
Table of Contents
CHAPTER V- FUNCTION APPROXIMATION WITH MLPS, RADIAL BASIS FUNCTIONS, AND SUPPORT VECTOR
MACHINES ..3
1. INTRODUCTION..4
2. FUNCTION APPROXIMATION ...7
3. CHOICES FOR THE ELEMENTARY FUNCTIONS...12
4. PROBABILISTIC INTERPRETATION OF THE MAPPINGS-NONLINEAR REGRESSION23
5. TRAINING NEURAL NETWORKS FOR FUNCTION APPROXIMATION ..24
6. HOW TO SELECT THE NUMBER OF BASES ..28
7. APPLICATIONS OF RADIAL BASIS FUNCTIONS..38
8. SUPPORT VECTOR MACHINES..42
9. PROJECT: APPLICATIONS OF NEURAL NETWORKS AS FUNCTION APPROXIMATORS52
10. CONCLUSION ..59
CALCULATION OF THE ORTHONORMAL WEIGHTS ..63
SINC DECOMPOSITION..64
FOURIER FORMULAS..65
EIGENDECOMPOSITION ..65
WEIERSTRASS THEOREM ..68
MULTI-HIDDEN-LAYER MLPS ..69
OUTLINE OF PROOF ...69
LOCAL MINIMA FOR GAUSSIAN ADAPTATION...70
APPROXIMATION PROPERTIES OF RBF ...71
MDL AND BAYESIAN THEORY...72
DERIVATION OF THE CONDITIONAL AVERAGE ...73
PARZEN WINDOW METHOD...74
RBF AS KERNEL REGRESSION ...75
L1 VERSUS L2 ..75
FUNCTION APPROXIMATION ..76
FUNCTIONAL ANALYSIS ..76
WEIERSTRASS ..76
SERIES ...77
SAMPLING THEOREM..77
SINC ...77
FOURIER SERIES ...77
DELTA FUNCTION...77
LINEAR SYSTEMS THEORY..78
EIGENFUNCTIONS ..78
SHIFT-INVARIANT...78
COMPLEX NUMBER ..78
STATISTICAL LEARNING THEORY ...78
MANIFOLD...78
POLYNOMIALS ...79
SCIENTIFIC METHOD ..79
VOLTERRA EXPANSIONS ..79
SQUARE INTEGRABLE ..79
JORMA RISSANEN ...79
AKAIKE ...79
TIKONOV ..80
ILL-POSED...80
INDICATOR FUNCTION ..80
SPLINES..80
FIDUCIAL...80
CODE..80
VC DIMENSION..80
COVER THEOREM ...81

 1

LEARNING THEORY ..81
A. BARRON...81
PARK AND SANDBERG, ..81
BISHOP ..81
VLADIMIR VAPNIK..81
PARZEN E. ...82
SIMON HAYKIN..82
EQ.1 ..82
EQ.4 ..82
EQ.11 ..82
EQ.2 ..82
EQ.14 ..82
EQ.30 ..83
EQ.25 ..83
EQ.7 ..83
EQ.8 ..83
EQ.16 ..83
EQ.19 ..83
WAHBA...83
POGGIO AND GIROSI ...84
R. ZEMEL ...84
THILO FREISS ...84
KAY..84

 2

Chapter V- Function Approximation with MLPs,
Radial Basis Functions, and Support Vector
Machines

Version 2.0
This Chapter is Part of:

Neural and Adaptive Systems: Fundamentals Through Simulation© by

Jose C. Principe
Neil R. Euliano

W. Curt Lefebvre

Copyright 1997 Principe

This chapter provides an unifying perspective of adaptive systems by linking the concepts

of function approximation, classification, regression and density approximation. We will

introduce the radial basis functions (RBFs) as an alternate topology to implement

classifiers or function approximators. Finally we will present the structural risk

minimization principle and its implementation as support vector machines.

• 1. Introduction

• 2. Function approximation

• 3. Choices for the elementary functions

• 4. Training Neural Networks for Function Approximation

• 5. How to select the number of bases

• 6. Applications of Radial Basis Functions

• 7. Support Vector Machines

• 8. Project: Applications of Neural Networks as Function Approximators

• 9. Conclusion

 3

Go to the next section

1. Introduction
In Chapter I and III we presented two of the most common applications of adaptive

systems which are respectively linear regression utilizing a linear adaptive system (the

adaline), and classification using the multilayer perceptron (MLP). We saw that the nature

of the applications was different since in regression the problem was one of representing

the relationship between the input and the output data, while in classification the input

data was assumed multi-class and the purpose was to separate them as accurately as

possible. We also verified that the machinery developed for regression, i.e. gradient

descent on a cost function, could be applied to classification. When properly extended

the gradient descent procedure gave rise to the backpropagation algorithm developed to

train the MLP.

The purpose of this chapter is to unify more formally the two applications of regression

and classification. What we will be demonstrating is that both problems are in fact

aspects of the more general problem of function approximation . Linear regression

becomes function approximation with linear topologies, and classification becomes

function approximation for a special type of functions called indicator functions. What we

gain is a very broad perspective of the use of adaptive systems: they are systems that

seek to represent an input-output relationship by changing at the same time the basis

and the projections. This is unlike the most common function approximation schemes

where the basis are fixed and only the projections change from signal to signal.

The MLP was utilized so far solely as a classifier but with this perspective becomes a

general purpose nonlinear function approximation tool extending the adaline. This is a

powerful perspective and will provide a lot of practical applications beyond classification

ranging from system identification to data modeling, and will motivate the study of the

MLP as a nonlinear regressor. The study of the MLP as a function approximator leads us

to analyze the fundamental building blocks for function approximation, i.e. which are the

 4

basis used by the MLP. It will also raise the question of alternate basis functions and

what other neural topologies are universal function approximators. We will study the

radial basis functions (RBFs) as another universal approximator and show that it can also

be used as a classifier. In order to achieve this unifying view we have to present the basic

concepts of function approximation, which will have the advantage of addressing other

more well known basis functions and contrast them with the MLP and the RBFs.

1.1. The discovery of the input-output map as function approximation
We have demonstrated in Chapter I and III that a neural network combines a set of inputs

to obtain an output that mimics the desired response. Given a set of input vectors x, and

a set of desired responses d the learning system must find the parameters that meet

these specifications. This problem can be framed as function approximation, if one

assumes that the desired response d is an unknown but fixed function of the input d=f(x)

(Figure 1).

unknown
f(.)

x d

ε+
-f(x,w)^input

desired response

y

Figure 1. Supervised training as function approximation

The goal of the learning system is to discover the function f(.) given a finite number

(hopefully small) of input-output pairs (x,d). The learning machine output

depends on a set of parameters w, which can be modified to minimize the discrepancy

between the system output y and the desired response d. When the network

approximates d with y it is effectively approximating the unknown function f(x) by its

input-output map .

()wxfy ,ˆ=

()wxf ,ˆ

The nature of f(.) and the error criterion define the learning problem. As studied in

 5

Chapter I, linear regression is obtained when the error criterion is the mean square error

(MSE) and f(.) is linear. Classification, studied in Chapter II, specifies functions f(.) that

produce 1, -1 (or 0) which are called indicator functions.

The problem of generalization already briefly discussed in Chapter IV can also be treated

mathematically with this view of function approximation. This means that the ideas

embodied in Figure 1 are rather relevant for the design of learning machines, specifically

neural networks. Neural networks are in fact nonlinear parametric function approximators,

so we should not think of them simply as classifiers.

ANNs are interesting to function approximation because:

• they are universal approximators

• they are efficient approximators

• and can be implemented as learning machines.

We already alluded in Chapter III to the universal approximation property of the MLP. It

basically says that any function can be approximated by the MLP topology provided that

enough PEs are available in the hidden layer. Here we will present more precisely these

concepts.

With neural networks, the coefficients of the function decomposition are automatically

obtained from the input-output data pairs and the specified topology using systematic

procedures called the learning rules. So there is no need for tedious calculations to

obtain analytically the parameters of the approximation. Once trained, the neural network

becomes not only a parametric description of the function but also its implementation.

Neural networks can be implemented in computers or analog hardware and trained

on-line. This means that engineers and scientists have now means to solve function

approximation problems involving real world data. The impact of this advance is to take

function approximation out of the mathematician notebook and bring it to industrial

applications.

Finally, we would like to argue that neural networks and learning are bringing focus to a

 6

very important problem in the scientific method called induction. Induction is with

deduction the only known systematic procedure to build scientific knowledge. Deduction

applies general principles to specific situations. Deduction is pretty well understood, and

has had enormous impact in all the fabric of mathematics, engineering computer science

and science in general. For instance, deductive reasoning is the core of artificial

intelligence. On the other hand induction is poorly understood and less applied. Induction

is the principle of abstracting general rules from specific cases. As we all know from real

life, this principle is much harder to apply with validity than deduction. Sometimes, true

statements in a small set of cases do not generalize. Mathematically, induction is also

much less formalized than deduction.

It turns out that a neural network is using an inductive principle when it learns from

examples. Examples are specific instances of a general rule (the function that created the

examples), and the goal of neural network learning is to seek the general principle that

created the examples. Theoretically these issues are studied in learning theory . The

difficulties we face in training appropriately a neural network are related to the difficulties

of inducing general principles from examples. In practice, not always the ANN is able to

capture the rule, and the pre-requisites (neural network architecture, training data,

stopping criterion) to extrapolate from examples need to be carefully checked as we saw

in Chapter IV.

Go to the next section

2. Function Approximation
Function approximation seeks to describe the behavior of very complicated functions by

ensembles of simpler functions. Very important results have been established in this

branch of mathematics. Here we will only name a few that bear a direct relation with our

goal of better understanding neural networks. Legendre (and Gauss) used polynomials to

approximate functions. Chebychev developed the concept of best uniform approximation.

Weierstrass proved that polynomials can approximate arbitrarily well any continuous real

 7

function in an interval. Series expansions (i.e. Taylor series) have been utilized for

many years to compute approximately the value of a function in a neighborhood of the

operating point. The core advantage is that only multiplications and additions are

necessary to implement a series approximation. Trigonometric polynomials are also

widely used as function approximators, but their computation is a bit more involved. We

will formalize next the concept of function approximation.

Let f(x) be a real function of a real valued vector []x = x x xd
T

1 2 ... that is

square integrable (over the real numbers). Most real world data can be modeled by such

conditions. We are also going to restrict this study to the linear projection theorem. The

goal of function approximation using the projection theorem is to describe the behavior of

f(x), in a compact area S of the input space, by a combination of simpler functions ϕi(x),

i.e.

() ∑
=

ϕ=
N

i
iiwf

1

)(,ˆ xwx
 Equation 1

where wi are real valued constants such that

() () ε<− wxx ,f̂f
 Equation 2

and where ε can be made arbitrarily small. The function (x,w) is called an

approximant to f(x). The block diagram of Figure 2 describes well this formulation.

f̂

Let us examine Eq. 1 and 2. A real function is a map from the input domain to the real

numbers. So this expression states that one can obtain the value of the function when x

is in S by using an intermediate set of simpler functions, {ϕi(x)} called the elementary

functions and then linearly combining them (Figure 2).

 8

•
•
•

••
•

ϕ1

ϕ2

ϕk

ϕN

∑

x1

x2

xd

w1

w2

wN

f(x,w)^

Figure 2. Implementation of the projection theorem

When one can find coefficients wi that make ε arbitrarily small for any function f(.) over

the domain of interest, we say that the elementary function set {ϕi(.)} has the property of

universal approximation over the class of functions f(.), or that the set of elementary

functions ϕi(x) is complete. From Eq. 1 we see that there are 3 basic decisions in function

approximation:

• the choice of ϕi(.),

• how to compute the wi,

• how to select N.

The first problem is very rich because there are many possible elementary functions that

can be used. We will illustrate this later, and we will show that the hidden PEs of a single

hidden layer MLPs implement one possible choice for the elementary functions ϕi(.).

The second problem is how to compute the coefficients wi, which depends on how the

difference or discrepancy between f(x) and ()wxf ,ˆ
 is measured. In Chapter I we have

already presented one possible machinery to solve this problem for the case of the

minimization of the power of the error between ()wxf ,ˆ
 and f(x). Least squares can be

utilized also here to analytically compute the values for wi. If the number of input vectors

xi is made equal to the number of elementary functions ϕi(.), the normal equations can be

written as

 9

() () ()

() () ()

()

()

ϕ ϕ ϕ

ϕ ϕ ϕ

1 1 2 1 1

1 2

1 1x x x

x x x

w

w

f x

f x

N

N N N N N

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

N

f

 Equation 3

and the solution becomes

w = −Φ 1 Equation 4

where w becomes a vector with the coefficients, f is a vector composed of the values of

the function at the N points, and Φ the matrix with entries given by values of the

elementary functions at each of the N points in the domain. An important condition that

must be placed in the elementary functions is that the inverse of Φ must exist.

In general, there are many sets {ϕi(.)} with the property of universal approximation for a

class of functions. We would prefer a set {ϕi(.)} over another {γi(.)} if {ϕi(.)} provides a

smaller error ε for a pre-set value of N . This means that the speed of convergence of the

approximation (i.e. how fast the approximation error ε decreases with N) is also an

important factor in the selection of the basis. Other considerations may be imposed by

the computer implementation.

2.1. Geometric Interpretation of the projection theorem
Let us provide a geometric interpretation for this decomposition because it exemplifies

what is going on and what we try to accomplish. As long as the function f(.) is square

integrable and N is finite, this geometric representation is accurate. Consider x as a given

point in a N dimensional space. Its transformation by f(.) is assumed also to be another

point in the same N dimensional space. We can alternatively think of x as a vector, with

end points 0 and x. Likewise for f(x). For illustration purposes let us make N=3 and

assume that we only have two elementary functions.

Eq.1 and 2 describe the projection of the vector f(x) into a set of basis functions ϕi(x).

These basis functions can also be considered vectors and they define a manifold (i.e. a

projection space) in M (M N≤) dimensions, which is linear in our formulation. f̂

 10

(x,w) is the image or projection of f(x) in this manifold. In this example the projection

manifold is a plane (M=2) depicted as the horizontal plane, and (x,w) will be a vector

that exists in the horizontal plane. We can interpret wi as the magnitude of (or

proportional to) (x,w) along each one of the axis of the manifold.

f̂

f̂

If f(x) belongs to the manifold, then there is always a set of constants wi that will make

 (x,w) exactly equal to f(x). Figure 3 represents this in case A. If f(x) does not belong

to the manifold created by the basis {ϕi(x)}, then there will always be an error between

 (x,w) and f(x) (case B). The best solution (least possible error) found in Eq. 4 is the

orthogonal projection of f(x) onto the manifold. As we saw in Chapter I this is exactly the

solution that the least squares provide, since the error becomes orthogonal to all the

basis {ϕi(x)}.

f̂

f̂

ϕ1(x)

ϕN(x)

w1

wN

ϕ1(x)

ϕN(x)

w1

wNf(x)=f(x,w)

f(x)

f(x,w)

^

^

Case A Case B

Figure 3 Approximation as a projection: A) vector is in the manifold. B) vector is

outside de manifold.

When f(x) is external to the projection manifold, decreasing the error means making

(x,w) closer to f(x). This can be accomplished by increasing the number of elementary

functions (i.e. the dimension M of the manifold) because the manifold will fill more and

more of the available signal space. This view is correct provided that the basis set is

complete, i.e. in the limit of large M the projection manifold will fill all the available signal

space.

f̂

 11

Let us now study in more detail each one of the steps in function approximation. We will

see that throughout this study we will obtain a very different view of what the MLP is, and

will tie this topology with other very well known basis functions.

Go to the next section

3. Choices for the elementary functions
One decisive step in function approximation is the choice of the elementary functions ϕi(.)

because they will impact how close (x,w) can be made to f(x). If the choice is not

appropriate there will be a non vanishing error between (x,w) and f(x), no matter how

big N is. The search for sets of elementary functions {ϕi(.)} that are universal

approximators of a class of functions f(.) is therefore very important. Moreover, we would

like the elementary functions ϕi(.) to have nice mathematical properties and to be easy to

work with.

f̂

f̂

One requirement for the usefulness of elementary functions in function approximation is

that must exist (Eq. 4). This condition is met if the elementary functions

constitute a basis, i.e. if they are linearly independent or

Φ−1 ()x

() () ()w x w x iff w wN N N1 1 10 0ϕ ϕ+ + = =... ,..., Equation 5

A simplifying assumption that is often imposed on the elementary functions is that the

basis be orthonormal, i.e. that

() () ()ϕ ϕ δi j ij
s

x x dx x=∫
 Equation 6

where δ(x) is the Dirac delta function . This means that in orthogonal decompositions the

projection of a basis in any other basis is always zero. An orthonormal basis is very

 12

appealing because one can evaluate the projection on each basis independently of the

projection on the other bases, and they provide a unique set of wi for the projection of f(x).

But many elementary functions obey the orthogonality conditions, and so different sets

may provide different properties.

With complete orthonormal basis the weights of the decomposition become very simple

to compute. One can show that calculation of the orthonormal weights

w f x xi i=< >(), ()ϕ Equation 7

where <.> is the inner product of f(x) with the bases, given by

< >= ∫f x x f x x dx
D

(), () () ()ϕ ϕ
 Equation 8

and D is the domain where f(x) is defined.

3.1. Examples of elementary functions
In engineering, many important function approximation results are commonly applied.

The usefulness of digital signal processing lies on the sampling theorem . The sampling

theorem shows that one can approximate any real smooth signal (i.e. a function with

finite slope) in an interval (infinitely many points) by knowing the functional values only at

a finite set of equally spaced points in the interval (called the samples). The value of the

signal at any other point in the interval can be exactly reconstructed by using sums of

sinc functions. In this case the bases are the sinc functions and the weights are the

values of the signal at the sampling points.

Figure 4. Decomposition by sinc functions.

This result opened up the use of sampled representations to reproduce sound (the

compact disk (CD) contains just a stream of numbers) and to reproduce images (the

forthcoming digital TV). And is the basis for the very important field of digital signal

processing. sinc decomposition

NeuroSolutions 1

5.1 Sinc interpolation

 13

Here we will use NeuroSolutions to interpolate an input waveform to a higher

frequency using the sinc function. This example is not as dramatic as the one that

produces from a digital sequence a continuous representations as alluded above,

but it is based on the same principles. We will start with a digital waveform

representing a ramp, and will introduce between each two consecutive points two

zero samples as shown in the input scope. As we can expect the ramp becomes

distorted. The idea is to recreate the ramp by filling in the missing values. We will

do this by designing an interpolator that implements a close approximation of the

sinc function. We use a new component that is the delay line and will enter in the

Synapse the values that correspond to a sampling of the sinc function.

 NeuroSolutions Example
Another example of the power of function approximation is the Fourier series . Fourier

series are an example of expansions with trigonometric polynomials. Everybody in

engineering has heard of frequency representations (also called the spectrum) because

of the following amazing property: any periodic function (even with discontinuities) can be

approximated by sums of sinusoids (eventually with infinitely many terms). Moreover,

there are simple formulas that allow us to compute the components in the frequency

domain from any time signal. Fourier formulas

sinewave sin(w0t) square wave

sin(w0t)

sin(3w0t)

Figure 5. Decomposition by sinewaves

NeuroSolutions 2

5.2 Fourier decomposition

This example is a demonstration of how an addition of sinusoids does in fact

produce a waveform that resembles a square wave. In order to compute the

 14

coefficients we have to perform a Fourier series decomposition of the square wave,

which is not difficult but is cumbersome and requires an infinite number of

sinusoids. By including more and more terms of the Fourier series we make the

composite waveform closer and closer to the square.

 NeuroSolutions Example
Still another example is the wavelets. One of the problems with the Fourier

decomposition is that the sinewaves have infinite extent in time, i.e. they exist for all time.

In many practical problems one would like to decompose signals that have a finite extent

(transients) in which case the Fourier analysis is not very efficient. Wavelets provide such

a decomposition for transients. The idea is to choose a wave shape that is appropriate to

represent the signal of interest (the mother wavelet), and create many translations and

scales (also called dilation) such that one can reconstruct the desired signal.

The wavelet expansion uses a two parameter decomposition

∑∑ ϕ=
i j

jiji xwwxf)(),(ˆ
,,

 Equation 9

where the are the wavelet bases. The interesting thing is that the bases are

obtained from a single function (the mother wavelet ϕ(x)) by the operations of scaling and

translation,

ϕ i j x, ()

ϕ ϕi j
j jx x,
/() ()= −2 22 i Equation 10

hence the two indices. Figure 6 shows the scaling and translation operations.

 15

i

j

1

2

3

1 2 3 4 5 6 7

Figure 6. Translation and scaling for a wavelet

All the above methods construct arbitrary functions by weighting the contributions of

predetermined elementary functions (sinewaves of different frequencies, translation of

sincs or the dilation-translation of the mother wavelet). What varies are the weights in the

decomposition. Normally there are close formula solutions to compute the weighting from

the signal. In neurocomputing the problem is more complicated for two reasons: first, we

want to find the coefficients through adaptation instead of through analytic formulas as in

the Fourier case; second, because the basis themselves are dependent upon the data

and the coefficients (adapted bases).

In some situations the basis can be chosen naturally from the type of problem being

investigated, as in linear systems theory .

3.2. Bases for linear function approximation
When the function in Figure 1 is linear the ideas of linear regression explained in Chapter

I can be immediately applied to construct an approximation.

NeuroSolutions 3

 16

5.3 Linear regression

Here we will show that through adaptation we can find the coefficients of a very

simple linear transformation between x and d of Figure 1. The transformation is

simply

d=2x+3

We will see that for this case a linear system constructed from a Synapse and a

BiasAxon can solve the problem very easily. This is simply linear regression we

studied in Chapter I. We will create the transformation by applying one of the

function generators to the input of the system and using another function

generator at the output producing the same wave shape but with twice the

amplitude and with a bias of 3. Then we will let the system adapt using the LMS

rule. We can see that very quickly the system finds the relationship and the

synaptic weight becomes 2 and the bias becomes 3.

 NeuroSolutions Example
However, there is a preferred choice for elementary functions when f(x) is linear with

constant coefficients. Linear system theory shows that the natural bases are the complex

exponentials because they are complete for square integrable functions and they

are the eigenfunctions of linear shift-invariant operators. eigendecomposition .

esx

The implication of this fact is thoroughly explored in linear systems, which are networks

that implement a signal decomposition using complex exponentials. We will use

eigendecompositions in Chapter IX when we study adaptive filters. But here we just

would like to remark that eigendecompositions are the most efficient since we are

constructing a function from its “elementary pieces” so the reconstruction error can be

made equal to zero with small number of bases. Sometimes other considerations such as

easy of implementation may overshadow the use of complex exponentials.

3.3. Bases for nonlinear system approximation - The MLP network
When the function f(x) in Figure 1 is nonlinear there is in general no natural choice of

 17

basis. Many have been attempted such as the Volterra expansions , the splines , and the

polynomials. Weierstrass proved that polynomials are universal approximators.

Weierstrass Theorem The problem is that either many terms are necessary or the

approximations are not very well behaved. One of our requirements is that the basis have

to be powerful and easy to work with.

In neurocomputing there are two basic choices for the elementary functions that build the

approximant (x,w), which are called local and global elementary functions. An

elementary function is global when it responds to the full input space, while local

elementary functions respond primarily to a limited area of the input space. Going back to

Figure 2, it is easy to link the operation of function approximation to a neural topology, in

this case to a one hidden layer perceptron with a linear output, where ϕi(x) is

f̂

()ϕ σi ik k
k

x a x= +
⎛

⎝
⎜

⎞

⎠
⎟∑ ib

 Equation 11

and σ is one of the sigmoid nonlinearities (logistic or tanh). The system output is given by

 . Note that the first layer weights are denoted by aik and they change the

value of ϕi(x). So, the one hidden layer MLP with a linear output PE can be thought of as

an implementation of a system for function approximation (Eq. 1), where the bases are

exactly the outputs of the hidden PEs. Note that the sigmoid PE responds to the full input

space x with a non zero value (1, -1 (or 0), or intermediate values) so the MLP

implements an approximation with global elementary functions.

y wi i
i

= ∑ ϕ

The interpretation is that the MLP is performing function approximation with a set of

adaptive bases that are determined from the input-output data. This means that the

bases are not predefined as in the sinc, wavelet, or Fourier analysis, but depend upon

the first layer weights and on the input. In this respect the MLP is much closer to the

function approximation implemented by some linear systems. So function approximation

 18

with adaptive bases is slightly different from the previous picture we gave (Figure 3). First,

because the bases change with the data. This means that the projection manifold is

changing with the data. Second, because the weights in the network have different

functions. The input layer weights change the bases by orienting the manifold, while the

output layer weights find the best projection within the manifold. Training will find the set

of weights (aij) that best orient the manifold (first layer weights) and that determine the

best projection (wij). Therefore the training is more difficult because not only the

projection but also the basis are changing. However we can obtain much more compact

representations.

This view should be compared with what we described in Chapter III about MLPs for

classification. Each PE in the hidden layer creates a discriminant function with a shape

defined by the PE nonlinearity with an orientation and position defined by the first layer

weights. So the views agree but in function approximation the PEs are less prone to

saturate. Due to the highly connected topology and the global nature of the elementary

functions, good fitting is obtained with reasonably few bases (i.e. few PEs). However, the

training is difficult because the basis functions are far from orthogonal. multi-hidden-layer

MLPs

In terms of function approximation the one layer MLP is deciding the orientation, where to

place, and what is the relative amplitude of a set of multidimensional sigmoid functions

(one per PE). This function decomposition resembles the approximation obtained with

step functions well known in linear systems (Figure 7).

Figure 7. Function approximation with logistic functions.

 19

NeuroSolutions 4

5.4 Function approximation with the MLP

Starting here, many of the examples will be studying the function approximation

abilities of various networks. To illustrate this point, we have chosen a fourth

order polynomial to try to approximate. The polynomial was chosen to give an

interesting shape over the input range of 0..1 and has the equation 27x4 - 60x3 +

39x2 - 6x. The graph of the polynomial from 0..1 is:

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1
-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

input

f(x
)

p lo t o f 27x^4 -60x^3+ 39x^2 -6x

In this example we will use an MLP with a linear output to approximate the above

function. In our case the MLP will approximate the function with tanh bases (the

hidden layer PEs are tanh). These elementary functions are stretched and moved

over the range and then summed together to approximate the polynomial.

 NeuroSolutions Example
MLPs are universal approximators as we stated in Chapter III. The proof is based on an

extension of the Weierstrass theorem outline of proof . But as we stated above, another

important characteristic is to study how the error decreases with the order or/and the

dimension of the problem. The importance of MLPs for function approximation was

recently reinforced by the work of Barron . He showed that the asymptotic accuracy of the

approximation with MLPs is independent of the dimension of the input space. This is

unlike the approximation with polynomials where the error convergence rate is a function

of the number of dimensions of the input (the error decreases exponentially slower with

 20

the dimension of the input space). This means that MLPs become much more efficient

than polynomials for approximating functions in high dimensional spaces. The better

approximation properties of MLPs explain why MLPs are more efficient than other

methodologies for classification, and why they are key players in identification of

nonlinear systems as we will see in Chapter X and XI.

What changes when we use a MLP for function approximation and for classification? The

obvious answer is to look at the output PE and say that for function approximation the

output is linear while for classification the output PE must be also nonlinear. In fact, we

can use also a nonlinear PE for function approximation if we carefully set the dynamic

range of the output. So the difference is not solely in the output PE, but also in the nature

of the problem. In function approximation the operating point of the hidden PEs is

normally far away from saturation since the mappings tend to be smooth. In classification,

where the outputs are 1,0, the operating point of the hidden PEs is normally driven to

saturation. This is easily observed when we use a square wave as the desired signal,

because this choice implements exactly an indicator function.

 NeuroSolutions 5

5.5 MLP to approximate a squarewave (classification)

In this example we use an MLP with a tanh output to approximate a square wave.

Notice, that since a square wave is either on or off, this function approximation

problem is identical to a classification problem. Thus, classification is a subset of

function approximation with the desired signal having on/off characteristics. The

important point to show here is that when doing classification, the PEs become

saturated and the weights increase greatly. This allows the tanh or logistic

function to approximate the on/off characteristics of the desired signal. Thus for

classification, the MLP tends to operate in the saturated regions of the hidden PEs

(on/off) while for general function approximation the hidden PEs tend to operate in

the linear region.

 NeuroSolutions Example

 21

3.4. Alternate basis for nonlinear systems - the RBF network
In neurocomputing, the other popular choice for elementary functions is the radial basis

functions (RBFs), where ϕi(x) becomes

 () ()ϕ γi x x x= − i Equation 12

where γ(.) is normally a Gaussian function

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

−= 2

2

2
exp xxG

 Equation 13

with variance σ². Notice that the Gaussian is centered at xi with variance σ², so its

maximum response is concentrated in the neighborhood of the input xi, falling off

exponentially with the square of the distance. The Gaussians are then an example of

local elementary functions. If we plug Eq. 13 in Eq. 1 we obtain the following

implementation for the approximant to the function f(x)

() ()∑ −=
i

iiGwf xxwx,ˆ
 Equation 14

which implements the input-output map of the RBF network.

Let us think of an arbitrary function and of a set of localized windows (of the Gaussian

shape). Function approximation in a limited area of the input space requires (see Figure

8): the placement of the localized windows to cover the space; the control of the window

width; and a way to set the window amplitude (the height). So it is plausible that in fact

we can approximate arbitrary continuous functions with a RBF network. approximation

properties of RBF

 22

Figure 8. Approximation by RBFs in 1-D.

NeuroSolutions 6

5.6 Function approximation with RBFs

Now we will solve the same polynomial approximation problem with a Radial Basis

Function. We can vary the number of RBFs and see how it affects the power of

the network to approximate the given polynomial.

 NeuroSolutions Example

Go to Next Section

4. Probabilistic Interpretation of the
mappings-Nonlinear regression

So far we have assumed a deterministic framework to study the input-output mapping. It

enhances our understanding to look now at the mappings discovered by MLPs and RBFs

from a statistical perspective. The result we will enunciate below is valid as long as the

mean square error (MSE) criterion is utilized in the training.

We will assume that the input data is a random variable x, and the desired response t is

also a random variable, not necessarily Gaussian distributed. The topology is a MLP or a

RBF with a linear output PE as we have been discussing. The important result is the

following: a network with weights obtained by minimizing the MSE has an output which

approximates the conditional average of the desired response data tk, i.e. the regression

of t conditioned on x

>>=<< xtwxy kk |*),(Equation 15

where w* means the optimal weights, and <<.>> refers to the conditional average defined

by

 23

∫>>=<< kkkk dtxtptxt)|(| Equation 16

derivation of the conditional average

. So the MLP and RBF networks are effectively nonlinear regressors, extending the

adaline for cases where the input-output map is nonlinear. They will be able to “discover

“ any deterministic input-output relationship corrupted by additive zero-mean noise, since

the network output will approximate the average of the desired response. The only

requirements are that the network has converged to the global minimum, that the number

of degrees of freedom in the network topology is large enough and that there is enough

data to train the system. These are non trivial issues but we have learned ways to cope

with them in Chapter III and IV.

NeuroSolutions 7

5.7 Nonlinear regressors

We will illustrate this important point by creating a nonlinear mapping problem

corrupted by additive noise. We again use the polynomial approximation case

and add noise to the desired signal. Since the network output can be thought of as

the average of d with respect to the distribution p(d|xi) at a given point xi of the

domain, the network should clean the noise and produce the polynomial. This

clearly shows that the MLP is doing regression but now with nonlinear mappings.

You can also use the RBF to produce the same result, since it is due to the use of

the MSE criterion, and it is independent of the topology.

 NeuroSolutions Example

Go to next section

5. Training Neural Networks for Function
Approximation

 24

5.1. Training MLPs for function approximation
The second problem that needs to be solved in applying neural networks for function

approximation is a procedure to automatically find the coefficients from the data. Notice

that the backpropagation algorithm studied in Chapter III solves exactly this problem. In

fact, straight backpropagation minimizes the error power between the desired response

and the system output (the L2 norm). This algorithm is totally transparent to the fact that

in function approximation we have a linear output and we use the absolute value of the

error instead of the error power. In fact we saw how to integrate backpropagation with

arbitrary norms in Chapter IV, so we can use backpropagation with the L1 norm to exactly

solve Eq. 2 . L1 versus L2

NeuroSolutions 8

5.8 MLPs for function approximation with L1 norm

We again show the MLP network approximating the function of Example 4 except

that this time the L1 criterion is utilized. In theory, this should produce a better fit

to the data but may train slower.

 NeuroSolutions Example

5.2. Adapting the Centers and variances of Gaussians in RBFs
Backpropagation can be applied to arbitrary topologies made up of smooth nonlinearities,

so it can train also the newly introduced RBFs. However, there are other procedures to

adapt RBF networks that are worth describing. One simple (but sometimes wasteful in

classification) approach to assign the Gaussians is simply to uniformly distribute their

centers in the input space. This was the method used in Example 3. Although this may

be a reasonable idea for approximation of complicated functions that cover the full input

space, it is not recommended in cases where the data clusters in certain areas of the

input space. There are basically two ways to select the positioning and width of the

Gaussians in RBFs: the supervised method and using self-organization.

The supervised method is a simple extension of the backpropagation idea for the RBF

network. In fact the Gaussian is a differentiable function, so errors can be

 25

backpropagated through it to adapt μ and σ in the same way as done for tanh or sigmoid

nonlinearities. The backpropagation algorithm can theoretically be used to simultaneously

adapt the centers, the variance and the weights of RBF networks. The problem is that the

method may provide suboptimal solutions due to local minima (the optimization is

nonlinear for the centers and variances).local minima for Gaussian adaptation

The self-organizing idea is very different. It divides the training phase in the independent

adaptation of the first layer (i.e. the location and width of the Gaussians), followed by a

second step that only adapts the output weights in a supervised mode keeping the first

layer frozen. The idea is appealing because it treats the adaptation of the centers and

variances as a resource allocation step that does not require external labels. This means

that only the input data is required in this step. Since the training of the hidden layer is the

most time consuming with gradient methods, the self-organizing method is more efficient.

The clusters of the data samples in the input space should work as attractors for the

Gaussian centers. If there is data in an area of the space, the system needs to allocate

resources to represent the data cluster. The variances can also be estimated to cover the

input data distribution given the number of Gaussians available. This reasoning means

that there is no need for supervised learning at this stage. The shortcoming is that a good

coverage of the input data distribution does not necessarily mean that a good

classification will result.

Once the centers and variances are determined, then the simple LMS algorithm

presented in Chapter I (or the analytic method of the least squares) can be utilized to

adapt the output weights since the adaptation problem is linear in the weights. So let us

see what are the algorithms to adapt the centers of the Gaussians and their variances.

Gaussian centers
The goal is to place the Gaussians centered on data clusters. There are many well

known algorithms to accomplish this task (see Haykin). Here we will only address the

K-means and its on-line implementation, the competitive learning algorithm.

 26

In K-means the goal is to divide the N input samples into K clusters. The clusters are

defined by their centers ci. First a random data assignment is made, and then the goal is

to partition the data in sets Si to minimize the Euclidean distance between the data

partition Ni and the cluster centers ci, i.e.

J xn i
n Si i

= −
∈=
∑∑

1
c

 Equation 17

where the data centers ci are defined by

c
N

xi
i

n
n Si

=
∈
∑1

 Equation 18

K means clustering requires a batch operation where the samples are moved from cluster

to cluster such as to minimize Eq. 17 . An on-line version of this algorithm starts by

asking which center is closest to the current pattern xn. The center that is closest,

denoted by c*j, wins the competition and it is simply incrementally moved towards the

present pattern xn, i.e.

()Δc x cj n* *= −η j Equation 19

where η is a step size parameter. We recommend that an annealing schedule be

incorporated in the step size. The c* are the weights of the layer preceding the RBFs.

This method will be fully described in Chapter VII.

Variance computation
In order to set the variance, the distance to the neighboring centers have to be estimated.

The idea is to set the variance of the Gaussian to be a fraction (¼) of the distance among

clusters. The simplest procedure is to estimate the distance to the closest cluster,

σ 2
2

i ij kjw w= − Equation 20

where wkj represent the weights of the k th
 PE which is closest to the PE. In

general the distances to more neighbors (P) provides a more reliable estimate in high

i th

 27

dimensional spaces so the expression becomes

σ i ij
k

P

P
w w2

1

21
= −

=
∑ kj

 Equation 21

where the P nearest neighbors to the PE are chosen. i th

NeuroSolutions 9

5.9 Training RBFs for classification

We will train a RBF network using the competitive learning approach. We will use a

new Synapse called the Competitive Synapse, which will cluster the centers of the

RBFs where most of the data resides. Notice that the GaussianAxon will be

“cracked” meaning that the dataflow is interrupted. This is done because there is

no point to adapt the top layer weights until the centers are placed over the input

data. The controller enables full selection of the number of iterations to adapt the

centers using competitive learning.

 NeuroSolutions Example

Go to next section

6. How to select the number of bases
The selection of the number of bases is rather important. If not enough bases are used,

then the approximation suffers throughout the domain. At first one might think that for

better approximation more and more bases are needed, but in fact this is not so. In

particular if the bases are orthogonal, more bases mean that the network has the

potential to represent a larger and larger space. If the data does not fill the input space

but is corrupted by white noise (white noise always fills the available space), then the

network starts to represent also the noise which is wasteful and provides sub-optimal

results. Let us illustrate this with NeuroSolutions.

NeuroSolutions 10

5.10 Overfitting

 28

This example demonstrates that when the data is noisy too many basis will

distort the underlying noiseless input-output relationship. We will use a RBF to

approximate the polynomial. But instead of doing it in the noiseless case as before

we are going to add random noise to the desired signal. We then will change the

number of basis and the width of the Gaussians. We will see that for larger

networks the noise becomes more apparent. We will also see that if the network

doesn’t have enough degrees of freedom, then the approximation is also not good.

 NeuroSolutions Example
Experience shows that the problem is not just one of the pure size of the network, but the

values of the coefficients are also very important. So learning, complicates the matter of

selecting the number of bases. Effectively, this is the same problem that was

encountered in selecting the size of the MLP for classification. Here we will revisit the

problem presenting a statistical view, and then offering two approaches to deal with it:

penalizing the training error, and using regularization. Although this problem was already

briefly treated in Chapter IV here we will provide a more precise view of the problem and

will relate the findings with the previous techniques.

6.1. The bias-variance dilemma

The optimal size of a learning machine can be framed as a compromise between bias

and variance of a model. We will address this view fully in the next section, so here we

will just motivate the arguments with a simple analogy. Let us use polynomial curve fitting

to exemplify the problem faced by the learning machine. A polynomial of order N can

exactly pass through N+1 points, so when a polynomial fits a set of points (fiducial points)

two things can happen. If the polynomial degree is smaller than the number of points, the

fitting will be bad (model bias) because there are not enough degrees of freedom to pass

the polynomial through every point (left panel of Figure 9). So errors will exist all over the

domain. For example, the linear regressor, which is a first order polynomial, will

produce errors at nearly every point of a quadratic curve (second order polynomial). On

the other extreme, if the order of the polynomial is much larger than the number of

 29

fiducial points, the polynomial can exactly pass through every point. The problem is that

the polynomial was not constrained for the other points in the domain and thus its values

can oscillate widely between the fiducial points (model variance) as illustrate in the right

panel of Figure 9. The best solution is to find an intermediate polynomial order that will

provide low bias and low variance across the domain.

x
x x

x x

x

x
x x

x x

x

fiducial points
(training samples)

model outputLow order
model

High order model

Figure 9. Under and over fitting polynomials to a set of points

This simple example provides a conceptual framework for the problem of generalization

encountered in learning machines.

• The fiducial points are the training samples.

• The full domain represents all the possible test data that the learning machine will
encounter.

• The polynomial becomes the input-output functional map created by the learning
machine.

• The learning machine weights are equivalent to the coefficients of the polynomial.

• The size of the polynomial is the number of weights.

Therefore, we can see that for a good fit all over the domain, both the size of the network

as well as the amount of training data are relevant.

The model bias is the error across the full data set, which can be approximated to a first

degree by the error in the training set. Given a set of training samples the learning

machine will try to approximate them (minimize training set classification error). If the

complexity of the machine is low (few parameters) the error in the training set is high, and

 30

performance in the test set will also suffer, meaning that the separation surfaces have not

been properly placed (Figure 9a). If the machine complexity is increased, the training set

error will decrease, showing a smaller model bias.

Too large a model produces an exact fit to the training set samples (memorization of the

training samples) but may also produce large errors in the test set. The source of this test

set error for larger machines (Figure 9b) differs from the small machine case. It is

produced by the model variance, i.e. using parameters fine tuned for a specific subset of

samples (training samples) that do not “generalize” to a different set of samples. This is

the reason the committees presented in Chapter IV which basically reduce the variance

through weighted averaging improved the test set performance.

The difference in performance between the training and the test set is a practical

measure of the model variance. We can always expect that the error in the test set will be

larger than in the training set. However, a large performance difference between the

training and test sets should be a red flag indicating that learning and/or model selection

was not successful.

This argument means that the goal of learning should not be a zero error in the training

set. It also clearly indicates that information from both the training and test sets must be

utilized to set appropriately a compromise between model bias and variance. This is the

reasoning why in Chapter IV we presented crossvalidation as the best way to stop the

training of a learning machine, since crossvalidation brings the information from the

unseen samples to stop training at the point where the best generalization occurs.

6.2. The bias-variance dilemma treated mathematically
The problem of generalization can be studied mathematically in a statistical framework by

interpreting the network as a regressor and decomposing the output error into its bias

and variance.

A measure of how close the output is to the desired response is given by

 31

()y d−
2

 Equation 22

But note that this error depends on the training set utilized. To remove this dependence

we average over the training sets (TS) to yield

()[]J y dTS −
2

 Equation 23

Now rewrite the expression inside the square brackets as

() () ()[]y d y J y J y dTS TS− = − + −
2 2

 Equation 24

When we compute the expected value we obtain

()[] ()[] ()[]{ }J y d J J y d J y J y

bias iance

TS TS TS TS TS− = − + −
2 2 2

2 var Equation 25

The first term is the (square of the) bias of the model because it measures how much in

the average the output differs from the desired response. The second term is the

variance because it measures how much each particular output y differs from its mean

across the training sets.

Now let us assume that we add noise to the desired response, i.e.

d f= + ε Equation 26

where f is the true input-output map and ε is the noise. One extreme is the case that the

model is so small that the output is not dependent at all on the variability of the data (no

free parameters, just an a priori chosen function g). So the model bias may be large (if

the function g we picked is not the true function f), but the model variance is zero since y

is the same across all training sets.

The other extreme is to have the model with so many parameters that it passes exactly

by every training data point. In this case the first term which measures the model bias is

zero, but the second term which measures the model variance is the power of the noise ε.

A good size model is the one where both the model bias and variance are small. This

 32

view however, does not tell us how to select the size of the model, but illustrates well

what is going on.

6.3. Penalizing the training error

The problem is to find a general criterion to determine the model order for the problem

under consideration. Generalization can also be formulated in this way. Many theories

have addressed this issue. One that we would like to mention is Rissanen’s minimum

description length (MDL) criterion because it is central to extracting models from data (or

composing complex functions from simpler ones).

The previous explanation shows that one can not look only at the fitting error as the

criterion of optimality. We have to counterbalance it with the number of degrees of

freedom of the model. Rissanen presented this idea very intuitively in terms of code

lengths.

Our data can be thought as having an intrinsic code length in the following way: We may

try to describe the data using a code we define. So the data set requires a certain

number of bits to be described (Figure 10). If the data is random noise then every sample

needs to be used to describe the data and the code length is the same as the data length.

But the data may have been created by a linear system for which two numbers (slope

and bias) are sufficient to describe all the samples.

original data code length

model 1 code length model 1 error

model 2 code length model 2 error

Figure 10. Code lengths of data and several models

When we model the data we are effectively describing it in a different way, by the

topology and parameters of our model, and also by the fitting error. If we add the error to

the model output then we again describe the original data exactly. Consider that we have

 33

to assign bits to codify the error, C(Ei), and also to represent the parameters of our model,

C(Mi). So the description of the data using a particular model i is

C M E C M C Ei i i i(,) () ()= +
The most efficient description of the data set is the one that minimizes the overall code

length, i.e. the total number of bits to represent both the error and the model parameters

(Figure 10),

),(min iii
EMC

Notice that this is a very interesting idea, because it couples the complexity (size) of the

machine with the size of the fitting error. If we use small number of parameters, then the

error will be larger, and we utilize many bits to represent the error. On the other hand, if

we use too large a machine we use too many bits to describe the machine, although only

a few are needed to represent the error. The best compromise in terms of code length

lies in the middle of smaller machines and manageable errors. MDL and Bayesian theory

Possibly the simplest implementation of this idea is to penalize the mean square error

obtained in the training by including a term that increases with the size of the model, as

was first proposed by Akaike . Akaike’s information criterion (AIC) reads

() ()min lnAIC k N J k k
k

= + 2

 Equation 27

where J(k) is the MSE in the training set, k is the number of free parameters of the model,

and N is the number of data samples. AIC has been extensively used in model based

spectral analysis (Kay). This expression shows that even if the error decreases with the

size of the model k, there is a linear penalty with k so the minimum value is obtained at

some intermediate value of model order k (Figure 11).

 34

J

k

error decreasing
with k

penalty increasing
with kbest model

order

Figure 11. Best model order according to Akaike’s criterion.

Notice that in Akaike’s criterion the penalty is independent of the number of samples of

the training data. According to Rissanen MDL criterion, a larger penalty for larger data

sets can be obtained by substituting 2k by k/2ln(N) yielding

min () ln () ln()k MDL k N J k
k

N= +
2 Equation 28

The appeal of these equations is that they allow us to use all the available data for

training (unlike crossvalidation) and can be easily computed for practical applications

since they only require the mean square error in the training set for a collection of models

of different sizes (k). Akaike’s method works well for one layer systems (in particular

linear). However, it becomes less acccurate for multilayer networks since the size of the

model it is not univocally related to the number of weights.

It is also important to relate this method with the early stopping criterion that we

established in Chapter IV using crossvalidation. Remember that we stopped training

based on the performance in the validation set. The early stopping criterion measures

directly some type of distance between the model and the data. We can choose the best

model by utilizing different model sizes (k) and pick the one that provides the minimum

error in the crossvalidation set, i.e.

()min J k
k

val

 Equation 29

 35

It has been shown that this use of crossvalidation is asymptotically equivalent to Akaike’s

criterion. In neural networks, these equations have to be interpreted in an approximate

sense, in particular for multilayer architectures. In fact the role of the PEs and their

weights is very different so it is not enough to naively count the number of free

parameters. The principle of structural Risk Minimization and the VCdimension is the

most principled way to select the best size model. We will address it shortly.

NeuroSolutions 11

5.11 Akaike’s criterion for RBFs

This example demonstrates Akaike’s criterion for selecting the number of PEs in

the RBF network. We have added a few DLLs to the breadboard, one of which

computes Akaike’s criterion. The other(s) change the widths and centers of the

RBFs to automatically span the input range [0,1] based upon the number of hidden

PEs. Thus, you can change the number of RBFs and run the network to see what

the final Akaike’s criterion value will be.

 NeuroSolutions Example

6.4. Regularization
Regularization theory was proposed by Tikhonov to deal with ill-posed problems . As an

example, the equation xA=y is said ill-conditioned when a slight modification Δy due to

noise in a dependent variable y produces an enormous change in the solution for x. One

way to solve this type of problem is to minimize the residue

() ()R x Ax y y= − + Δ
2

 Equation 30

Tikhonov proposed to stabilize the solutions to such problems by adding a regularizing

function Γ(x) to the solution

() () ()R x Ax y y x= − + +Δ
2

λΓ Equation 31

and was able to show that when Δy approaches 0 the solution approaches the true value

 36

yA −1
 . λ is a small constant called the regularization constant, and the regularizing

function is a non-negative function that includes some a priori information to help the

solution. Normally these regularizers impose smooth constraints, i.e. they impose limits

on the variability of the solution. Inverse problems in general are ill-posed.

When one deals with the determination of the complexity of a learning machine with

information restricted to the training set, the problem is ill-posed because we do not have

access to the performance in the test set. The basic idea of regularization theory is to add

an extra term to the cost function such that the optimization problem becomes more

constrained, i.e

J Jnew c rJ= + λ Equation 32

where Jc is the cost function, Jr is the regularizer and λ is a parameter that weights the

influence of the regularizer versus the cost. Tikhonov regularizers penalize the curvature

of the original solution, i.e. they seek smoother solutions to the optimization problem. If

we recall the training algorithms, we should choose regularizers for which derivatives with

respect to the weights are efficiently computed. One such regularizer is

J
y

xr
n

nn
=

⎛

⎝
⎜

⎞

⎠
⎟∑ ∂

∂

2

2

2

 Equation 33

which penalizes large values of the second derivative of the input-output map. There is

evidence that even first order penalty works in practice. The value of λ must be

experimentally selected.

Regularization is closely related to the optimal brain damage (which uses the Hessian to

compute saliencies) and to the weight decay ideas to eliminate weights. In fact, weight

decay (Eq. 16 in Chapter IV) is equivalent to a regularization term that is a function of the

L2 norm of the weights (Gaussian prior), i.e.

J J wnew c i
i

= + ∑λ 2

 Equation 34

 37

The square in Eq. 34 can be substituted by the absolute value to obtain a L1 norm of the

weight yielding Eq. 19 in Chapter IV (Laplacian prior).

It is interesting to compare Eq. 34 with Eq. 27 . Both are effectively creating a new cost

function that penalizes large models. However the principles utilized to derive both

expressions are very different. This analogy suggests that the determination of the

regularization constant λ is critical to find the best possible model order. Too large a

value for λ will choose networks that are smaller than the optimum, while too small λ will

yield too large networks. Moreover, we can relate these choices to the bias and variance

of the model. We can expect that large λ will produce smooth models (too large a bias),

while too small λ will produce models with large variance. The best value of the

regularization constant can be computed from statistical arguments Wahba . Let us

experimentally verify these statements.

NeuroSolutions 12

5.12 Weight-decay to prune RBFs

As discussed above, the weight decay DLL which we introduced in Chapter IV can

be used to implement the regularization discussed above. We will use the same

RBF breadboard and set the number of hidden PEs to 20. Then, using weight

decay on the output synapse, we can dynamically “turn off” unnecessary PEs by

driving their output weights to zero. By adjusting the decay parameter of the

weight decay algorithm, we can produce smoother or more exact outputs from the

network.

 NeuroSolutions Example

Go to next section

7. Applications of Radial Basis Functions

 38

7.1. Radial Basis functions for Classification
Going back to Eq. 1 and 2, let us interpret them for a classification problem. In

classification f(x) becomes the indicator function {-1 (or 0),1}. So what this equation says

is that one can construct arbitrary complex discriminant function in the input space by

constructing linear discriminant functions in an auxiliary space (the space of the

elementary functions) of large dimension which is nonlinearly related (by ϕ(x)) to the

input space x. This is a counter intuitive result that was first proved by Cover (Cover

Theorem) and is associated with the fact that in sufficiently high dimensional spaces

data is always sparse, i.e. the data clusters are always far apart. So it is always possible

to use hyperplanes to separate them. The problem is that one needs to determine many

parameters.

Radial basis function networks implement directly this idea by using Gaussian functions

to project the input space to an intermediary space where the classification is done with

an hyperplane implemented as the weighted sum of the Gaussian PE outputs. This result

can be understood if we focus on the output of each Gaussian. No matter how

intertwined the classes are, if the centers of the Gaussians and its radius (the variance) is

properly controlled, each Gaussian can always be made to respond to a single classes.

The obvious limit is to assign a Gaussian to each sample. But generally this is not

necessary.

One can assign a Gaussian to a sub-cluster of one of the classes. Then the classification

is made by linearly combining the responses of each one of the Gaussians such that it is

+1 for one class and -1 (or 0) for the other. From this discussion, one sees that there are

two fundamental steps in designing RBFs for classification: the first is the placement and

the selection of the radius for each Gaussian. The second is the weighting of the

individual Gaussian responses to obtain the desired classification. It would also be

convenient to assign a radius that would change with direction, which extends the

contours of the Gaussians from circles to ellipses.

 39

NeuroSolutions 13

5.13 MLPs and RBFs for classification

This example uses RBFs to do classification. We are repeating the problem from

chapter 1 where we have height and weight data on various people and are trying

to classify whether they are male or female.

1.4 1.5 1.6 1.7 1.8 1.9 2
20

40

60

80

100

120

Height (m)

W
ei

gh
t (

kg
)

[o - Women]
[x - men]

Remember that we cannot get perfect classification. For reference, we have

included a link to the MLP which solves this problem.

 NeuroSolutions Example (MLP)
Now run the RBF network and see how the classifier performs at the same level

but the discrimant functions are different (her they are more curved). You should

change the number of RBF PEs and see how the discriminant plot and confusion

matrix are affected.

 NeuroSolutions Example (RBF)

7.2. Radial Basis Functions as Regularizers
Radial basis functions can be derived mathematically from the theory of Tikhonov

regularizers Poggio . Interestingly, when the solution of Eq. 32 is carried out using

 40

calculus of variations, radial basis functions appear as the natural solution for

regularization (for rotationally and translation invariant kernels). So this means that

instead of using directly the data collected from the outside world, there is advantages in

first fitting one radial basis function to each data point, and work with their outputs. In a

sense the RBFs are interpolating the collected data, but the method is too cumbersome

for large data sets (and the variances must be experimentally determined).

7.3. Radial Basis Functions as Regressors - The probabilistic Neural
Network

We can also utilize radial basis functions to estimate a regression function from noisy

data following the ideas of kernel regression. In kernel regression we seek to estimate

the probability density function p(x, d) of the input-desired pairs (xi, di) using the Parzen

window method (which is a nonparametric method). Parzen window method . One can

show that the regression of the target data yields RBF as kernel regression

()
(){ }
(){ }y x

d x x

x x

i i
i

i

=
− −

− −

∑

∑

exp /

exp /

2 2

2 2

2

2

σ

σ
 Equation 35

where σ is the width of the Gaussian and has to be experimentally determined. Basically

the method places a Gaussian in each sample multiplied by the desired response di and

normalized by the response in the input space. This network is called in neural network

circles the probabilistic neural network and can be easily implemented using RBF

networks.

 NeuroSolutions 14

5.14 Density estimation with RBFs

In this example we are going to train a normalized radial basis function network

according to Eq. 35 to show how the network handles probability density function

approximation. We have a few samples in the input space that belong to two

classes, and will train a probabilistic neural network to solve the problem. We

select the number of RBFs equal to the number of samples. During training notice

 41

that the RBF centers converge to the input data, and that the output of the net

provides the conditional average of the target data conditioned on each input.

Change the variance of the RBFs to see how they affect the estimates for the

targets as given by the output weights.

 NeuroSolutions Example

Go to the next section

8. Support Vector Machines
Support vector machines (SVMs) are a radically different type of classifiers that have

attracted lately lots of attention due to the novelty of the concepts that they brought to

pattern recognition, to their strong mathematical foundation, and also due to the excellent

results in practical problems. We already covered in Chapter II and Chapter III two of the

motivating concepts behind SVMs, namely: the idea that transforming the data into a high

dimensional spaces makes linear discriminant functions practical; and the idea of large

margin classifiers discussed to train the perceptron. Here we will couple these two

concepts and create the Support Vector Machine. We refer to Vapnik’s books for a full

treatment.

Let us go back to the concept of kernel machines. We saw in Chapter II that the

advantage of a kernel machine is that its capacity (number of degrees of freedom) is

decoupled from the size of the input space. By going into a sufficiently large feature

space, patterns become basically linearly separable and so a simple perceptron in

feature space can do the classification. In this chapter we have discussed the RBF

network, which can be considered a kernel classifier. In fact, the RBF places Gaussian

kernels over the data and linearly weights their outputs to create the system output. So it

conforms exactly with the notion of kernel machine presented in Chapter II, Figure 12.

When used as an SVM, the RBF network places a Gaussian in each data sample, such

 42

that the feature space becomes as large as the number of samples.

But an SVM is much more than an RBF. In order to train a RBF network as a SVM we will

utilize the idea of large margin classifiers discussed in Chapter III. There we presented

the Adatron algorithm which only works with perceptrons. Training an RBF for large

margin will at the same time decouple the capacity of the classifier from the input space

and also provides good generalization. We can not get better than this in our road to

powerful classifiers. We will extend the Adatron algorithm here in two ways: we will apply

it to kernel based classifiers such as RBFs and we will extend the training for non-linearly

separable patterns.

8.1 Extension of the Adatron to Kernel Machines
Recall that the Adatron algorithm was able to adapt the perceptron with maximal margin.

The idea was to work with data dependent representations, which lead to a very simple

on-line algorithm to adapt the multipliers.

We will write the discriminant function of the RBF in terms of the data dependent

representation, i.e.

∑∑∑
===

+σ−α=+>σ⋅σα=<+σ=
N

i
ii

N

i
ii

L

k
kk bxxGbxGxGbxGwxg

0

2

0

22

1

2)2,(),(),(),()(

 Equation 36

where represents a Gaussian function, L is the number of PEs in the RBF, wl

are the weights, N is the number of samples, αi are a set of multipliers one for each

sample, and we consider the input space augmented by one dimension with a constant

value of 1 to provide the bias. Notice that for the special case of the Gaussian the

inner-product of Gaussians is still a Gaussian. The kernel function (the Gaussian) is first

projecting the inputs (x, xi) onto a high dimensional space, and then computing an inner

product there. The amazing thing is that the Gaussian kernel avoids the explicit

computation of the pattern projections into the high dimensional space, as shown in Eq.

36 (the inner product of Gaussians is still a Gaussian). Any other symmetric function that

),(2σxG

 43

obeys the Mercer condition has the same properties. This topology is depicted in Figure

12, where we can easily see that it is a RBF, but where each Gaussian is centered at

each sample, and the weights are the multipliers αi.

∑

α 1

α Ν

α 2

α 3

center at x1

center at xN

xi(1)

xi(2)

xi(D)

f(x)

b

Figure 12. Topology of the SVM machine with RBF kernels

The Adatron algorithm can be easily extended to the RBF network by substituting the

inner product of patterns in the input space by the kernel function, leading to the following

quadratic optimization problem

},...1{,00

)2,(
2
1)(

1

1 1

2

1

Nidtosubject

xxGddJ

i

N

i
ii

N

i

N

j
jijiji

N

i
i

∈∀≥α=α

σ−αα−α=α

∑

∑∑∑

=

= ==

 Equation 37

Following the same procedure as in Chapter III we can define

 and choose a

common starting multiplier (e.g. αi=0.1), learning rate η, and a small threshold (e.g., t =

0.01).

)(min))2,(()(
1

2
ii

N

j
jijjii xgMandbxxGddxg =+σ−α= ∑

=

 44

Then, while M>t, choose a pattern xi, and calculate an update))(1(ii xg−η=αΔ and

perform the update

 ⎩
⎨
⎧

≤αΔ+α=+α=+α
>αΔ+ααΔ+=+αΔ+α=+α
0)()()()1(,)()1(
0)()()()()()1(,)()()1(

nnnbnbnn
nnnndnbnbnnn

After adaptation only some of the αi are different from zero (called the support vectors).

They correspond to the samples that are closest to the boundary. This algorithm is the

kernel Adatron with bias that can adapt an RBF with optimal margin. This algorithm can

be considered the “on-line” version of the quadratic optimization approach utilized for

SVMs, and it is guaranteed to find identical solutions as Vapnik’s original algorithm for

SVMs, Freiss . Notice that it is easy to implement the kernel Adatron algorithm since g(xi)

can be computed locally to each multiplier, provided the desired response is available in

the input file. In fact the expression for g(xi) resembles the multiplication of an error with

an activation, so it can be included in the framework of neural network learning.

So the Adatrom algorithm basically pruned the RBF network of Figure 12 so that its

output for testing is given by

∑
∈

−σ−α=

vectors
porti

iii bxxGdxf
sup

2))2,(sgn()(

8.2 Extension of the Adatron with Soft Margin
What happens if the patterns are not exactly linearly separable? The idea is to introduce

a soft margin using a slack variable 0≥ξ i , and a function , which will

penalize the cost function. We will still minimize the function F, but now subject to the

constraints

∑
=

ξ=ξ
N

i
iF

1

)(

niii cwwandNibxwd ≤=ξ−≥+ .,...11).(. The new cost

function becomes

 45

0},...1{,010

2
))2,((

2
1),(

1

1 1

2

1

≥∈∀≥α≥=α

−σ−αα−α=α

∑

∑∑∑

=

= ==

CNidtosubject

Cc
xxGdd

C
CJ

i

N

i
ii

N

i

N

j

n
jijiji

N

i
i

Normally, instead of computing the optimal C we choose a value a priori. C can be

regarded as a regularizer. This means that the matrix of kernel inner products is

augmented in the diagonal by the factor 1/C, i.e.

),(),(/1),(),(jijijiji xxKxxelseCxxGxxjiif =Ω+=Ω=
The only difference in the algorithm for this case is the calculation of g(xi) which becomes

 . As we can see these calculations can be easily

implemented as an iterative algorithm, but notice that large data sets produce

tremendously large RBF networks (one Gaussian per data sample). Since the input layer

has no free parameters, effectively the mapping can be computed once and saved on a

big matrix.

)),(()(
1
∑
=

+Ωα=
N

j
jijjii bxxddxg

SVMs have been applied to numerous problems with excellent results. They consistently

are at par with the best reported results, which have taken many years of fine tuning. One

of the weaknesses of the method is that it does not control the number of support vectors

that solve the problem. In principle SVMs should be sensitive to outliers, even in the case

of the slack variables.

8.3. A Summary of the SVM theory
We would like to present in a more principled manner the beautiful theory that gave rise

to the SVMs, and show the equivalence to the above algorithms. However, this theory is

beyond the scope of an introductory texbook as this one. So we will only highlight the

most important concepts that gave rise to this design methodology. We will see how the

ad-hoc observations made in Chapter II and III have been formulated mathematically by

Vapnik and co-workers.

 46

Learning theory can be framed as a functional approximation problem in spaces with a

probability measure. The goal is to approximate a function d=f(x) where f(.) is a fixed but

unknown conditional distribution function F(d|x). The approximant is a learning machine

that implements a set of functions ()wxf ,ˆ
 where the parameters w are to be

determined through learning. The inputs x are random vectors with a fixed but also

unknown probability distribution function F(x). The selection of the parameters w is done

through a finite number M of input output observations (xi,di) which are independent and

identically distributed (i.i.d.).

You should be able to see how similar this is to the block diagram of Figure 1. Now we

are saying that what links the desired response to the input is a conditional distribution

function, which is unknown but fixed. The machine should discover this function by the

repeated presentation of a finite set of exemplars which are assumed i.i.d. In learning

theory, the best parameters w* are chosen to minimize the risk functional

() ()() ()∫= dxdFwxfdLwR ,,, Equation 38

where L(d,f(x,w)), the loss function, measures the discrepancy between the desired

response y and the learning machine output. However, we can not compute this integral

since we do not know the joint distribution F(x,d), but we have the finite number of

observation pairs (xi,di). So we will substitute Eq. 38 by

)),(,(1)(
1
∑
=

=
N

i
iemp wxfdL

N
wR

 Equation 39

which is called the empiric risk, and we will minimize this quantity instead. This method of

solving the risk problem is called empirical risk minimization (ERM) principle. Notice that

ERM is a principle based on induction. We may think that this substitution of the risk

functional by the empiric risk would constraint the possible cases that could be solved.

But it turns out that Glivenko and Cantelli proved that the empiric distribution function

converges to the actual distribution and Kolmogorov even proved that the empirical

 47

distribution function has asymptotic exponential rate of convergence. This is the basis for

statistical inference.

The two problems treated so far in Chapter I and III, the regression problem and the

classification problem are special cases of this formulation. In fact it is enough to define

the loss function as

()() ([]2,ˆ,, wxfdwxfdL −=) Equation 40

to obtain the formulation of the regression, provided the output y is a real value and if one

assumes that the class of functions ()wxf ,ˆ
 includes the regression function we are

seeking.

If the output y takes the integer values d={0,1} and if the function ()wxf ,ˆ
 is the set of

indicator functions, i.e. functions that take only two values -zero and one-, if the loss

function is defined as

()() ()
()wxfdiff

wxfdiff
wxfdL

,1
,0

,ˆ,
≠
=

=
 Equation 41

then the risk functional computes the probability of an error in the classification.

One could even show that this same formalism can provide as a special case density

estimation over the class of functions p(x,w) if

()() ()L p x w p x w, log ,= − Equation 42

Learning theory provides the most general way to think about training adaptive systems.

The theory addresses mathematically the problem of generalization that is vital to

neurocomputing. Vapnik establishes four fundamental questions for learning machines:

• What are the necessary and sufficient conditions for consistency of a learning process.

• How fast is the rate of convergence to the solution.

• How to control the generalization ability of the learning machine.

 48

• How to construct algorithms that implement these pre-requisites.

We will restrict ourselves to the special case of pattern recognition (where the function is

an indicator function). To study SVMs we need to address basically the last two bullets,

but first provide the definition of VC (Vapnik-Chervonenkis) dimension. One of the

fundamental problems in pattern recognition has always been the estimation of the Bayes

error. There is no known procedure to directly minimize the Bayes error, because it

involves the integration over the tails of the pdfs, which are unknown (and the

multidimensional integral is not trivial either). Our procedure of designing classifiers by

minimizing the training error (which in this theory corresponds to the empiric risk) is not

appropriate as we have discussed in Chapter IV and in this Chapter. All the methods we

discussed to control the generalization error are in fact indirect (and sometimes not

principled). So researchers have tried to find methods that minimize an upperbound of

the Bayes error. It is in this framework that Vapnik’s contributions should be placed.

Vapnik argues that the necessary and sufficient conditions of consistency (generalization)

of the ERM principle depend on the capacity of the set of functions implemented by the

learning machine. He has shown that the VC dimension is an upperbound for the Bayes

error.

The VC dimension h of a set of functions is defined as the maximum number of vectors

that can be separated into two classes in all 2h possible ways using functions of the set.

For the case of linear functions in n dimensional space, the VC dimension is h=n+1. So

the VC dimension is a more principled way to measure the capacity of a learning

machine which we discussed in Chapter II. For general topologies the VC dimension is

not easy to determine, but the trend is that larger topologies will correspond to larger VC

dimension.

The VC dimension of a learning machine appears as a fundamental parameter to

determine its generalization ability. In fact Vapnik proved that the generalization ability

(the risk R) of a learning machine Q(x,α) of size k parametrized by α is bounded by

 49

)()()(
h
NRR kempk Φ+α≤α

 Equation 43

where is the empirical risk (the error measured in the training set) and the

second term is a confidence interval. So the generalization ability depends upon the

training error, the number of observations and the VC dimension of the learning machine.

There are basically two ways to handle the design.

)(αempR

The first is to design a learning machine with a given topology, which will have a given

VC dimension (that needs to be estimated). This is the conventional neural network

design. Once this is done, Eq.43 tells us all. We train the ANN and this gives us an

estimate of the empirical risk, but also a confidence interval. Eq. 43 describes the bias

variance dilemma very precisely. In order to decrease the training set error, we may have

to go to large ANNs which will provide a large confidence interval, i.e. the test error may

be much larger than the training error. We say that the machine memorized the training

data. So the problem becomes one of trading-off training set error and small VC

dimension, which is handled heuristically by the size of the learning machine. This

compromise was thought intrinsic in inductive inference, going back to the famous

Occam razor principle (the simplest explanation is the best).

The second approach is called the structural risk minimization (SRM) principle and gives

rise to the support vector machines (SVMs). The principle specifies to keep the empirical

risk fixed (at zero if possible) and minimize the confidence interval. Since the confidence

interval depends inversely on the VC dimension, this principle is equivalent to searching

for the machine that has the smallest VC dimension. Notice that there is no compromise

in the SRM principle. It states that the best strategy is to use a machine with the smallest

VC dimension. Another point to make is that VC dimension and number of free

parameters are two very different things, unlike the indications from Akaike and Rissanen

work. We now know that we can apply very large machines to small data sets and still

be able to generalize due to capacity control. So this SRM approach has profound

implications in the design and use of classifiers. Let us now see how we can implement

 50

SRM in practice.

Here the concept of hyperplanes and margin becomes critical. Although the VC

dimension of the set of hyperplanes in n dimensions is n+1, it can be less for a subset. In

fact Vapnik proved that the optimal hyperplane (the smallest norm) provides the smallest

confidence interval. So the problem in SRM is one of designing a large margin classifier.

Let us briefly describe here Vapnik’s formulation to allow us a comparison with our

previous approaches.

Assume we have a set of data samples

{ } }1,1{,),(),.....,,(11 −∈= iNN ddxdxS
What we want is to find the hyperplane y = w.x+b with the smallest norm of coefficients

2w
 (largest margin). To find this hyperplane we can solve the following quadratic

programming problem: minimize the functional

).(
2
1)(xxx =Φ

under the constraint of inequality

Nibwxd ii ,...2,11]).[(=≥+
where the operation is an inner product. The solution to this optimization is given by the

saddle points of the Lagrangian

∑
=

−+α−=α
N

i
ii dbwxwwbwL

1

}1]).{[().(
2
1),,(

 Equation 44

By using the dual formulation, we can rewrite Eq. 44 as

},...1{,0).(
2
1)(

1 11

NitosubjectxxddJ i

N

i

N

j
jijiji

N

i
i ∈∀≥ααα−α=α ∑∑∑

= ==

 51

under the constraint . The solution is a set of α* . We can show that only

some of the samples will correspond to Lagrangian multipliers different from zero, and

will be called the support vectors. They are the ones that control the positioning of the

optimal hyperplane. So the large margin classifier will be specified by

∑
=

=α
N

i
ii y

1

0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−α= ∑

vectors
port

iii bxxdsignxf
sup

**).()(

 Equation 45

One of the characteristics of the SVM is that the user has no control on the number of

support vectors, i.e. the size of the final machine. During training all the RBFs are used,

but once the SVM is trained the RBF should be trimmed, discarding the RBFs that are

not support vectors. The number of support vectors is dependent upon the data, which

makes sense but practically it is not a useful feature. The expressions we arrived are

exactly the same as the one for the Adatron algorithm we discussed in Chapter III.

Except that Vapnik suggests a quadratic programming solution, while the Adatron is an

“on-line” solution, easily implementable in neural network software. As any on-line

algorithm, the Adatron requires the control of learning rate and suffers from the problem

of misadjustment and stoping criterion. We can expect that training SVMs with large data

sets demands a lot from computer resources (memory or computation).

Now we have a better understanding of why optimal margins are good for classification.

SVMs can also be used for regression and density estimation.

Go to the next section

9. Project: Applications of Neural Networks as
Function Approximators

In Chapter IV we have seen how neural networks can be applied to classification. Here

we would like to show how the same topologies can be applied as function approximators

 52

(nonlinear regressors) in a wealth of practical applications. We selected one application

in the financial industry, and another in real state. The goal is to discover nonlinear

mappings between input variables and important outcomes. In the financial arena the

outcome is to predict the value of the S&P 500 using several financial indicators, while in

the real state application, the problem is to estimate the price of a house based on

several indicators. We will see that neural networks provide a very powerful analysis tool.

Prediction of S&P 500
This example will develop a very simple model for predicting the S&P 500 one week in

advance. You can use this demo as a starting point for developing your own more

complex financial models. The inputs to the model consist of the 1 year Treasury Bill

Yield, the earnings per share and dividend per share for the S&P 500, and the current

week’s S&P 500. The desired output is the next week’s S&P 500. The data has been

stored in the file “Financial Data”. There are 507 weeks worth of data which cover

approximately a ten year period.

The data has been pre-sampled such that the first 254 exemplars contain the data for

weeks 1, 3, 5,…, 505, 507 and the last 253 exemplars contain the data for weeks 2, 4,

6,..., 504, 506. The first 254 exemplars will be used for training and the last 253

exemplars will be used for evaluating the trained networks performance.

NeuroSolutions 15

5.15 Prediction of SP 500

We will use a simple one hidden layer MLP to model this data. The network has 4

inputs and the desired response is the next week value of the S&P 500. The

topology has to be carefully developed as we exemplified in Chapter IV. We

recommend that weight decay be utilized to avoid overfitting. Alternatively,

Akaike’s criterion should be used to find the best model order as we did in

example 11. Let us train the network until the error stabilizes.

The next step is to verify the performance of the network in the unseen data. In the

figure below we show the performance of the network we trained. The solid line is

 53

the actual value while the network output is dashed. As we can see the network fits

rather well the actual value of the S&P 500 with the 4 inputs selected. We can

compute the correlation coefficient between the actual and predicted curves to

have normalized (but linear) measure of performance.

We suggest that you try RBFs for the same problem and compare performance.

This can be the embrio of a financial model, but remember that predicting the value

of the stock is just one of many factors needed to come up with an investment

strategy.

 NeuroSolutions Example

Desired Output and Actual Network Output

0

100

200

300

400

500

600

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

Exemplar

O
ut

pu
t

S&P500 Next Week

S&P500 Next Week Output

Estimating the price of a house
The final example that we will like to address in this chapter is how to help decide which

inputs are more significant in our application. This is an important issue because in

many practical problems we have many different indicators or sensors which may require

very large input layers (hence many network weights), and very few exemplars to train

the networks. One possibility is to prune the number of inputs without affecting

 54

performance.

We have to understand that this is a compromise. The more variables we have about a

problem the better is the theoretical performance, assuming that we have infinite noise

free data. One can think that each variable is a dimension to represent our problem, so

the higher the number of dimensions the better the representation. But notice that for

each extra input the representation problem is posed in a larger dimensionality space, so

training the regressor (or the classifier) appropriately requires many more data samples.

This is where the compromise comes in. Since we always have finite, noisy data, the

fundamental issue is to find the best “projection” to represent our data well.

One approach is to use all the available data to train a neural network and then ask which

are the most important inputs for our model. It is obvious that this requires the calculation

of the relative importance of each input for the overall result, i.e. the sensitivity of the

outcome with respect to each input.

In this example we will develop a model for real estate appraisal in the Boston area. We

will use 13 indicators as inputs to this model. These indicators are per capita crime rate

by town (CRIM), proportion of residential land zoned for lots over 25,000 sq.ft. (ZN),

proportion of non-retail business acres per town (INDUS), bounds Charles River (CHAS),

nitric oxides concentration (NOX), average number of rooms per dwelling (RM),

proportion of owner-occupied units built prior to 1940 (AGE), weighted distances to five

Boston employment centers (DIS), index of accessibility to radial highways (RAD),

full-value property-tax rate per $10,000 (TAX), pupil-teacher ratio by town (PTRATIO),

1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town (B), % lower status of the

population (LSTAT).

The desired output for this model is the Median value of owner-occupied homes (in

$1000’s). Hence this is a mapping problem which we will solve with a MLP (nonlinear

regression). There are 400 total samples. Three hundred of them will be used as

“Training” and the other 100 as “Testing”. The data is located in the file named “Housing

 55

Data”.

The way we can do input sensitivity analysis is to train the network as we normally do

and then fix the weights. The next step is to randomly perturb, one at a time, each

channel of the input vector around its mean value, while keeping the other inputs at their

mean values, and measure the change in the output. The change in the input is normally

done by adding a random value of a known variance to each sample and compute the

output. The sensitivity for input k is expressed as

S
y y

k

ip ip
i

o

p

P

k
=

−
==
∑∑ ()2

11
2σ

where
yip is the output obtained with the fixed weights for the pattern, o is the

number of network outputs, P is the number of patterns, and is the variance of the

input perturbation. So this is really easy to compute in the trained network, and effectively

measures how much a change in a given input affects the output across the training data

set. Inputs that have large sensitivities are the ones that have more importance in the

mapping and therefore are the ones we should keep. The inputs with small sensitivities

can be discarded. This helps the training (because it decreases the size of the network)

and decreases the cost of data collection, and when done right has negligible impact on

performance.

i th pth

σ k
2

NeuroSolutions 16

5.16 Estimating prices in the Boston housing data

Let us train a one hidden layer MLP initially with 14 inputs and one output. The

choice of the number of hidden PEs should be done as before, i.e. starting small

and plotting the output MSE for several different runs as a function of the number

of PEs. Train the network and run it on the test set to visually observe the

performance in the test set. The network produces a very good fit in most cases

indicating a successful model.

 56

Desired Output and Actual Network Output

0

5

10

15

20

25

30

35

40

45

50

1 10 19 28 37 46 55 64 73 82 91 10
0

Exemplar

O
ut

pu
t

MEDV Desired

MEDV Output

Then the next step is to run the sensitivity analysis which will estimate the

importance of each input to the overall performance. NeuroSolutions has this built

in feature. Let us work with the trained network and turn learning off (fix the

weights). We have to specify the amount of random noise we want to add to each

individual input (which is done automatically one input at a time), while keeping

the other inputs at their mean values. NeuroSolutions computes the sensitivity at

the output. Let us place a MatrixViewer at the L2 criterion in the sensitivity access

point, and write down the values. We should use different values of dither to obtain

a reasonable linear approximation to the operating point of the regressor. We can

then plot the different values of the sensitivity for each input variable as shown in

the Figure below

 57

C
R

IM ZN

IN
D

U
S

C
H

A
S

N
O

X

R
M

A
G

E

D
IS

R
A

D

TA
X

P
TR

A
TI

O B

LS
TA

T

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

Se
ns

iti
vi

ty

C
R

IM ZN

IN
D

U
S

C
H

A
S

N
O

X

R
M

A
G

E

D
IS

R
A

D

TA
X

P
TR

A
TI

O B

LS
TA

T

Input Name

Sensitivity About the Mean

MEDV

From the figure we see that there are 5 inputs that display a very low sensitivity so

they can be omitted without affecting appreciably the quality of the mapping.

Hence, a reduced network with the inputs INDUS, CHAS, NOX, RM, DIS, RAD,

PTRATIO, LSTAT shall be trained again. As you can see in the figure below, the

matching is basically the same, but now we have a smaller network that will

generalize better, and we can reduce the cost of collecting data for this problem.

Desired Output and Actual Network Output

0

5

10

15

20

25

30

35

40

45

50

1 10 19 28 37 46 55 64 73 82 91 10
0

Exemplar

O
ut

pu
t

MEDV

MEDV Output

 58

 NeuroSolutions Example

Go to next section

10. Conclusion

In this chapter we provided a view of neural networks as function approximators. This is

the more general view of this family of systems and impacts our understanding about

their capabilities, establishes new links to alternate methods and provides, we hope, a

better understanding of the problems faced in training and using adaptive systems.

One of the interesting things about neurocomputing is that it lies at the intersection of

many diverse and complementary theories, so it is a very rich field. The price paid is that

the reader was bombarded with many different concepts and since our goal is to keep the

text at the introductory level the presentation only addressed the key concepts. Our hope

is that the reader was motivated enough to pursue some of these topics.

MLPs are very important for function approximation because they are universal

approximators and their approximation properties have remarkably nice properties (the

approximation error decays independently of the size of the input space). This may

explain why MLPs have been shown to outperform other statistical approaches in

classification.

In this chapter we also introduced another class of neural networks, called the radial

basis function networks (RBFs). RBFs can be used in the same way as MLPs since they

are also universal approximators, i.e. they can be classifiers, regressors or density

estimators.

We also presented the basic concepts of the structural risk minimization principle and

support vector machines (SVM). This is a difficult theory so we merely highlighted the

important implications, which are many. At the top is the paradigm shift from the

conventional compromise between generalization and network size, to the strict recipe of

 59

using the smallest capacity machine for best generalization. The innovative ideas

contained in the SRM principle will impact tremendously the evolution of the whole field of

learning from examples and inductive inference. So you should be alert to follow the

developments.

SVMs are practical learning machines that minimize an upper bound to the Bayes error,

so they are very useful in pattern recognition. SVMs are very easy to apply to practical

problems, provided the user has large computers since they do not have free parameters

(just the slack variable for the nonseparable case). The kernel Adatron algorithm allows a

simple sample by sample implementation of the quadratic programming required to find

the support vectors, and conquers one of the difficulties of the method (having access to

quadratic programming software).

For the reader with a background in engineering this chapter provided a view of MLPs

and RBFs as implementing function approximation with a new set of bases (the sigmoids

which are global or the Gaussians, which are local). For the reader with a statistical

background, the chapter provided a new view of generalization. Neural networks belong

to the exciting class of nonparametric nonlinear models, which learn directly from the

data, and so can be used in experimental science.

NeuroSolutions Examples
5.1 Sinc interpolation

5.2 Fourier decomposition
5.3 Linear regression

5.4 Function approximation with the MLP

5.5 MLP to approximate a squarewave (classification)

5.6 Function approximation with RBFs

5.7 Nonlinear regressors
5.8 MLPs for function approximation with L1 norm

5.9 Training RBFs for classification

5.10 Overfitting

 60

5.11 Akaike’s criterion for RBFs

5.12 Weight-decay to prune RBFs
5.13 MLPs and RBFs for classification

5.14 Density estimation with RBFs

5.15 Prediction of SP 500

5.16 Estimating prices in the Boston housing data

Concept Maps for Chapter V

 61

Function
Approximation with
Adaptive Systems

1, 1.1

Nonlinear Models
Chapter X, XI

How to Choose
Basis

3

Nonlinear -
Local Bases

3.4

Nonlinear-
Global Bases

3.3

The Theory
2

How Many
Bases

6

Structu
Learni

(link

Linear Case
3.2

MLP
3.3

Backprop
5.1

The problem
1.1

Bias Variance
Dilemma
6.1, 6.2

Radial Basis
Functions
(RBFs)

Classifiers
7.1

How to find
projections

5

Probabilistic
Interpretation

4

Projects
9

Regularization
6.4

Resource
Allocation

5.2

Chapter V

Penalty
6.3

Geometric
Interpretation

2.1

Regularizers
7.2

Regressors
7.3

Examples
3.1

Support Vector
Machines 8

 62

Go to Next Chapter
Go to the Tables of Content

calculation of the orthonormal weights
Let us assume that the bases ϕ(x) are orthonormal. Let f(x) be any square integrable

function . The goal is to find the coefficients wi such that

f x w xi i

i

N

() ()=
=
∑ ϕ

1

Taking the inner product of f(x) with ϕi(x)

< >= < >= <

=
∑f x w wi i
i

N

(), , ,ϕ ϕ ϕ ϕ1 1 0
1

>ϕ1 1

since the vectors are orthogonal. Moreover since they are of unit length (orthonormal),

we get

 w f x1 1=< >(),ϕ
which corroborates the interpretation that the weight can be thought as the projection in

each elementary function. So in general we get the pair of relations

f x w x

w f x x d

i i
i

i i
D

() ()

() ()

=

=

⎧

⎨
⎪

⎩
⎪ x

∑

∫

ϕ

ϕ

(Note: if the signals are complex, then the coefficients are given by

w f x x di i

D
= ∫ () ()*ϕ x

 63

where * means complex conjugate). On the other hand if we are working with discrete

spaces, this pair of equations becomes

 ⎪
⎪
⎩

⎪⎪
⎨

⎧

ϕ=

ϕ=

∑

∑

=

=
N

k
ii

N

i
ii

kkfw

kwkf

1

1

)()(

)()(

(where once again in the second equation the basis has to be the complex conjugate if

they are complex). This pair is what we need to know to apply the projection theorem for

orthogonal basis and provide the relationships for the Fourier transforms and Fourier

series respectively.

Return to Text

sinc decomposition
The formulas derived above can be used to find out exactly what is the decomposition

obtained when the basis are sinc functions. We would like to write

f x w xi i

i
() ()= ∑ ϕ

The bases are

 ϕi ix c x() sin ()= − x

i

Applying now Eq 7 we have that the weights become

w f x c x x dx f xi i

D

= − =∫ () sin () ()

which means that the weights become exactly the value of the function at the point (i.e.

the sample value). So this explains figure 4.

Return to text

 64

Fourier formulas
Applying again the pair of formulas of Eq 7 and Eq. 8 we will present the Fourier

transform pair. Remember that the Fourier uses as basis the complex exponentials, i.e.

 ϕ
π

i
j

T
it

t e() =
2

where T is related to the interval where the function f(t) is defined and j = − 1 . The

complex exponentials are a set of orthogonal basis. This means that we are going to

expand the function f(t) as

f t w ei

j
T

it

i
() =

=−∞

∞

∑
2π

In the interval D= [0,T] we can compute the weights as (Eq.7)

w

T
f t e dti

j
T

itT
=

−

∫
1 2

0
()

π

This means that we have formulas to compute the weights so we do not need to use

adaptation.

Note that the complex exponential can be expressed as (Euler relation)

 e wt jjwt = +cos() sin()wt

so in fact we are decomposing the signals in sums of sinusoids (but pairs of them).

Return to Text

eigendecomposition
In engineering we use systems to modify time signals according to the user specifications.

So a system is a piece of equipment that modifies input signals x(t) to produce another

 65

signal y(t) (see Figure)

x(t)
y(t)

H

Mathematically we can describe a system by a function H operating on the real (or

complex) numbers

H x H: → x
and we will call H an operator. The output y of the system H when x is applied at the input

is

y Hx=
The response of the system at time t is written y(t) = [Hx](t).

A linear system is a system described by the operator H which obeys the following

properties

H x Hx
H x y Hx Hy

α α=
+ = +[]

where α is a scalar. We are normally interested in linear systems that are shift invariant,

i.e. where the response does not depend upon the particular instant of application. Let us

define another operator T which delays x by t seconds, i.e.

x t Tx() [](t)− =τ

In shift invariant systems, H and T commute, i.e. THx = HTx.

So lets ask the following question. Which are the signals x(t) that when applied to a linear

time invariant system H produce a response that has the same form as the input, apart

from a multiplicative factor (gain factor)?

 66

Mathematically this can be written
Hx = λx

This is the same problem that gives rise to the eigenvector problem of matrices, and this

is the reason why the input x that obeys this condition is called an eigenfuntion of H.

Linear shift invariant systems have the special property that they commute with the

derivative operator D (which is a composition of T operators), i.e.

If y = Hx and x’ = Dx, then y’ = Hx’
or in words, if we know the response of the system to an input, and we want to know the

response to the derivative of the input, then it is enough to take the derivative of the

output.

This is what we need to answer the original question. This property shows that the

question is equivalent to finding a signal x(t) that is proportional to its derivative, i.e.

dx t
dt

sx t
()

()=

which we know accepts the solution ,i.e. a complex exponential. x t e st() = α

What this means is that a linear shift invariant operator H when applied to a complex

exponential will only change its magnitude and phase, i.e. esx

y He esx sx= = α Equation 46

where α is a complex number . So, if an arbitrary function u(x) is decomposed into

exponentials,

()u x w ei
s x

i

i= ∑
 Equation 47

then the response of H to u(x) can always be evaluated as a sum of weighted responses

to exponentials, i.e.

() []Hu x H w e w H e w ei
s x

i
i

s x

i
i i

s x

i

i i=
⎡

⎣
⎢

⎤

⎦
⎥ = =∑ ∑ ∑ α i

 Equation 48

 67

where the αi do not depend of u(x). The importance of this equation has to be noted,

since it tells us that no matter how complicated the input might be, we always can

compute its output by adding the responses to individual exponential components. It also

tells us that all we need to know to describe the linear system are the complex numbers

αi.

Fourier analysis is a special case of this decomposition where the complex exponentials

have zero real part, i.e. s = jw yielding

e w x jjw x
i i

i = +cos() sin()w x

ε

Now we understand the relevance of complex exponentials to study linear systems.

Return to text

Weierstrass Theorem
Weierstrass proved the following important theorem: Let S[a,b] be the space of

continuous real valued functions defined in the real segment [a,b]. If then

there exists a polynomial with real coefficients α for which

f S a b∈ [,]

P x xi
i

i

N

() =
=
∑α

0

| () ()|f x P x− <

for ε>0 and x a b∈[,]

In words this says that any function can be approximately arbitrary well (i.e. with an error

as small as we want) by a sufficiently large order polynomial.

The Weierstrass theorem is the starting point for most proofs of the universal mapping

properties of the MLP.

Return to text

 68

multi-hidden-layer MLPs
The multilayer perceptron architecture is not in the general form of the projection theorem

discussed above. As seen in Chapter III the MLP implements an embedding of functions

so its approximation properties can not be directly studied with the projection theorem

except for the case of the one hidden layer MLP with linear output PE as mentioned

above. For this case we can recognize the output of each hidden PE has producing the

elementary functions. When the output PE is a logistic function (or tanh) these values are

nonlinearly combined, so the projection space is no longer an hyperplane in the input

space.

Remember also the properties discussed in Chapter III that the MLP with two hidden

layers is an universal approximator, and even with a single hidden layer can approximate

any continuous function on a compact set. There are now many theorems that provide

proofs depending upon the nonlinearity. So we can conclude that the essence of the

power of the approximation is in the topology, not in the specifics of the nonlinearity. As

remarked before, these are existence theorems, so the designer still needs to select the

topology to actually create the universal approximation properties for the class of

functions of interest.

Return to text

outline of proof
We will only outline here the proof for the universal mapping characteristics of the MLP.

We start by extending the Weierstrass theorem to metric spaces (the Stone- Weierstrass

theorem).

Polynomials can be extended to metric spaces by defining the concept of an algebra. A

 69

family of functions F that map the metric space V to the real line is an algebra if their

elements have the properties

f f F f f F
and f f F

1 2 1 2

1 2

,
.

∈ ⇒ + ∈
∈

α β

where α and β are real numbers.

The Stone Weierstrass theorem can be enunciated in the following way. Let V be a

metric space and F an algebra that maps V into the reals. If there is a function

for which

f F∈

f v f v for v v() ()1 2 1≠ 2≠ and f v() ≠ 0 in V, then F is dense in the

mapping of V into the reals. The idea of dense is the same as arbitrary close

approximation as stated in the Weierstrass theorem.

This theorem has been used to show the universal mapping capabilities of the MLP. In

fact, the function f(v) can be expanded in a special type of “Fourier series” with squashing

cosine functions, i.e.

f v v bi t i i

i

N

() cos ()= +
=
∑α β

1

where

cos ()
/

. [cos(/) / /
/

t v
v

v v
v

=
≥

+ + − < <
≤ −

⎧

⎨
⎪

⎩
⎪

1 2
05 1 3 2 2 2

0 2

π
π π π

π

The nonlinearity of the MLP belongs to this family of squashing functions. Notice that f(v)

is exactly the output of the one hidden layer MLP with a cosine nonlinearity.

Return to text

local minima for Gaussian adaptation
We should be able after Chapter III and IV to understand the difficulty of using

 70

backpropagation to adapt the centers and variances of the Gaussians. With this method,

the centers (and variances) are moved in the input space by virtue of the gradient.

However, with the RBF, both the local activity and the local error are attenuated by the

shape of the Gaussian kernel, while in the MLP only the error was attenuated by the

derivative of the sigmoid. The net effect is that training becomes very slow and the

chances of getting stuck in local minima are large. Another reported problem is that

during adaptation the variances of the Gaussians can become very broad and the RBF

looses its local nature.

Return to Text

approximation properties of RBF
The formulation of function approximation using the projection theorem (Eq. 1) can be

directly applied to study the approximation properties of the RBF network. Sandberg

showed that the RBF network is in fact a general function approximator. This is an

existence theorem, so it is up to the designer to choose the number, localize, set the

variance and the weighting of Gaussians to achieve an error as small as required.

Using again the Stone Weierstrass theorem, they showed that the RBFs were dense in

the mapping from a metric space V to the real line. This is not difficult because the RBFs

create an algebra and they do not vanish in V.

The RBF and the MLP achieve the property of universal approximation with different

characteristics since the basis functions are very different. In the RBF the basis are local,

so each can be changed without disturbing the approximation of the net in other areas of

the space. But one needs exponentially more RBF to cover high dimensional spaces (the

curse of dimensionality). In the MLP this is not the case as we mentioned in the result by

Barron. As we saw in Chapter III, changing one MLP weight has the potential to produce

drastic changes in the overall input-output map. This has advantages in some aspects

such as more efficient use of PEs, but also disadvantages since the training becomes

 71

slower and the adaptation can be caught in local minima.

RBFs train very efficiently once the centers are determined, since the error is linear in the

weights. This fact also guarantees the convergence for the global minimum (if the centers

are optimally set). This makes RBFs very useful for system identification.

From the theoretical point of view of function approximation, RBFs possess the property

of best approximation as defined by Chebyshev, unlike the MLP (i.e. there is always a

RBF that provides the minimum error for a given function to be approximated).

Return to text

MDL and Bayesian theory
There are some technical details in implementing this idea of measuring errors by code

lengths, but they have been worked out in Information theory. See Rissanen .

Another interesting link is to look at model selection from the point of view of Bayes

theory. The probability of a model given the data can be computed using Bayes rule, i.e.

P M D
P D M P M

P Di
i i(|)

(|) ()
()

=

We can forget about P(D) since it is common to all the models. So the most probable

model will maximize the numerator. We know that the maximization is not affected if we

take the log (since the log is a monotonic function), i.e.

max [log((|) log(())]
i

i iP D M P M+

This expression is very similar to the result obtained using Rissanen’s idea. In fact we

can interpret Rissanen description length as the sum of the error and the complexity of

the model. Now the minimum amount of information required to transmit a message x is

given by . If p(x) is the correct distribution for the message x (our model),)(ln xp−

 72

then it will correspond to the smallest message length for a given error. The error in turn

can be interpreted as the conditional probability of the data given the model. So we can

say that the description length can be expressed as

))(log())|(log(MpMDpMDL −−=
Since the maximization is equivalent to the minimization of the negative we get the

minimal code lengths for the data and the model. See Zemel for a complete treatment.

Return to Text

derivation of the conditional average
This results can be demonstrated (see Bishop for a full treatment) if we write the MSE for

the case of large number of patterns as an integral (t is the desired response)

[]∑∫∫ −=

k
kkkk dxdtxdptwxyJ),(),(

2
1 2

Note that the index k sums over the targets, and the sum over the data exemplars was

transformed in the integral, which has to be written as a function of the joint probability of

the desired response and the input. This joint probability can be factored in the product of

the input pdf p(x) and the conditional of the target data given the input p(tk|x).

The square can be written

 () (22 ||),(),(kkkkkk txtxtwxytwxy −>><<+>><<−=−)
where <<tk|x>> is the conditional average given by Eq. 14. We can write further

() () 222)|()|)(|),((2|),(),(kkkkkkkkkk txttxtxtwxyxtwxytwxy −><+−><><−+><−=−

Now if we substitute back into the MSE equation we obtain

 73

()∑∫ ∑∫ >><<−>><<+>><<−=
k k

kkkk dxxpxtxtdxxpxtwxyJ)()||(
2
1)(|),(

2
1 222

The second term of this expression is independent of the network, so will not change

during training. The minimum of the first term is obtained when the weights produce

)|*),(>>=<< xtwxy kk
since the integrand is always positive. This is the result presented in the text.

Return to Text

Parzen window method
The Parzen window method is a nonparametric density estimation method widely used in

statistics. It is related to learning because it provides a way to estimate the pdf of the data,

and unlike the maximum likelihood method it can be applied to a wide range of functions.

In the Parzen window method we start by choosing a symmetrical and unimodal kernel

function

K x x K

x x
i n

i(, ,) ()β
β β

=
−1

and construct the pdf estimator

p x

M
K x xi

i

M

() (, ,)=
=
∑1

1
β

Normally used kernels are the Gaussian, the rectangular, and the spectral windows

(Tukey, Hanning, Hamming). The Parzen estimator is consistent and its asymptotic rate

of convergence is optimal for smooth densities. But it requires large number of samples

to provide good results.

Return to text

 74

RBF as kernel regression
Here the windows are multidimensional Gaussian functions (as utilized in RBF networks)

that quantify the joint data distribution in the input-desired signal space, given by

()
)

22
exp(

2

11),(22
1 22 σ

−
−

σ

−
−

πσ
= ∑

=
+

ii
N

i
ct

ttxx
N

txp

As we discussed in section 3.4.1, regression can be thought as estimating the condition

average of the target data ti conditional to the input xi, i.e. <ti|xi>. When the MSE is used

the output of the network approaches this value. The conditional average can be written

as a function of the pdf which yields

 ∫
∫>>==<<

dttxp

dttxtp
xtxy

),(

),(
|)(

This yields Eq. 33 in the text. In general we can utilize fewer Gaussians as done in the

RBF network, yielding

y x
P i

x

P i
x

i
i

i

i

i

()
() exp()

() exp()

=
−

−

−
−

∑

∑

θ
μ

σ

μ

σ

2

2

2

2

2

2
where θ are the centers of the Gaussians in the desired space.

Return to text

L1 versus L2
There are minor differences between the two norms that have been used in function

approximation. Eq. 2 utilizes the absolute value of the error which is commonly called

uniform approximation. So strictly speaking the L1 norm should be used for function

 75

approximation. However, the L2 norm which minimizes not the absolute value of the error

but the error power is much easier to apply (in linear systems) and also produces an

important interpretation of the results (nonlinear regression) as we saw in the probabilistic

interpretation of the mappings. In practical situations either norm can be used.

Return to Text

function approximation
Became a theory last century with the formal definition of a limit by Cauchy and

Weierstrass . It culminated a long road of discoveries by mathematical giants such as

Euler, Legendre and Gauss, motivated by astronomical observations. The goal was to

approximate difficult mathematical functions by ensembles of simpler functions.

Approximation requires the definition of an error which implies a metric space to define

the distance between the true function and the approximation. Moreover, the availability

of a set of simpler functions is postulated.

functional analysis
Is the branch of analysis where the functions do not depend on single numbers but on

collections (eventually an entire range of a numerical function) of components. An

example is a function of a vector.

Weierstrass
Augustin Cauchy (1789-1857) and Karl Weierstrass (1815-1897) were the fathers of

calculus. They captured the idea of the limit in a precise mathematical way, and open up

new horizons in approximation theory.

 76

series
are iterated sums of terms produced by a general rule, with eventually an infinite number

of terms. An example is

1
1

10
1

100
1

1000
+ + + +.....

sampling theorem
Also called the Nyquist theorem states that one can uniquely reconstruct a time signal

from its sampled representation if we sample at least at twice the highest frequency

present in the signal.

sinc

Is a time signal given by

sinat
at . It is the noncausal response of the ideal

reconstruction filter.

Fourier series
Joseph Fourier in the late XVIII century showed that any periodic signal no matter how

complex could be decomposed in sums (eventually infinite) of simple sinewaves of

different frequencies. These decompositions are called the Fourier series. If y(t) is real

y t Y Y
it

Ti
i

i() cos()= + +
=

∞

∑0
1

2π
θ

delta function
The delta function can be thought of as the limit of a rectangular pulse of high 1/ε and

width ε when ε goes to zero. Mathematically, it is a function δ(t) that obeys the relation

 77

f t f t d() () ()= −
−∞

∞

∫ τ δ τ τ

linear systems theory
It is a highly mathematical branch of electrical engineering that studies linear functions,

their properties and their implementations.

eigenfunctions
Are the natural modes of a system, i.e. a signal is an eigenfunction of a system when the

system output is a signal of the same shape, eventually of a different amplitude and

phase. Eigenfunctions are related to the concept of eigenvector in linear algebra.

shift-invariant
A shift-invariant system is a system that produces the same output no matter if the signal

appears at t=t0 or any other time .

complex number
A complex number is a number z that can be written as z = Re(z)+j Im (z) where

j = − 1 .

statistical learning theory
Is a new branch of statistics that analyzes mathematically (in functional spaces) the

learning process.

manifold
A manifold is a space in which the local geometry of each point looks like a little piece of

Eucledian space.

 78

polynomials

Are rational functions that can be put in the form where both x and a are

real numbers

y ai
i

i

N

=
=
∑

1
x

..

scientific method
Is the methodology utilized in science. See Karl Poper, “The logic of scientific discovery”,

Harper Torch, 1968.

Volterra expansions
of a discrete system (y the output, u the input) have the form

y n u n i u n i u n ji ij
jii

() () () () .= + − + − − +
=

∞

=

∞

=

∞

∑∑∑α β γ
000

square integrable
Is a function where the integral of the square of the function over the domain (here the

real numbers) is finite.

 Jorma Rissanen
See the book Stochastic Complexity in Statistical Inquiry, World Scientific, 1989.

Akaike
See “A new look at the statistical model identification”, IEEE Trans. Auto. Control, AC-19,

716-723, 1974

 79

Tikonov
A. Tikhnov and V. Arsenin, “Solution of ill-posed problems”, Winston, Washington, 1977.

ill-posed
Is a term coined by Hadamard to mean that solutions are extremely dependent upon

minor changes in the form of simple equations. Ill-posed problems arise very often when

one tries to reverse a cause-effect relation.

indicator function
is a function that takes only two values 1 and 0 (or -1).

splines
The kth normalized B spline of degree r-1 is given by Cox-deBoor formula

B t
t t

t t
B t

t t
t t

B tk r
k

k r k
k r

k r

k r k
k r, ,() () ()=

−
−

+ ,
−

−+ −
−

+

+ +
+ −

1
1

1
1 1

with
B t

t t t
otherwise

k k() =
≤ ≤⎧

⎨
⎩

+1
0

1

fiducial
is the name given to the point where the function is being approximated.

code
code is a systematic translation of the data into bits.

VC dimension
Vapnik-Chervonenkis introduced the concept of dimension of the learning machine which

guarantees good generalization ability.

 80

Cover Theorem
states that it is always possible to use a linear classifier to separate arbitrary data sets if

the data is nonlinear mapped to a sufficient large feature space.

learning theory
see Vladmir Vapnik, The nature of statistical learning theory”, Springer, 1995.

A. Barron
Approximation and estimation bounds for ANNs, IEEE Trans. Information Theory 39, #3,

930-945, 1993.

Park and Sandberg,
“Universal approximation using radial basis function networks”, Neural Computation, vol 3,

303-314, 1989.

Bishop
Pattern Recognition with Neural Networks, Oxford, 1995.

Vladimir Vapnik
The Nature of Statistical Learning Theory, Springer Verlag, 1995 and Statistical Learning

Theory, Wiley, 1998.

 81

Parzen E.
On estimation of a probability density function and mode”, Annals of Mathematical

Statistics, 33, 1065-1076, 1962.

Simon Haykin
Neural Networks: a comprehensive foundation, McMillan, 1994.

Eq.1
() ()$,f x w w xi

i
i=

=
∑

1
ϕ

Eq.4
w f= −Φ 1

Eq.11

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

−= 2

2

2
exp xxG

Eq.2
() ()f x f x w− <$, ε

Eq.14

∫>>=<< kkkk dtxtpdxt)|(|

 82

Eq.30
J Jnew c r= + λJ

Eq.25
() ()min AIC k N InJ k k

k
= + 2

Eq.7
w f x xi i=< >(), ()ϕ

Eq.8
< >= ∫f x x f x x dx

D

(), () () ()ϕ ϕ

Eq.16
() ()()w n w n xij ij i j+ = − +1 1 λ ηδ

Eq.19
() () ()w n w n x wij ij i j ij+ = + +1 ηδ λ sgn

Wahba
Grace Whaba, “Splines models for observational data”, SIAM, 1990.

 83

Poggio and Girosi
“Networks for approximation and learning”, Proc. IEEE vol 78, 1990.

R. Zemel
Minimum Description Length Framework for Unsupervised Learning, Ph.D. Thesis, U. of

Toronto, 1993.

Thilo Freiss
Support Vector Neural Networks: The kernel Adatron with bias and soft margin,

University of Sheffield technical report.

Kay
Modern Spectral Estimation, Prentice Hall, 1988.

 84

Index

1

1. Introduction.. 3

2

2. Approximation of functions.. 6

3

3. Choices for the elementary functions ... 9

4

4. Probabilistic Interpretation of the mappings-Nonlinear regression 16
4. Training Neural Networks for Function Approximation .. 17

5

5. The choice of the number of bases ... 19

6

6. Other Applications of Radial Basis Functions ... 26

7

7. Conclusion ... 40

A

approximation properties of RBF .. 49

C

calculation of the orthonormal weights .. 43
Chapter 4 .. 3, 6, 9, 17, 19, 26, 40
Chapter IV- Function Approximation with MLPs and Radial Basis Functions 3

D

derivation of the conditional average.. 50

E

eigendecomposition.. 45

F

Fourier formulas .. 44

L

L1 versus L2... 52
local minima for Gaussian adaptation .. 48

M

MDL and Bayesian theory... 49
multihiddenlayer MLPs ... 47

O

outline of proof .. 48

 85

P

Parzen window method ... 51
Project

Applications of Neural Networks as Function Approximators ... 35

R

RBF as kernel regression ... 51

S

sinc decomposition ... 44
Support Vector Machines .. 28, 34

W

Weierstrass Theorem .. 47

 86

	 Chapter V- Function Approximation with MLPs, Radial Basis Functions, and Support Vector Machines
	1. Introduction
	2. Function Approximation
	3. Choices for the elementary functions
	4. Probabilistic Interpretation of the mappings-Nonlinear regression
	5. Training Neural Networks for Function Approximation
	6. How to select the number of bases
	7. Applications of Radial Basis Functions
	8. Support Vector Machines
	9. Project: Applications of Neural Networks as Function Approximators
	10. Conclusion
	calculation of the orthonormal weights
	sinc decomposition
	Fourier formulas
	eigendecomposition
	Weierstrass Theorem
	multi-hidden-layer MLPs
	outline of proof
	local minima for Gaussian adaptation
	approximation properties of RBF
	MDL and Bayesian theory
	derivation of the conditional average
	Parzen window method
	RBF as kernel regression
	L1 versus L2
	function approximation
	functional analysis
	Weierstrass
	series
	sampling theorem
	sinc
	Fourier series
	delta function
	linear systems theory
	eigenfunctions
	shift-invariant
	complex number
	statistical learning theory
	manifold
	polynomials
	scientific method
	Volterra expansions
	square integrable
	 Jorma Rissanen
	Akaike
	Tikonov
	ill-posed
	indicator function
	splines
	fiducial
	code
	VC dimension
	Cover Theorem
	learning theory
	A. Barron
	Park and Sandberg,
	Bishop
	Vladimir Vapnik
	Parzen E.
	Simon Haykin
	Eq.1
	Eq.4
	Eq.11
	Eq.2
	Eq.14
	Eq.30
	Eq.25
	Eq.7
	Eq.8
	Eq.16
	Eq.19
	Wahba
	Poggio and Girosi
	R. Zemel
	Thilo Freiss
	Kay

