriminated. Use a MLP with the confusing matrix to quantify 

this hint. 

 NeuroSolutions Example 
10.1. Pattern Completion/noise reduction properties of the autoassociator 

Another interesting property of the autoassociator is the pattern completion property that 
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is very useful for noise reduction and recovery of missing data. Suppose that a segment 

  of an input vector x is lost (for instance during transmission). Let us see if we can 

recover the full vector after passing it through the autoassociator. The part of x that is lost 

is orthogonal to what was kept  , so this is equivalent to decomposing x into two 

orthogonal components 
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Now if we write the weight matrix W as a function of the lost and kept part 

( )( )W x x x x= + +k l k l T

  Equation 43 

the output becomes 

( )( )y x x x x x= + +k l k l T k
  Equation 44 

One can show using the orthogonality of   and x   that the output is x k l

( )y x x= +k l α   Equation 45 

where α is a scalar ( α =  ), i.e. the true output x is obtained. The same 

argument can be utilized to show that the autoassociator filters out noise. These are very 

important properties for data transmission.  

( )x xk T k
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6.16 Autoassociator and pattern completion 

In this example, we show how an autoassociator can be used for pattern 

completion.  If the autoassociator is trained with noisy inputs, then it will 

eventually learn the important parts of the input pattern.  Then, after training, if we 

input patterns which are noisy or incomplete (e.g. digits with missing segments), 
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the autoassociator will reconstruct the correct image because it has enough 

information from the input pattern to correctly reconstruct the output pattern. 

 NeuroSolutions Example 
10.3 Supervised versus nonsupervised training 

An interesting observation from the autoassociator’s dicussion is that we reached the 

same solution with very different learning paradigms: for the PCA we used unsupervised 

learning, but for the autoassociator we used a supervised procedure (the LMS rule) on a 

linear architecture with a transpose constraint (  ) and a desired response 

d(n)=x(n). The conclusion is that supervised learning using minimization of the L2 

criterion defaults to unsupervised (Hebbian) learning when the desired signal is equal to 

the input,  

TWW 12 =

We should ask what is the real difference between supervised and unsupervised learning. 

Until now we stated that it was the existence of the desired response that made the 

difference, but this example of the autoassociator proved us wrong. So we have to qualify 

further the differences.   

A learning system adapts its coefficients from the environment using one or several 

sources of information. In unsupervised learning, the only source of information from the 

environment is the input. In supervised learning, there are more than one source of 

information, the input and the desired response. But for the learning to be qualified 

supervised, the information contained in the desired response must be different from the 

input source. Otherwise, as we just saw, supervised learning defaults to an unsupervised 

solution.  

A further question is the efficiency of both learning strategies. It may be that even if we 

want to conduct unsupervised learning, a supervised training rule is preferable for more 

efficient extraction of information from the input signal (provided we choose appropriately 

the desired response, e.g. d(n)=x(n)). We submit that in this context supervised learning 
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is more efficient than unsupervised learning. This is reasonable since the desired signal 

plays a specific goal in supervised learning, and we now know efficient algorithms to 

search the performance surface (the gradient descent rule). We saw above that the 

autoassociator of Example 17 trained with backpropagation trains much faster than the 

PCA network of Example 6. The other practical condition for which supervised learning 

defaults to unsupervised is prediction as we will encounter in Chapter X. Others may 

exist. 

Go to the next section  

11. Nonlinear Associative memories 
Up to now we covered only linear associative memories or LAMs. But there is no reason 

to limit ourselves to linear PEs. In fact, when the PEs are nonlinear more robust 

performance is normally obtained. Some new designs are even able to automatically 

provide a normalized output when the input is normalized, which simplifies learning. The 

topology of a nonlinear associative memory is shown in Figure 17. 
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Figure 17.  A nonlinear associative memory (NLAM) 

Note that the nonlinear PE only affects the output of the memory, so Hebbian learning of 

Eq. 1 has exactly the same form for nonlinear networks. One important advantage of 

bringing in the nonlinearity is to threshold the output of the LAM. For binary encoded data 

the output can be cleaned to a certain extent from the crosstalk error. In fact we can see 
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using Eq. 34 that mistakes occur only when the crosstalk term is larger in magnitude than 

the threshold used to make the binary assignment. The nonlinear LAM is more robust to 

noise. Equivalently, if the input is contaminated by noise the output can be noise free 

which is impossible with the LAM.  
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6.17 Nonlinear Associative Memories 

Here we will be using one of the previous breadboards but now the output PE will 

be nonlinear. The big advantage of the nonlinearity is that it can threshold the 

errors (crosstalk) if it is below the level to make the decision (which normally is set 

at half dynamic range). Which this means is that if the true output was a zero, but 

the crosstalk was . 4 (between 0 and 1), the output is still 0, the correct response. 

Since this is done at the output, one can either think that the nonlinearity is part of 

the network, or it is simply an external read out.  

When we implement this type of network in NeuroSolutions and train it with LMS 

we have to make sure that the error is passed through a linear backprop 

component to mimic the effect of Hebbian  learning, otherwise the final weights 

will differ from the linear solution. We can see that the system cleans up totally its 

outputs, so it provides a better memory. 

 NeuroSolutions Example 
These are some of the advantages of the nonlinearity. However the vector space 

interpretation for the outputs is lost due to the nonlinearity. We can no longer for instance 

talk about eigenfilters, or PCA. However the network may in fact perform better than the 

linear counterpart in some applications. In the autoassociator when the bottleneck layer is 

built from nonlinear PEs the result has been shown to be still PCA, i.e. the linear solution 

is obtained. However, if the network becomes multilayer the nonlinear network may 

perform better. These are presently active areas of research. 

Go to Next Section  
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12. Project: Use of Hebbian Networks for Data 
Compression and Associative memories 

 

Data Compression 
In data compression we have a source of data, a communication channel and a receiver. 

Communication channels have an usable bandwidth, i.e. for a given error rate the 

number of bits per second - the bit rate- has an upper bound. The goal is to be able to 

transmit as fewer bits per second as possible preserving as much as possible about the 

source information. So this means that we must squeeze in each bit as much information 

as possible from the source. We can see immediately the prominent role of PCA for data 

compression. Moreover, we can model data compression as a projection operation where 

the goal is to find a set of basis that produce a large concentration of signal power in only 

a few components. 
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Figure 18. Data transmission with compression 

Practically data compression has been based on simpler schemes where the projection 

vectors are fixed functions instead of being signal dependent as in the PCA. A good 

example is the cosine basis of JPEG called the Discrete Cosine Transform (DCT) (see 

Rao). But notice that there is no need for such constraints since the determination of the 

optimal projection is an off-line operation, so we can strive for optimal decompositions, as 
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long as the reconstruction can be done efficiently.  

In PCA compression the receiver must know the weight matrix containing the 

eigenvectors since the estimation of the input from the eigenvalues is done by Eq.18 . 

The weight matrix is obtained after training with exemplars from the data to be 

transmitted. It has been shown that for special applications this step can be completed 

efficiently and is done only once. But in general a given set of coefficients for given signal 

types (i.e. in images a set of coefficients for people faces, out-door natural scenes, 

buildings, etc.) will provide better results. But notice that the new image coding schemes 

such as MPEG already provide this type of labeling. So the receiver can be constructed 

before hand. The reconstruction step requires MxN operations where N is the input 

vector dimension and M is the size of the subspace (number of features).  

NeuroSolutions  18 

6.18 Data compression with PCA 

We’ve already shown data compression before with PCA.  But here we will treat 

the breadboard in more realistic terms. We have included one extra synapse and 

an extra axon between the output of the bottleneck layer and the reconstruction 

layer to show clearly the transmitter at left and the receiver. The extra synapse is 

depicting the communication channel.  

With the PCA the compressor has first to be trained and its weights transmitted to 

the receiver (which we have done with a DLL), but this is needed only once after 

the weights converge. Run the network and experiment with the number of 

features.   

Next let us include a noise source at the receiver to mimic the noise in the 

communication channel. Notice that the PCA encoding is very immune to white, 

zero mean noise. Effectively the eigenvectors work as lowpass filters so the noise 

is averaged out.  

 NeuroSolutions Example 
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Associative Memory 
Associative memories are one of the most widely used applications of Hebbian networks. 

In particular in the cognitive sciences, LAMs are used due to the analogies between 

associative memories and mammalian memory (. In general, when the size of the input 

vectors are much larger than the number of patterns to be stored, this type of memory 

provides an effective way of associating input patterns with output patterns. The systems 

train fast and there is no local minima, so they are practical.  

Image processing is such an application due to the large input vector of a normal image. 

In fact a NxN image is a point in a N2 dimensional space. So we can store many image 

to image associations in a matrix of weights. In these cases we may not even need all the 

weights for perfect recall. This project explores the size of the weight matrix for 

association in image processing. Due to the size of the systems involved, you may need 

a fast computer for training.   

NeuroSolutions   19 

6.19 OLAMs and arbitrary connections 

In this example we will use a Linear Associative Memory trained with the LMS rule 

(an OLAM) to associate facial images of three people with images of their names.  

In order to reduce network complexity, we will use the arbitrary synapse to reduce 

the number of weights in the system.  A fully connected weight matrix would 

contain over 400,000 weights (48x48 pixel input and 7x30 pixel output).  We will 

use roughly 20,000 weights which will give us more than enough power to solve 

the problem. Remember that we only have three images which is much less than 

the capacity of the network. 

 NeuroSolutions Example 
 

 
Go to the next section  
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13. Conclusions 
This chapter studied linear networks adapted with Hebbian learning and similar rules (Oja 

and Sanger) which are in principle unsupervised learning types. We showed that such 

networks can be used for data representation also called feature extraction, since they 

project high dimensional data to smaller dimensionality output spaces. Hence PCA 

networks can be used as data preprocessors for other connectionist topologies such as 

the MLP.  

There are analytic procedures to compute PCA, so one may think that this class of 

networks can be easily substituted by mathematical operations, which is true, but does 

not address the implementation issues which are important in practical cases. Here all 

the learning rules were implemented sample by sample and eventually with local 

algorithms, so they are well suited for on-line distributed implementations. When the 

matrices are ill-conditions the numerical solutions fail, while the adaptive solutions 

provide one of the many possible solutions. Convergence speed is normally affected. 

Another application of linear networks trained with forced Hebbian is as associative 

memories. We saw that associative memories work with similar principles to human 

memory since the memory is contained in the interconnection weights (pattern of activity). 

They are content addressable (it is enough to input the data to get the recall) unlike 

computer memories which require an address to retrieve the data. They are also robust 

to noise and to failure in the components. On the other hand they have limited storage.  

We also presented other interesting views such as linking supervised and unsupervised 

learning. We pointed out the fact that LMS can be thought of as a composition of forced 

Hebbian and anti-Hebbian, which shows that the learning rules studied so far  explore 

only correlation about the input patterns (or second order statistics about the data 

clusters).  

Hebbian networks are very useful in many engineering applications and they train rather 

quickly, so they are well suited to on-line applications. 
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Go to Next Chapter  
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long and short term memory 
Long term memory refers to the storage of information from the past. Since the weights 

are adapted with the input information their value corresponds to all the data that has 

been presented to the network. Hence they represent the long term memory of the 

network.  

It is convenient to also consider the activation in the PEs as short-term memory. So far 

the short term memory is instantaneous since the activations of the PEs discussed so far 

only depend upon the current data sample. But later in Chapter IX we will consider other 

network topologies where the activations depend upon a few samples of the past.  
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associative memory 
We are very familiar with the concept of memory in digital computers, where a set of bits 

(0 and 1) are stored exactly in a memory location in the address space of our computer. 

The computer memory is an organization of such locations that is accessed by the 

processor by an address, and is therefore called location-addressable. One can think that  

the computer memory is a filing cabinet, with each folder containing the data. The 

processor access the data by searching the tag of the folder. This is the reason why 

computer memory is location addressable and local. 

Associative memories are very different and in a lot of ways resemble our own memory. 

They are content-addressable and global. Content addressable means that the recall is 

not done through the address location, but through the content. During retrieval of 

 60 



information with an associative memory, no address is used, just the input data. When 

one of the inputs used in training is presented to the Hebbian PE, the output is the 

pattern created with the storage algorithm during training (we will show this later). The 

memory is also global in the sense that all the weights in a distributed fashion contain the 

memory information, and the weights are shared by all the memories that eventually are 

stored in the system. This is unlike the computer memory where the data is contained 

locally and independently in each location.  

Associate memories are therefore more robust to destruction of information than 

computer memories. However, their capacity in limited by the number of inputs (as we 

will see in this chapter), unlike computer memories where the size of the data path is 

independent of the number of memory locations.  
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Hebbian as gradient search 
To confirm this just differentiate Eq. 11 with respect to W to obtain 

∂
∂

J T

W
W R RW RW= + = 2

  
due to the Toeplitz properties of R. So gradient ascent would change the weights 

according to 

ΔW
W

RW= =η
∂
∂

η
J

  
which is exactly what we presented for the Hebbian rule (apart of the 2 which is included 

in the stepsize). Note that gradient ascent goes in the direction of the gradient, so there is 

no minus sign in the weight update as we included in the LMS rule.  

This view is also interesting because it helps us interpret Hebbian in a supervised 

learning context. In fact, if we have a performance criterion exterior to the network it is 
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equivalent to think of an error, hence of a desired response. So what is the implicit 

desired response in Hebbian learning? It is the input signal itself, and the minimization is 

to try to reconstruct x from   which is the projection of y into W, i.e.  . A 

Figure will clarify this procedure 

~x ~x W y= T

 

∑

W WT

Hebbian network
reconstruction

x
1

x
2

x
D

x̃1

x̃2

x̃D

y

+
-

  
This means that the criterion is the mean square difference between the input and the 

projected output  i.e. 

J E E= − = −( ) ( ~)d y x x2 2
  

If we substitute the definition of y=Wx we get 

J E tr tr trT
x x

T= − − = −( [( ~)( ~) ]) ( ) ( )x x x x R WR W   

since   tr E trT T T
x

T( [ ]) ( )W Wxx W W WR W=

So now we have a more refined definition of what Hebbian is accomplishing from a vector 

space point of view. In fact Hebbian can be either interpreted as maximizing the variance 

of y (the projection variance Eq. 11), or minimizing the reconstruction error between the 

input and its version obtained after projecting the output y on the weight vector 

(transposed).  
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Instability of Hebbian 
Let us write the Hebbian update as 

W W x y W x x W( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n nT T+ = + = +1 η η n

)

  
Applying the expectation operator we get 
W I R W( ) ( ) (n nx+ = +1 η   

where R is the autocorrelation function of the input, and I is the identity matrix. The 

stability of this iterative equation is determined by the characteristic roots of the matrix 

I R+ η   . Since R is positive definite, all the roots will be positive hence the iteration will 

diverge for any value of η. 
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derivation of Oja’s rule 
Let us define a normalized (to unity length) weight vector w   at each iteration 
w n w n y n x n( ) ( ) ( ) ( )+ = +1 η   

with   

w n
w n
w n

( )
( )
( )

+ =
+
+

1
1
1     

where ||.|| is the length of the vector (square root of the sum of the square components). 

The adaptation of this normalized weight using Hebbian learning is 

w n w n y n
y n
w n

y n( ) ( ) ( )
( )
( )

( )+ = + = +1 1 2η η
   

since the weights are normalized to 1. So substituting for w(n+1) we can write 

w n w n y n y n( ) ( )[ ( ) ( )] /+ = + + + −1 1 1 2 2 2 4η η 1 2
  

where we approximated the inverse square root of the norm by its power expansion. 

Truncating terms of order higher than 1 in η(if η is small all these terms will be practically 

zero), we obtain 
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w n w n y n( ) ( )( ( )+ = + −1 1 1 2η )

)

  
Now substituting the definition of the normalized weight and again discarding terms that 

depend on powers of η, we get finally 

w n w n y n x n y n w n( ) ( ) ( ( ) ( ) ( ) ( )+ = + −1 2η    
as in the text. See Oja . 
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proof of eigen-equation 
In order to enhance the readability of the equations we will use matrix notation and 

rewrite Oja’s rule as 

w w
y x y w

( ) ( )
( ) ( ) ( ) ( )

n n
n n n n

+ −
= −

1 2

η    
The differential equation that corresponds to this difference equation is 

d t
d t

t t tx
T

x
w

R w w R w w
( )

( )
( ) [ ( ) ( )] ( )= − t

  
So any solution of this equation has to be an eigenvector ei of R (see for instance 

Diamantaras and Kung ). Now writing w(t) as a linear combination of its basis vectors ei,  

 , one can further show that the weights adapted with the Oja’s rule 

converge with probability one to either e1 or -e1 (i.e. to the eigenvector that corresponds 

to the largest eigenvalue of R). This is the reason a linear network adapted with Oja’s rule 

is sometimes called the maximum eigenfilter.    

w e( ) ( )t ti i
i

= ∑α
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PCA derivation 

Let X= [x1, x2,….xp] represent a set of data with p samples, where  . Without 

loss of generality we will assume that the data is zero mean. The PCA problem is to find 

a vector 

x i
nR∈

w ∈ Rn
 which maximizes the ratio 

J
T

T=
w Rw
w w   

where  is the data scattering matrix. Analyzing the expression for J we can 

conclude that the norm of w is irrelevant for the solution, so we can keep it constant at 

||w|| = 1. If we want to use the gradient descent procedure to maximize J we have to 

compute the gradient with respect to the weights, which gives 

R XXT=

∇ = −∑w i i
i

i
J y

y1
2 2|| ||

(
|| ||

)
w

x
w

w
  

 
If we keep the norm equal to one, this expression defaults to the Oja’s rule. So 

maximizing the output variance will produce Oja’s rule. If we want to show that 

maximizing output variance yields the PCA decomposition, we can alternatively start by 

analyzing each one of the components of the output. Let us start with the first output, 

y T
1 1= w x   

Its variance is  

E y T
x{ }1 1= w R w1   

Now the Rayleigh-Ritz theorem guarantees that w1=e1 and y1 = largest eigenvalue λ1 

yields the maximum for the variance provided ||w1|| = 1. The same argument can be 

applied to the other components with the added constraint that the weights have to be 

orthogonal to the previous weights.  

Hence we have shown that maximizing the constrained output variance provides an 

ordered eigenvalue decomposition of the input correlation matrix. The directions are the 
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eigenvectors of R and the projections on each the corresponding eigenvalues. PCA does 

provide a way to analyze the structure of the correlation matrix of the input data.  

With this view, if the number of outputs is less than the number of inputs, the projection 

will preserve maximally the energy of the input. This is a powerful technique for signal 

representation in very large dimensional spaces.  

Return to Text  

definition of eigenfilter 
An eigenfilter is associated with the eigen-decomposition we studied in Chapter V. Recall 

that there we were looking for natural bases to decompose functions. Here we will be 

looking at ways of naturally decomposing data clusters. The eigenfunctions are the bases 

from which the funcions are exactly constructed by a finite weighted sum (the projection 

theorem). So they are the most efficient way to decompose any function.  

Oja’s rule when applied to the linear PE network implements a decomposition that finds 

the weights corresponding to the principal component direction. This direction maximizes 

the projection of the input data cluster. In order to find this direction the input data has to 

be projected by a “filter” matched to the data, hence the name maximum eigenfilter. We 

should think of the weights of the network as the bases (as we did in Chapter V), and the 

network output as the scalar in the projection theorem.  

There is a very important concept hidden here. When we use data collected from sensors 

(measurements), the representation space is given by our measurements. This space 

may not be the best to capture the relevant properties of the data. One goal is to find a 

representation space that is meaningful for data analysis. The principal directions 

embody exactly this idea since it is the data that it is telling us what are the basis to 

represent them well.  
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Optimal LAMs 
In fact the LMS is an approximated method to train a LAM optimally. One can show that 

the optimal LAM weights have to meet the solution  

W YX* = −1   
which exists as long as the inverse of X exists (here X and Y are the matrices 

constructed from the full training set). This means that the patterns must be linearly 

independent (instead of orthogonal as required for the Hebb training). If we have less 

patterns than inputs than the optimal solution is not unique. We can show that in this 

case (Kohonen )  

W Y X X X YX* ( )= =− +T T1
  

which involves the computation of X+ the pseudo-inverse of X. There is a method to 

compute W* recursively (Greville’s theorem) using a nonlocal algorithm that resembles 

the LMS. The LMS with a small stepsize is a good approximation to this recursive 

algorithm. See also Hecht-Nielsen . 
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Hebb 
Donald Hebb, The organization of Behavior: a neurophysiological theory, Wiley, 1949. 

 

unsupervised 
a learning rule is called unsupervised if the adaptation of the weights utilize only one 

source of external information (the input). In supervised learning more than one external 

source is utilized to adapt the weights. These are the input and the desired signal which 

is normally utilized as the target response.  
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Sanger 
Terry Sanger, Optimal unsupervised learnig in a single layer linear feedforward neural 

network, Neural Networks, 12, 459-473, 1989. 

 

Oja 
Erki Oja, A simplified neuron model as a principal component analyzer, J. of 

Mathematical Biology, 15, 239-245, 1982. 

 

APEX 
see Principal Component Neural Networks by Diamantaras and Kung, Wiley, 1996, page 

90. 

 

ASCII 
American standard code for information interchange . It has become a standard for 

coding of characters into binary strings. 

 

second order 
are measured by the covariance function. We saw that a Gaussian is fully described by 

the mean and variance for 1-D and the mean vector and the covariance for multi-D.  

 

SVD 
or SVD for short is an analytical procedure that computes the orthogonal decomposition 

of data. See Matrix computations by Golub and Van Loan , Johns Hopkins U. Press. 
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Eq.1 
Δw xij j i= η y

n

  
 

Eq.6 
y T T= =w x x w   
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Eq.8 
( ) ( ) ( ) ( )Δw x x wn n nT= η   

 
 

Eq.2 
( ) ( ) ( ) ( )w n w n x n y n+ = +1 η   
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Eq.30 
Δw xij j i= η   
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Eq.29 
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Kohonen 
Teuvo Kohonen, Self-organization and associative memory, Springer Verlag, 1984. 
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Stephen Grossberg 
is a very influential neural network researcher that proposed many biologically plausible 

neural network architectures. 

See for instance Natural Intelligence, MIT Press, 1992.  

 

Eq.7 
( )y = w x cos θ   

 
 

Eq.11 
J E y T

x= =[ ]2 w R w   
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Eq.27 
( ) [ ]r i j Axd i j, = x d

  
 
 

Eq.19 
Δw xij j i= −η   
 
 

Eq.34 
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Diamantaras 
Diamantaras and Kung, Principal component analysis networks, Wiley, 1996. 

 

deflation 
is a method of computing the principal components that reminds us of the Gram Schimdt 

orthogonalization procedure, i.e. first compute the principal direction, and subtract it fro 

the data before computing the next principal direction.  

 

Baldi 
see Balsi and Hornik, Neural networks and principal component analysis: learning from 
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examples without local minima”, Neural networks 1, 53-58, 1989 

 
 

Hecht-Nielsen 
NeuroComputing, Addison Wesley, 1990. 

 

Kay 
Modern Spectral Analysis, Prentice Hall, 1988. 

 

Eq.18 
~x W y= T

  
 

energy, power and variance 
From the statistical point of view, the energy of a 1-D signal x(n) is related to its variance. 

In fact the energy of a stationary signal x(n) with variance σ2 and mean m is 

222 )]([ mnxEE +σ==    
where E[.] is the expectation operator. If m=0 then the energy is equal to the variance, 

 so the energy is related to the second order statistics of the signal.  
2σ=E

The power P (or short term energy) is defined as the energy in a finite window, or for a 

finite number of samples. So the power is also related to an estimation of the second 

order statistics with finite data. The condition of zero mean is normally assumed in the 

discussion.  
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PCA, SVD, and KL transforms 
We have to cover briefly the mathematics of principal component analysis (PCA) to fully 

understand and apply the concept.  

PCA and Singular Value Decomposition (SVD) are intrinsically related. Let us start with 

the SVD because it is an algebraic operation applicable to any matrix. The goal of SVD is 

to diagonalize any matrix, i.e. to find a rotation where only the diagonal elements are 

nonzero.   

Consider the matrix Z with M rows and N columns (MxN). For every such matrix there are 

two orthonormal matrices, U (MxM) and V (NxN) and a pseudodiagonal matrix 

  (MxN) where P=min{M,N} such that  
},...,{ 1 pdiagD σσ=

∑
=

σ==
P

i

T
iii

T vuZorUDVZ
1   

The vectors u and v are called the left and right singular vectors of Z, while the s are 

called the singular values of Z.  

SVD is intrinsically related to the eigendecomposition of a matrix. In fact, if we 

postmultiply by ZTU we obtain   . Likewise we can 

show that ZTZV=VDTD. Now DDT and DTD are square diagonal matrices, and so the 

vectors u and v are the eigenvectors of the matrices ZZT and ZTZ respectively, 

TTTT UDDUZUDVUZZ ==

NivZvZ
MiuuZZ

iii
T

iii
T

,...,1
,...,1

2

2

=σ=
=σ=

    

Now let us define PCA. Consider a vector   with mean zero, and 

covariance R=E[xxT] which is a symmetric matrix (DxD). PCA produces a linear 

transformation of the data y=Wx to a subspace of size 

T
Dxxx ],...,[ 1=

DM ≤  where the columns of W 

form an orthonormal basis. PCA has a very nice property: it minimizes the mean square 

error between the projected data (to a subspace M) and the original data. The 

 73



reconstructed data from the projections is a vector  . So PCA 

minimizes 

WxWyWx TT ==ˆ

)()(}ˆ{ 2 TWRWtraRtraxxEJ −=−=   
where tra (.) means the trace of the matrix. The trace of WRWT is effectively the variance 

of y, i.e.  

∑
=

=
M

i
i

T yWRWtra
1

2)(
  .  

So the minimization of J implies the maximization of the variance of y, which is also the 

variance of the estimated projection. So this provides still another interpretation for PCA: 

PCA is the linear projection that maximizes the variance (power) of the projection to a 

subspace.  

What is interesting is to analyze the characteristics of the PCA projection, i.e. the 

structure of W. If the eigenvalues of R {e1,….eN} are ordered in descending order of the 

eigenvalues {λ1,… λN}, we can show that  

∑∑
=+=

λ=λ=
M

i
i

T
D

Mi
i WRWtraJ

11

)(min
  

These two equations basically state that if we project with PCA to a subspace of 

dimension M we preserve the variance given by the sum of the first M (principal) 

eigenvalues. The error can also be easily obtained by adding the D-M-1 (minor) 

eigenvalues.  

The projections are called the principal components of x. They are statistically 

uncorrelated  

0Re},{ == j
T
iji eyyE   

and their variances are equal to the eigenvalues of R,  

ii
T
ieyE λ== Re}{   

and are arranged by descending order of variance.  
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Since R is a symmetric matrix, then we can say that it can always be decomposed as 

∑
=

λ=Λ=
D

i

T
iii

T eeeeR
1   

where  is a diagonal matrix with entries λi, the eigenvalues, and ei are the 

eigenvectors. This equation shows the special function that eigenvectors represent for a 

matrix. They diagonalize it, i.e. they represent the direction in space where we can 

compute the entries of the matrix using only scalar operations. Alternatively, once the 

eigenvectors and eigenvalues are known, we can construct R with scalar operations! This 

means we have found the structure of the data.   

Λ

We see that the PCA is actually operating with the eigenstructure of R, hence its 

importance.  In general only the data is known, not R. Even when R is known, normally 

its eigenstructure is not quantified. But when we perform PCA we discover the 

dependencies on the data, and we can even project it to a subspace to simplify the 

analysis losing the least of variance.  

Now the equivalence between SVD and PCA should be clear. In fact, if Z is square and 

symmetric, then the two orthogonal matrices U and V become the same, and SVD 

becomes equivalent to PCA.   

Lastly we would like to define the Karhunen-Loeve transform (KLT). This transform was 

originally develop to study decompositions of continuous time signals. But for finite 

duration (D) discrete signals, it can be formulated in the following way:  

Consider the stationary random process x(n) with zero mean and autocorrelation  

R=E[x(n-k)x(n-l)]=R(l,k). The KLT is defined as the set of basis ui(n) that satisfy the 

relation 

1,....,0,)()(),(
1

0

−=λ=∑
−

=

DlilukuklR ii

D

k
i

  

We can write this expression in matrix form to read iii uRu λ=  , and we immediately 
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recognize the eigenvalue equation involving the (time) autocorrelation of the data. So 

KLT and PCA yield the same solution for the case of finite duration discrete signals.  
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Gram-Schmidt orthogonalization 
The question is very simple. Given a set of vectors {x1,….xm} spanning a space S (i.e. 

the space of all their linear combinations), can we find a rotation that will orthogonalize all 

the vectors and preserve the span?  

The solution was proposed many years ago by Gram-Schmidt in the form of a recursive 

procedure. Let us start with one of the vectors and make 

2
1

1
1

x
xv =

   
Then find a direction orthogonal to the subspace defined by the k vectors already 

orthogonalized and normalize, which yields 

1
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which due to the previously orthogonalized vectors yields 
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It is interesting to look at this equation in a figure for the case of two vectors 

v1

x2

v2

v1
Tx 2v 1

  
This method is in fact a deflation procedure, because it is removing the contributions of 

the previous vectors into the current direction. To see this we firs thave to define a 

projector as a matrix such that Z2=Z. We immediately see that ZZT is a projector, so 
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when applied to any vector it will project it to the span of Z. Now, the form I-ZZT is also a 

projector, and it will project any vector to the orthogonal space of Z (also called the null 

space of Z). So Gram-Schmidt uses an iterative projection to the orthogonal space of 

each vector, so it is a deflation procedure. (see Diamantaras ). 
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Information and Variance 
Extracting information from data is what learning is all about. Here we are using a layman 

Concept of information, but we can also provide a technical definition. Shannon in a 

seminal paper proposed the following definition for entropy 

)}({log()(log()()(
1

xpExpxpXH
N

k
kk −=−= ∑

=   
where pk are the probabilities of  set of messages {x1,…xN} occurring with probabilities 

p1, ….pN. The idea is the following: if we know what the message is (pk=1), the 

information it carries is zero. On the other hand, if its content is unexpected (small pk), 

then the amount of information the message carries is rather large. This definition 

translates well our intuition, although Shannon utilized an axiomatic approach to derive 

his definition. Shannon’s entropy definition has been the cornerstone to create efficient 

and reliable communication systems (see Cover ), and it is also quite important in 

statistics and learning.  

We can note that entropy uses the full information about the probability density function 
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about the data, but normally we do not know this information. It turns out that if the data is 

Gaussian distributed, i.e.  

2)(
2
1

)2(
1)( σ

−
−

σπ
=

mx

exp
  

then only two numbers, the mean and the variance are sufficient to describe the pdf of 

the data. This means that only the first and second order moments are different from zero, 

all the others are identically zero. Therefore, for Gaussian distributed data, the entropy 

can be written 

}){log5.0)2log(5.0)( 2

σ
−

+πσ=
mxExH

  
or that it is proportional to the variance of the data. So for Gaussian distributed variables 

information is synonym of variance.  
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