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This chapter provides an unifying perspective of adaptive systems by linking the concepts 

of function approximation, classification, regression and density approximation. We will 

introduce the radial basis functions (RBFs) as an alternate topology to implement 

classifiers or function approximators. Finally we will present the structural risk 

minimization principle and its implementation as support vector machines.  

• 1. Introduction  

• 2. Function approximation  

• 3. Choices for the elementary functions  

• 4. Training Neural Networks for Function Approximation  

• 5. How to select the number of bases  

• 6. Applications of Radial Basis Functions  

• 7. Support Vector Machines  

• 8. Project: Applications of Neural Networks as Function Approximators  

• 9. Conclusion  
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Go to the next section  

1. Introduction 
In Chapter I and III we presented two of the most common applications of adaptive 

systems which are respectively linear regression utilizing a linear adaptive system (the 

adaline), and classification using the multilayer perceptron (MLP). We saw that the nature 

of the applications was different since in regression the problem was one of representing 

the relationship between the input and the output data, while in classification the input 

data was assumed multi-class and the purpose was to separate them as accurately as 

possible. We also verified that the machinery developed for regression, i.e. gradient 

descent on a cost function, could be applied to classification. When properly extended 

the gradient descent procedure gave rise to the backpropagation algorithm developed to 

train the MLP.  

The purpose of this chapter is to unify more formally the two applications of regression 

and classification. What we will be demonstrating is that both problems are in fact 

aspects of the more general problem of function approximation . Linear regression 

becomes function approximation with linear topologies, and classification becomes 

function approximation for a special type of functions called indicator functions. What we 

gain is a very broad perspective of the use of adaptive systems: they are systems that 

seek to represent an input-output relationship by changing at the same time the basis 

and the projections. This is unlike the most common function approximation schemes 

where the basis are fixed and only the projections change from signal to signal.  

The MLP was utilized so far solely as a classifier but with this perspective becomes a 

general purpose nonlinear function approximation tool extending the adaline. This is a 

powerful perspective and will provide a lot of practical applications beyond classification 

ranging from system identification to data modeling, and will motivate the study of the 

MLP as a nonlinear regressor. The study of the MLP as a function approximator leads us 

to analyze the fundamental building blocks for function approximation, i.e. which are the 
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basis used by the MLP. It will also raise the question of alternate basis functions and 

what other neural topologies are universal function approximators. We will study the 

radial basis functions (RBFs) as another universal approximator and show that it can also 

be used as a classifier. In order to achieve this unifying view we have to present the basic 

concepts of function approximation, which will have the advantage of addressing other 

more well known basis functions and contrast them with the MLP and the RBFs. 

1.1. The discovery of the input-output map as function approximation 
We have demonstrated in Chapter I and III that a neural network combines a set of inputs 

to obtain an output that mimics the desired response. Given a set of input vectors x, and 

a set of desired responses d the learning system must find the parameters that meet 

these specifications. This problem can be framed as function approximation, if one 

assumes that the desired response d is an unknown but fixed function of the input d=f(x) 

(Figure 1).  

unknown 
f(.)

x d

ε+
-f(x,w)^input

desired response

y

  
Figure 1. Supervised training as function approximation 

The goal of the learning system is to discover the function f(.) given a finite number 

(hopefully small) of input-output pairs (x,d). The learning machine output   

depends on a set of parameters w, which can be modified to minimize the discrepancy 

between the system output y and the desired response d. When the network 

approximates d with y it is effectively approximating the unknown function f(x) by its 

input-output map   . 

( )wxfy ,ˆ=

( )wxf ,ˆ

The nature of f(.) and the error criterion define the learning problem. As studied in 
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Chapter I, linear regression is obtained when the error criterion is the mean square error 

(MSE) and f(.) is linear. Classification, studied in Chapter II, specifies functions f(.) that 

produce 1, -1 (or 0) which are called indicator functions.  

The problem of generalization already briefly discussed in Chapter IV can also be treated 

mathematically with this view of function approximation. This means that the ideas 

embodied in Figure 1 are rather relevant for the design of learning machines, specifically 

neural networks. Neural networks are in fact nonlinear parametric function approximators, 

so we should not think of them simply as classifiers.  

ANNs are interesting to function approximation because: 

• they are universal approximators 

• they are efficient approximators 

• and can be implemented as learning machines.  

We already alluded in Chapter III to the universal approximation property of the MLP. It 

basically says that any function can be approximated by the MLP topology provided that 

enough PEs are available in the hidden layer. Here we will present more precisely these 

concepts.  

With neural networks, the coefficients of the function decomposition are automatically 

obtained from the input-output data pairs and the specified topology using systematic 

procedures called the learning rules. So there is no need for tedious calculations to 

obtain analytically the parameters of the approximation. Once trained, the neural network 

becomes not only a parametric description of the function but also its implementation. 

Neural networks can be implemented in computers or analog hardware and trained 

on-line. This means that engineers and scientists have now means to solve function 

approximation problems involving real world data. The impact of this advance is to take 

function approximation out of the mathematician notebook and bring it to industrial 

applications.  

Finally, we would like to argue that neural networks and learning are bringing focus to a 
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very important problem in the scientific method called induction. Induction is with 

deduction the only known systematic procedure to build scientific knowledge. Deduction 

applies general principles to specific situations. Deduction is pretty well understood, and 

has had enormous impact in all the fabric of mathematics, engineering computer science 

and science in general. For instance, deductive reasoning is the core of artificial 

intelligence. On the other hand induction is poorly understood and less applied. Induction 

is the principle of abstracting general rules from specific cases. As we all know from real 

life, this principle is much harder to apply with validity than deduction. Sometimes, true 

statements in a small set of cases do not generalize. Mathematically, induction is also 

much less formalized than deduction.  

It turns out that a neural network is using an inductive principle when it learns from 

examples. Examples are specific instances of a general rule (the function that created the 

examples), and the goal of neural network learning is to seek the general principle that 

created the examples. Theoretically these issues are studied in learning theory . The 

difficulties we face in training appropriately a neural network are related to the difficulties 

of inducing general principles from examples. In practice, not always the ANN is able to 

capture the rule, and the pre-requisites (neural network architecture, training data, 

stopping criterion) to extrapolate from examples need to be carefully checked as we saw 

in Chapter IV. 

Go to the next section  

2.  Function Approximation 
Function approximation seeks to describe the behavior of very complicated functions by 

ensembles of simpler functions. Very important results have been established in this 

branch of mathematics. Here we will only name a few that bear a direct relation with our 

goal of better understanding neural networks. Legendre (and Gauss) used polynomials to 

approximate functions. Chebychev developed the concept of best uniform approximation. 

Weierstrass proved that polynomials can approximate arbitrarily well any continuous real 
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function in an interval.  Series expansions (i.e. Taylor series) have been utilized for 

many years to compute approximately the value of a function in a neighborhood of the 

operating point. The core advantage is that only multiplications and additions are 

necessary to implement a series approximation. Trigonometric polynomials are also 

widely used as function approximators, but their computation is a bit more involved. We 

will formalize next the concept of function approximation. 

Let f(x) be a real function of a real valued vector [ ]x = x x xd
T

1 2 ...   that is 

square integrable (over the real numbers). Most real world data can be modeled by such 

conditions. We are also going to restrict this study to the linear projection theorem. The 

goal of function approximation using the projection theorem is to describe the behavior of 

f(x), in a compact area S of the input space, by a combination of simpler functions ϕi(x), 

i.e.  

( ) ∑
=

ϕ=
N

i
iiwf

1

)(,ˆ xwx
     Equation 1 

where wi are real valued constants such that  

( ) ( ) ε<− wxx ,f̂f
   Equation 2 

and where ε can be made arbitrarily small. The function  (x,w) is called an 

approximant to f(x). The block diagram of Figure 2 describes well this formulation. 

f̂

Let us examine Eq. 1 and 2. A real function is a map from the input domain to the real 

numbers. So this expression states that one can obtain the value of the function when x 

is in S by using an intermediate set of simpler functions, {ϕi(x)} called the elementary 

functions and then linearly combining them (Figure 2). 

 

 8 



•
•
•

••
•

ϕ1

ϕ2
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ϕN

∑

x1

x2

xd

w1

w2

wN

f(x,w)^

  
Figure 2. Implementation of the projection theorem 

When one can find coefficients wi  that make ε arbitrarily small for any function f(.) over 

the domain of interest, we say that the elementary function set {ϕi(.)} has the property of 

universal approximation over the class of functions f(.), or that the set of elementary 

functions ϕi(x) is complete. From Eq. 1 we see that there are 3 basic decisions in function 

approximation: 

• the choice of ϕi(.),   

• how to compute the wi, 

• how to select N. 

The first problem is very rich because there are many possible elementary functions that 

can be used. We will illustrate this later, and we will show that the hidden PEs of a single 

hidden layer MLPs implement one possible choice for the elementary functions ϕi(.). 

The second problem is how to compute the coefficients wi, which depends on how the 

difference or discrepancy between f(x) and ( )wxf ,ˆ
  is measured. In Chapter I we have 

already presented one possible machinery to solve this problem for the case of the 

minimization of the power of the error between ( )wxf ,ˆ
  and f(x). Least squares can be 

utilized also here to analytically compute the values for wi. If the number of input vectors 

xi is made equal to the number of elementary functions ϕi(.), the normal equations can be 

written as 
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⎥
⎥
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  Equation 3 

and the solution becomes 

w = −Φ 1   Equation 4 

where w becomes a vector with the coefficients, f is a vector composed of the values of 

the function at the N points, and Φ the matrix with entries given by values of the 

elementary functions at each of the N points in the domain. An important condition that 

must be placed in the elementary functions is that the inverse of Φ must exist.  

In general, there are many sets {ϕi(.)} with the property of universal approximation for a 

class of functions. We would prefer a set {ϕi(.)} over another {γi(.)} if  {ϕi(.)} provides a 

smaller error ε for a pre-set value of N . This means that the speed of convergence of the 

approximation (i.e. how fast the approximation error ε decreases with N) is also an 

important factor in the selection of the basis. Other considerations may be imposed by 

the computer implementation. 

2.1. Geometric Interpretation of the projection theorem 
Let us provide a geometric interpretation for this decomposition because it exemplifies 

what is going on and what we try to accomplish. As long as the function f(.) is square 

integrable and N is finite, this geometric representation is accurate. Consider x as a given 

point in a N dimensional space. Its transformation by f(.) is assumed also to be another 

point in the same N dimensional space. We can alternatively think of x as a vector, with 

end points 0 and x. Likewise for f(x). For illustration purposes let us make N=3 and 

assume that we only have two elementary functions. 

Eq.1 and 2 describe the projection of the vector f(x) into a set of basis functions ϕi(x). 

These basis functions can also be considered vectors and they define a manifold (i.e. a 

projection space) in M ( M N≤  ) dimensions, which is linear in our formulation.  f̂
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(x,w) is the image or projection of f(x) in this manifold. In this example the projection 

manifold is a plane (M=2) depicted as the horizontal plane, and  (x,w) will be a vector 

that exists in the horizontal plane. We can interpret wi as the magnitude of (or 

proportional to)  (x,w) along each one of the axis of the manifold.  

f̂

f̂

If f(x) belongs to the manifold, then there is always a set of constants wi that will make 

 (x,w) exactly equal to f(x). Figure 3 represents this in case A. If f(x) does not belong 

to the manifold created by the basis {ϕi(x)}, then there will always be an error between 

 (x,w) and f(x) (case B). The best solution (least possible error) found in Eq. 4 is the 

orthogonal projection of f(x) onto the manifold. As we saw in Chapter I this is exactly the 

solution that the least squares provide, since the error becomes orthogonal to all the 

basis {ϕi(x)}.  

f̂

f̂

ϕ1(x)

ϕN(x)

w1

wN

ϕ1(x)

ϕN(x)

w1

wNf(x)=f(x,w)

f(x)

f(x,w)

^

^

Case A Case B

  
Figure 3 Approximation as a projection: A) vector is in the manifold. B) vector is 

outside de manifold. 

When f(x) is external to the projection manifold, decreasing the error means making    

(x,w) closer to f(x). This can be accomplished by increasing the number of elementary 

functions (i.e. the dimension M of the manifold) because the manifold will fill more and 

more of the available signal space. This view is correct provided that the basis set is 

complete, i.e. in the limit of large M the projection manifold will fill all the available signal 

space.  

f̂
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Let us now study in more detail each one of the steps in function approximation. We will 

see that throughout this study we will obtain a very different view of what the MLP is, and 

will tie this topology with other very well known basis functions. 

 

Go to the next section  

 

3. Choices for the elementary functions 
One decisive step in function approximation is the choice of the elementary functions ϕi(.) 

because they will impact how close  (x,w) can be made to f(x). If the choice is not 

appropriate there will be a non vanishing error between  (x,w) and f(x), no matter how 

big N is. The search for sets of elementary functions {ϕi(.)} that are universal 

approximators of a class of functions f(.) is therefore very important. Moreover, we would 

like the elementary functions ϕi(.) to have nice mathematical properties and to be easy to 

work with.  

f̂

f̂

One requirement for the usefulness of elementary functions in function approximation is 

that   must exist (Eq. 4 ). This condition is met if the elementary functions 

constitute a basis, i.e. if they are linearly independent or  

Φ−1 ( )x

( ) ( ) ( )w x w x iff w wN N N1 1 10 0ϕ ϕ+ + = =... ,...,    Equation 5 

A simplifying assumption that is often imposed on the elementary functions is that the 

basis be orthonormal, i.e. that  

( ) ( ) ( )ϕ ϕ δi j ij
s

x x dx x=∫
  Equation 6 

where δ(x) is the Dirac delta function . This means that in orthogonal decompositions the 

projection of a basis in any other basis is always zero. An orthonormal basis is very 
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appealing because one can evaluate the projection on each basis independently of the 

projection on the other bases, and they provide a unique set of wi for the projection of f(x). 

But many elementary functions obey the orthogonality conditions, and so different sets 

may provide different properties.  

With complete orthonormal basis the weights of the decomposition become very simple 

to compute. One can show that calculation of the orthonormal weights  

w f x xi i=< >( ), ( )ϕ   Equation 7 

where <.> is the inner product of f(x) with the bases, given by  

< >= ∫f x x f x x dx
D

( ), ( ) ( ) ( )ϕ ϕ
  Equation 8 

and D is the domain where f(x) is defined. 

3.1. Examples of elementary functions 
In engineering, many important function approximation results are commonly applied. 

The usefulness of digital signal processing lies on the sampling theorem . The sampling 

theorem shows that one can approximate any real smooth signal (i.e. a function with 

finite slope) in an interval (infinitely many points) by knowing the functional values only at 

a finite set of equally spaced points in the interval (called the samples). The value of the 

signal at any other point in the interval can be exactly reconstructed by using sums of 

sinc functions. In this case the bases are the sinc functions and the weights are the 

values of the signal at the sampling points. 

Figure 4. Decomposition by sinc functions. 

This result opened up the use of sampled representations to reproduce sound (the 

compact disk (CD) contains just a stream of numbers) and to reproduce images (the 

forthcoming digital TV). And is the basis for the very important field of digital signal 

processing. sinc decomposition  

NeuroSolutions 1 

5.1 Sinc interpolation 
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Here we will use NeuroSolutions to interpolate an input waveform to a higher 

frequency using the sinc function. This example is not as dramatic as the one that 

produces from a digital sequence a continuous representations as alluded above, 

but it is based on the same principles. We will start with a digital waveform 

representing a ramp, and will introduce between each two consecutive points two 

zero samples as shown in the input scope. As we can expect the ramp becomes 

distorted. The idea is to recreate the ramp by filling in the missing values. We will 

do this by designing an interpolator that implements a close approximation of the 

sinc function. We use a new component that is the delay line and will enter in the 

Synapse the values that correspond to a sampling of the sinc function.  

 NeuroSolutions Example 
Another example of the power of function approximation is the Fourier series . Fourier 

series are an example of expansions with trigonometric polynomials. Everybody in 

engineering has heard of frequency representations (also called the spectrum) because 

of the following amazing property: any periodic function (even with discontinuities) can be 

approximated by sums of sinusoids (eventually with infinitely many terms). Moreover, 

there are simple formulas that allow us to compute the components in the frequency 

domain from any time signal. Fourier formulas  

sinewave sin(w0t) square wave

sin(w0t)

sin(3w0t)

  

Figure 5. Decomposition by sinewaves 

NeuroSolutions  2 

5.2 Fourier decomposition 

This example is a demonstration of how an addition of sinusoids does in fact 

produce a waveform that resembles a square wave. In order to compute the 

 14 



coefficients we have to perform a Fourier series decomposition of the square wave, 

which is not difficult but is cumbersome and requires an infinite number of 

sinusoids. By including more and more terms of the Fourier series we make the 

composite waveform closer and closer to the square.  

 NeuroSolutions Example 
Still another example is the wavelets. One of the problems with the Fourier 

decomposition is that the sinewaves have infinite extent in time, i.e. they exist for all time. 

In many practical problems one would like to decompose signals that have a finite extent 

(transients) in which case the Fourier analysis is not very efficient. Wavelets provide such 

a decomposition for transients. The idea is to choose a wave shape that is appropriate to 

represent the signal of interest (the mother wavelet), and create many translations and 

scales (also called dilation) such that one can reconstruct the desired signal.   

The wavelet expansion uses a two parameter decomposition 

∑∑ ϕ=
i j

jiji xwwxf )(),(ˆ
,,

     Equation 9 

where the  are the wavelet bases. The interesting thing is that the bases are 

obtained from a single function (the mother wavelet ϕ(x)) by the operations of scaling and 

translation,  

ϕ i j x, ( )

ϕ ϕi j
j jx x,
/( ) ( )= −2 22 i    Equation 10 

hence the two indices. Figure 6 shows the scaling and translation operations.  
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j

1

2

3

1 2 3 4 5 6 7
    

Figure 6. Translation and scaling for a wavelet 

All the above methods construct arbitrary functions by weighting the contributions of 

predetermined elementary functions (sinewaves of different frequencies, translation of 

sincs or the dilation-translation of the mother wavelet). What varies are the weights in the 

decomposition. Normally there are close formula solutions to compute the weighting from 

the signal. In neurocomputing the problem is more complicated for two reasons: first, we 

want to find the coefficients through adaptation instead of through analytic formulas as in 

the Fourier case; second, because the basis themselves are dependent upon the data 

and the coefficients (adapted bases).  

In some situations the basis can be chosen naturally from the type of problem being 

investigated, as in linear systems theory .  

3.2. Bases for linear function approximation 
When the function in Figure 1 is linear the ideas of linear regression explained in Chapter 

I can be immediately applied to construct an approximation.  

NeuroSolutions 3 
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5.3 Linear regression 

Here we will show that through adaptation we can find the coefficients of a very 

simple linear transformation between x and d of Figure 1. The transformation is 

simply 

d=2x+3 

We will see that for this  case a linear system constructed from a Synapse and a 

BiasAxon can solve the problem very easily. This is simply linear regression we 

studied in Chapter I. We will create the transformation by applying one of the 

function generators to the input of the system and using another function 

generator at the output producing the same wave shape but with twice the 

amplitude and with a bias of 3. Then we will let the system adapt using the LMS 

rule. We can see that very quickly the system finds the relationship and the 

synaptic weight becomes 2 and the bias becomes 3. 

 NeuroSolutions Example 
However, there is a preferred choice for elementary functions when f(x) is linear with 

constant coefficients. Linear system theory shows that the natural bases are the complex 

exponentials   because they are complete for square integrable functions and they 

are the eigenfunctions of linear shift-invariant operators. eigendecomposition . 

esx

The implication of this fact is thoroughly explored in linear systems, which are networks 

that implement a signal decomposition using complex exponentials. We will use 

eigendecompositions in Chapter IX when we study adaptive filters. But here we just 

would like to remark that eigendecompositions are the most efficient since we are 

constructing a function from its “elementary pieces” so the reconstruction error can be 

made equal to zero with small number of bases. Sometimes other considerations such as 

easy of implementation may overshadow the use of complex exponentials. 

3.3. Bases for nonlinear system approximation - The MLP network 
When the function f(x) in Figure 1 is nonlinear there is in general no natural choice of 
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basis. Many have been attempted such as the Volterra expansions , the splines , and the 

polynomials. Weierstrass proved that polynomials are universal approximators. 

Weierstrass Theorem The problem is that either many terms are necessary or the 

approximations are not very well behaved. One of our requirements is that the basis have 

to be powerful and easy to work with.  

In neurocomputing there are two basic choices for the elementary functions that build the 

approximant  (x,w), which are called local and global elementary functions. An 

elementary function is global when it responds to the full input space, while local 

elementary functions respond primarily to a limited area of the input space. Going back to 

Figure 2, it is easy to link the operation of function approximation to a neural topology, in 

this case to a one hidden layer perceptron with a linear output, where ϕi(x) is  

f̂

( )ϕ σi ik k
k

x a x= +
⎛

⎝
⎜

⎞

⎠
⎟∑ ib

  Equation 11 

and σ is one of the sigmoid nonlinearities (logistic or tanh). The system output is given by 

 . Note that the first layer weights are denoted by aik and they change the 

value of ϕi(x). So, the one hidden layer MLP with a linear output PE can be thought of as 

an implementation of a system for function approximation ( Eq. 1 ), where the bases are 

exactly the outputs of the hidden PEs. Note that the sigmoid PE responds to the full input 

space x with a non zero value (1, -1 (or 0), or intermediate values) so the MLP 

implements an approximation with global elementary functions.  

y wi i
i

= ∑ ϕ

The interpretation is that the MLP is performing function approximation with a set of 

adaptive bases that are determined from the input-output data. This means that the 

bases are not predefined as in the sinc, wavelet, or Fourier analysis, but depend upon 

the first layer weights and on the input. In this respect the MLP is much closer to the 

function approximation implemented by some linear systems. So function approximation 
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with adaptive bases is slightly different from the previous picture we gave (Figure 3). First, 

because the bases change with the data. This means that the projection manifold is 

changing with the data. Second, because the weights in the network have different 

functions. The input layer weights change the bases by orienting the manifold, while the 

output layer weights find the best projection within the manifold. Training will find the set 

of weights (aij) that best orient the manifold (first layer weights) and that determine the 

best projection (wij). Therefore the training is more difficult because not only the 

projection but also the basis are changing. However we can obtain much more compact 

representations. 

This view should be compared with what we described in Chapter III about MLPs for 

classification. Each PE in the hidden layer creates a discriminant function with a shape 

defined by the PE nonlinearity with an orientation and position defined by the first layer 

weights. So the views agree but in function approximation the PEs are less prone to 

saturate. Due to the highly connected topology and the global nature of the elementary 

functions, good fitting is obtained with reasonably few bases (i.e. few PEs). However, the 

training is difficult because the basis functions are far from orthogonal. multi-hidden-layer 

MLPs  

In terms of function approximation the one layer MLP is deciding the orientation, where to 

place, and what is the relative amplitude of a set of multidimensional sigmoid functions 

(one per PE). This function decomposition resembles the approximation obtained with 

step functions well known in linear systems (Figure 7). 

  
Figure 7. Function approximation with logistic functions.  
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5.4 Function approximation with the MLP 

Starting here, many of the examples will be studying the function approximation 

abilities of various networks.  To illustrate this point, we have chosen a fourth 

order polynomial to try to approximate.  The polynomial was chosen to give an 

interesting shape over the input range of 0..1 and has the equation 27x4 - 60x3 + 

39x2 - 6x.  The graph of the polynomial from 0..1 is: 
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p lo t  o f  27x^4 -60x^3+ 39x^2 -6x

  
In this example we will use an MLP with a linear output to approximate the above 

function.  In our case the MLP will approximate the function with tanh bases (the 

hidden layer PEs are tanh).  These elementary functions are stretched and moved 

over the range and then summed together to approximate the polynomial.   

 NeuroSolutions Example 
MLPs are universal approximators as we stated in Chapter III. The proof is based on an 

extension of the Weierstrass theorem outline of proof . But as we stated above, another 

important characteristic is to study how the error decreases with the order or/and the 

dimension of the problem. The importance of MLPs for function approximation was 

recently reinforced by the work of Barron . He showed that the asymptotic accuracy of the 

approximation with MLPs is independent of the dimension of the input space. This is 

unlike the approximation with polynomials where the error convergence rate is a function 

of the number of dimensions of the input (the error decreases exponentially slower with 
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the dimension of the input space). This means that MLPs become much more efficient 

than polynomials for approximating functions in high dimensional spaces. The better 

approximation properties of MLPs explain why MLPs are more efficient than other 

methodologies for classification, and why they are key players in identification of 

nonlinear systems as we will see in Chapter X and XI.    

What changes when we use a MLP for function approximation and for classification? The 

obvious answer is to look at the output PE and say that for function approximation the 

output is linear while for classification the output PE must be also nonlinear. In fact, we 

can use also a nonlinear PE for function approximation if we carefully set the dynamic 

range of the output. So the difference is not solely in the output PE, but also in the nature 

of the problem. In function approximation the operating point of the hidden PEs is 

normally far away from saturation since the mappings tend to be smooth. In classification, 

where the outputs are 1,0, the operating point of the hidden PEs is normally driven to 

saturation. This is easily observed when we use a square wave as the desired signal, 

because this choice  implements exactly an indicator function. 

 NeuroSolutions 5 

5.5 MLP to approximate a squarewave (classification) 

In this example we use an MLP with a tanh output to approximate a square wave.  

Notice, that since a square wave is either on or off, this function approximation 

problem is identical to a classification problem.  Thus, classification is a subset of 

function approximation with the desired signal having on/off characteristics.  The 

important point to show here is that when doing classification, the PEs become 

saturated and the weights increase greatly.  This allows the tanh or logistic 

function to approximate the on/off characteristics of the desired signal.  Thus for 

classification, the MLP tends to operate in the saturated regions of the hidden PEs 

(on/off) while for general function approximation the hidden PEs tend to operate in 

the linear region. 

 NeuroSolutions Example 
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3.4. Alternate basis for nonlinear systems - the RBF network 
In neurocomputing, the other popular choice for elementary functions is the radial basis 

functions (RBFs), where ϕi(x) becomes 

 ( ) ( )ϕ γi x x x= − i    Equation 12 

where γ(.) is normally a Gaussian function 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

−= 2

2

2
exp xxG

   Equation 13 

with variance σ². Notice that the Gaussian is centered at xi with variance σ², so its 

maximum response is concentrated in the neighborhood of the input xi, falling off 

exponentially with the square of the distance. The Gaussians are then an example of 

local elementary functions. If we plug Eq. 13 in Eq. 1 we obtain the following 

implementation for the approximant to the function f(x) 

( ) ( )∑ −=
i

iiGwf xxwx,ˆ
   Equation 14 

which implements the input-output map of the RBF network.  

Let us think of an arbitrary function and of a set of localized windows (of the Gaussian 

shape). Function approximation in a limited area of the input space requires (see Figure 

8): the placement of the localized windows to cover the space; the control of the window 

width; and a way to set the window amplitude (the height). So it is plausible that in fact 

we can approximate arbitrary continuous functions with a RBF network. approximation 

properties of RBF  
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Figure 8. Approximation by RBFs in 1-D. 

NeuroSolutions 6 

5.6 Function approximation with RBFs 

Now we will solve the same polynomial approximation problem with a Radial Basis 

Function.  We can vary the number of RBFs and see how it affects the power of 

the network to approximate the given polynomial.  

 NeuroSolutions Example 

Go to Next Section  

4. Probabilistic Interpretation of the 
mappings-Nonlinear regression 

 

So far we have assumed a deterministic framework to study the input-output mapping. It 

enhances our understanding to look now at the mappings discovered by MLPs and RBFs 

from a statistical perspective. The result we will enunciate below is valid as long as the 

mean square error (MSE) criterion is utilized in the training.  

We will assume that the input data is a random variable x, and the desired response t is 

also a random variable, not necessarily Gaussian distributed. The topology is a MLP or a 

RBF with a linear output PE as we have been discussing. The important result is the 

following: a network with weights obtained by minimizing the MSE has an output which 

approximates the conditional average of the desired response data tk, i.e. the regression 

of t conditioned on x 

>>=<< xtwxy kk |*),(     Equation 15 

where w* means the optimal weights, and <<.>> refers to the conditional average defined 

by  
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∫>>=<< kkkk dtxtptxt )|(|    Equation 16  

derivation of the conditional average 

. So the MLP and RBF networks are effectively nonlinear regressors, extending the 

adaline for cases where the input-output map is nonlinear. They will be able to “discover 

“ any deterministic input-output relationship corrupted by additive zero-mean noise, since 

the network output will approximate the average of the desired response. The only 

requirements are that the network has converged to the global minimum, that the number 

of degrees of freedom in the network topology is large enough and that there is enough 

data to train the system. These are non trivial issues but we have learned ways to cope 

with them in Chapter III and IV. 

NeuroSolutions 7 

5.7 Nonlinear regressors 

We will illustrate this important point by creating a nonlinear mapping problem 

corrupted by additive noise.  We again use the polynomial approximation case 

and add noise to the desired signal. Since the network output can be thought of as 

the average of  d with respect to the distribution p(d|xi) at a given point xi of the 

domain, the network  should clean the noise and produce the polynomial. This 

clearly shows that the MLP is doing regression but now with nonlinear mappings. 

You can also use the RBF to produce the same result, since it is due to the use of 

the MSE criterion, and it is independent of the topology.  

 NeuroSolutions Example 

Go to next section  

5. Training Neural Networks for Function 
Approximation 
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5.1. Training MLPs for function approximation 
The second problem that needs to be solved in applying neural networks for function 

approximation is a procedure to automatically find the coefficients from the data. Notice 

that the backpropagation algorithm studied in Chapter III solves exactly this problem. In 

fact, straight backpropagation minimizes the error power between the desired response 

and the system output (the L2 norm). This algorithm is totally transparent to the fact that 

in function approximation we have a linear output and we use the absolute value of the 

error instead of the error power. In fact we saw how to integrate backpropagation with  

arbitrary norms in Chapter IV, so we can use backpropagation with the L1 norm to exactly 

solve Eq. 2 . L1 versus L2  

NeuroSolutions 8 

5.8 MLPs for function approximation with L1 norm 

We again show the MLP network approximating the function of Example 4 except 

that this time the L1 criterion is utilized.  In theory, this should produce a better fit 

to the data but may train slower. 

 NeuroSolutions Example 

5.2. Adapting the Centers and variances of Gaussians in RBFs 
Backpropagation can be applied to arbitrary topologies made up of smooth nonlinearities, 

so it can train also the newly introduced RBFs. However, there are other procedures to 

adapt RBF networks that are worth describing. One simple (but sometimes wasteful in 

classification) approach to assign the Gaussians is simply to uniformly distribute their 

centers in the input space. This was the method used in Example 3.  Although this may 

be a reasonable idea for approximation of complicated functions that cover the full input 

space, it is not recommended in cases where the data clusters in certain areas of the 

input space. There are basically two ways to select the positioning and width of the 

Gaussians in RBFs: the supervised method and using self-organization.  

The supervised method is a simple extension of the backpropagation idea for the RBF 

network. In fact the Gaussian is a differentiable function, so errors can be 
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backpropagated through it to adapt μ and σ in the same way as done for tanh or sigmoid 

nonlinearities. The backpropagation algorithm can theoretically be used to simultaneously 

adapt the centers, the variance and the weights of RBF networks. The problem is that the 

method may provide suboptimal solutions due to local minima (the optimization is 

nonlinear for the centers and variances).local minima for Gaussian adaptation  

The self-organizing idea is very different. It divides the training phase in the independent 

adaptation of the first layer (i.e. the location and width of the Gaussians), followed by a 

second step that only adapts the output weights in a supervised mode keeping the first 

layer frozen. The idea is appealing because it treats the adaptation of the centers and 

variances as a resource allocation step that does not require external labels. This means 

that only the input data is required in this step. Since the training of the hidden layer is the 

most time consuming with gradient methods, the self-organizing method is more efficient.  

The clusters of the data samples in the input space should work as attractors for the 

Gaussian centers. If there is data in an area of the space, the system needs to allocate 

resources to represent the data cluster. The variances can also be estimated to cover the 

input data distribution given the number of Gaussians available. This reasoning means 

that there is no need for supervised learning at this stage. The shortcoming is that a good 

coverage of the input data distribution does not necessarily mean that a good 

classification will result.  

Once the centers and variances are determined, then the simple LMS algorithm 

presented in Chapter I (or the analytic method of the least squares) can be utilized to 

adapt the output weights since the adaptation problem is linear in the weights. So let us 

see what are the algorithms to adapt the centers of the Gaussians and their variances. 

Gaussian centers
The goal is to place the Gaussians centered on data clusters. There are many well 

known algorithms to accomplish this task (see Haykin ). Here we will only address the 

K-means and its on-line implementation, the competitive learning algorithm. 
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In K-means the goal is to divide the N input samples into K clusters. The clusters are 

defined by their centers ci. First a random data assignment is made, and then the goal is 

to partition the data in sets Si to minimize the Euclidean distance between the data 

partition Ni and the cluster centers ci, i.e.  

J xn i
n Si i

= −
∈=
∑∑

1
c

  Equation 17 

where the data centers ci are defined by 

c
N

xi
i

n
n Si

=
∈
∑1

   Equation 18 

K means clustering requires a batch operation where the samples are moved from cluster 

to cluster such as to minimize Eq. 17 . An on-line version of this algorithm starts by 

asking which center is closest to the current pattern xn. The center that is closest, 

denoted by c*j, wins the competition and it is simply incrementally moved towards the 

present pattern xn, i.e. 

( )Δc x cj n* *= −η j    Equation 19 

where η is a step size parameter. We recommend that an annealing schedule be 

incorporated in the step size. The c* are the weights of the layer preceding the RBFs. 

This method will be fully described in Chapter VII.  

Variance computation
In order to set the variance, the distance to the neighboring centers have to be estimated. 

The idea is to set the variance of the Gaussian to be a fraction (¼) of the distance among 

clusters. The simplest procedure is to estimate the distance to the closest cluster,  

σ 2
2

i ij kjw w= −    Equation 20 

where wkj represent the weights of the k th
  PE which is closest to the   PE. In 

general  the distances to more neighbors (P) provides a more reliable estimate in high 

i th
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dimensional spaces so the expression becomes 

σ i ij
k

P

P
w w2

1

21
= −

=
∑ kj

   Equation 21 

where the P nearest neighbors to the   PE are chosen. i th

NeuroSolutions 9 

5.9 Training RBFs for classification 

We will train a RBF network using the competitive learning approach. We will use a 

new Synapse called the Competitive Synapse, which will cluster the centers of the 

RBFs where most of the data resides. Notice that the GaussianAxon will be 

“cracked” meaning that the dataflow is interrupted. This is done because there is 

no point to adapt the top layer weights until the centers are placed over the input 

data. The controller enables full selection of the number of iterations to adapt the 

centers using competitive learning.  

 NeuroSolutions Example 

Go to next section  

6. How to select the number of bases 
The selection of the number of bases is rather important. If not enough bases are used, 

then the approximation suffers throughout the domain. At first one might think that for 

better approximation more and more bases are needed, but in fact this is not so. In 

particular if the bases are orthogonal, more bases mean that the network has the 

potential to represent a larger and larger space. If the data does not fill the input space 

but is corrupted by white noise (white noise always fills the available space), then the 

network starts to represent also the noise which is wasteful and provides sub-optimal 

results. Let us illustrate this with NeuroSolutions. 

NeuroSolutions 10 

5.10 Overfitting  
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This example demonstrates that when the data is noisy  too many basis will 

distort the underlying noiseless input-output relationship. We will use a RBF to 

approximate the polynomial. But instead of doing it in the noiseless case as before 

we are going to add random noise to the desired signal. We then will change the 

number of basis and the width of the Gaussians. We will see that for larger 

networks the noise becomes more apparent. We will also see that if the network 

doesn’t have enough degrees of freedom, then the approximation is also not good.  

 NeuroSolutions Example 
Experience shows that the problem is not just one of the pure size of the network, but the 

values of the coefficients are also very important. So learning, complicates the matter of 

selecting the number of bases. Effectively, this is the same problem that was 

encountered in selecting the size of the MLP for classification. Here we will revisit the 

problem presenting a statistical view, and then offering two approaches to deal with it: 

penalizing the training error, and using regularization. Although this problem was already 

briefly treated in Chapter IV here we will provide a more precise view of the problem and 

will relate the findings with the previous techniques. 

6.1. The bias-variance dilemma 

The optimal size of a learning machine can be framed as a compromise between bias 

and variance of a model. We will address this view fully in the next section, so here we 

will just motivate the arguments with a simple analogy. Let us use polynomial curve fitting 

to exemplify the problem faced by the learning machine. A polynomial of order N can 

exactly pass through N+1 points, so when a polynomial fits a set of points (fiducial points) 

two things can happen. If the polynomial degree is smaller than the number of points, the 

fitting will be bad (model bias) because there are not enough degrees of freedom to pass 

the polynomial through every point (left panel of Figure 9). So errors will exist all over the 

domain.  For example, the linear regressor, which is a first order polynomial, will 

produce errors at nearly every point of a quadratic curve (second order polynomial). On 

the other extreme, if the order of the polynomial is much larger than the number of 
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fiducial points, the polynomial can exactly pass through every point. The problem is that 

the polynomial was not constrained for the other points in the domain and thus its values 

can oscillate widely between the fiducial points (model variance) as illustrate in the right 

panel of Figure 9. The best solution is to find an intermediate polynomial order that will 

provide low bias and low variance across the domain.  

x
x x

x x

x

x
x x

x x

x
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(training samples)

model outputLow order
model

High order model

  
Figure 9. Under and over fitting polynomials to a set of points 

This simple example provides a conceptual framework for the problem of generalization 

encountered in learning machines.  

• The fiducial points are the training samples.  

• The full domain represents all the possible test data that the learning machine will 
encounter.  

• The polynomial becomes the input-output functional map created by the learning 
machine.  

• The learning machine weights are equivalent to the coefficients of the polynomial.  

• The size of the polynomial is the number of weights.  

Therefore, we can see that for a good fit all over the domain, both the size of the network 

as well as the amount of training data are relevant.  

The model bias is the error across the full data set, which can be approximated to a first 

degree by the error in the training set. Given a set of training samples the learning 

machine will try to approximate them (minimize training set classification error). If the 

complexity of the machine is low (few parameters) the error in the training set is high, and 
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performance in the test set will also suffer, meaning that the separation surfaces have not 

been properly placed (Figure 9a). If the machine complexity is increased, the training set 

error will decrease, showing a smaller model bias.  

Too large a model produces an exact fit to the training set samples (memorization of the 

training samples) but may also produce large errors in the test set. The source of this test 

set error for larger machines (Figure 9b) differs from the small machine case. It is 

produced by the model variance, i.e. using parameters fine tuned for a specific subset of 

samples (training samples) that do not “generalize” to a different set of samples. This is 

the reason the committees presented in Chapter IV which basically reduce the variance 

through weighted averaging improved the test set performance. 

The difference in performance between the training and the test set is a practical 

measure of the model variance. We can always expect that the error in the test set will be 

larger than in the training set. However, a large performance difference between the 

training and test sets should be a red flag indicating that learning and/or model selection 

was not successful.  

This argument means that the goal of learning should not be a zero error in the training 

set. It also clearly indicates that information from both the training and test sets must be 

utilized to set appropriately a compromise between model bias and variance. This is the 

reasoning why in Chapter IV we presented crossvalidation as the best way to stop the 

training of a learning machine, since crossvalidation brings the information from the 

unseen samples to stop training at the point where the best generalization occurs.  

6.2. The bias-variance dilemma treated mathematically 
The problem of generalization can be studied mathematically in a statistical framework by 

interpreting the network as a regressor and decomposing the output error into its bias 

and variance.  

A measure of how close the output is to the desired response is given by  
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( )y d−
2

   Equation 22 

But note that this error depends on the training set utilized. To remove this dependence 

we average over the training sets (TS) to yield 

( )[ ]J y dTS −
2

   Equation 23 

Now rewrite the expression inside the square brackets as 

( ) ( ) ( )[ ]y d y J y J y dTS TS− = − + −
2 2

   Equation 24 

When we compute the expected value we obtain 

( )[ ] ( )[ ] ( )[ ]{ }J y d J J y d J y J y

bias iance

TS TS TS TS TS− = − + −
2 2 2

2 var    Equation 25 

The first term is the (square of the) bias of the model because it measures how much in 

the average the output differs from the desired response. The second term is the 

variance because it measures how much each particular output y differs from its mean 

across the training sets.  

Now let us assume that we add noise to the desired response, i.e.  

d f= + ε    Equation 26 

where f is the true input-output map and ε is the noise. One extreme is the case that the 

model is so small that the output is not dependent at all on the variability of the data (no 

free parameters, just an a priori chosen function g). So the model bias may be large (if 

the function g we picked is not the true function f), but the model variance is zero since y 

is the same across all training sets.  

The other extreme is to have the model with so many parameters that it passes exactly 

by every training data point. In this case the first term which measures the model bias is 

zero, but the second term which measures the model variance is the power of the noise ε. 

A good size model is the one where both the model bias and variance are small. This 
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view however, does not tell us how to select the size of the model, but illustrates well 

what is going on. 

6.3. Penalizing the training error 

The problem is to find a general criterion to determine the model order for the problem 

under consideration. Generalization can also be formulated in this way. Many theories 

have addressed this issue. One that we would like to mention is Rissanen’s minimum 

description length (MDL) criterion because it is central to extracting models from data (or 

composing complex functions from simpler ones).  

The previous explanation shows that one can not look only at the fitting error as the 

criterion of optimality. We have to counterbalance it with the number of degrees of 

freedom of the model. Rissanen presented this idea very intuitively in terms of code 

lengths.  

Our data can be thought as having an intrinsic code length in the following way: We may 

try to describe the data using a code we define. So the data set requires a certain 

number of bits to be described (Figure 10). If the data is random noise then every sample 

needs to be used to describe the data and the code length is the same as the data length. 

But the data may have been created by a linear system for which two numbers (slope 

and bias) are sufficient to describe all the samples.  

original data code length

model 1 code length model 1 error

model 2 code length model 2 error
  

Figure 10. Code lengths of data and several models 

When we model the data we are effectively describing it in a different way, by the 

topology and parameters of our model, and also by the fitting error. If we add the error to 

the model output then we again describe the original data exactly. Consider that we have 
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to assign bits to codify the error, C(Ei), and also to represent the parameters of our model, 

C(Mi). So the description of the data using a particular model i is  

C M E C M C Ei i i i( , ) ( ) ( )= +   
The most efficient description of the data set is the one that minimizes the overall code 

length, i.e. the total number of bits to represent both the error and the model parameters 

(Figure 10),  

),(min iii
EMC

  
Notice that this is a very interesting idea, because it couples the complexity (size) of the 

machine with the size of the fitting error. If we use small number of parameters, then the 

error will be larger, and we utilize many bits to represent the error. On the other hand, if 

we use too large a machine we use too many bits to describe the machine, although only 

a few are needed to represent the error. The best compromise in terms of code length 

lies in the middle of smaller machines and manageable errors. MDL and Bayesian theory  

Possibly the simplest implementation of this idea is to penalize the mean square error 

obtained in the training by including a term that increases with the size of the model, as 

was first proposed by Akaike . Akaike’s information criterion (AIC) reads  

( ) ( )min lnAIC k N J k k
k

= + 2

   Equation 27 

where J(k) is the MSE in the training set, k is the number of free parameters of the model, 

and N is the number of data samples. AIC has been extensively used in model based 

spectral analysis ( Kay ). This expression shows that even if the error decreases with the 

size of the model k, there is a linear penalty with k so the minimum value is obtained at 

some intermediate value of model order k (Figure 11). 
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Figure 11. Best model order according to Akaike’s criterion. 

Notice that in Akaike’s criterion the penalty is independent of the number of samples of 

the training data. According to Rissanen MDL criterion, a larger penalty for larger data 

sets can be obtained by substituting 2k by k/2ln(N) yielding 

min ( ) ln ( ) ln( )k MDL k N J k
k

N= +
2   Equation 28 

The appeal of these equations is that they allow us to use all the available data for 

training (unlike crossvalidation) and can be easily computed for practical applications 

since they only require the mean square error in the training set for a collection of models 

of different sizes (k). Akaike’s method works well for one layer systems (in particular 

linear). However, it becomes less acccurate for multilayer networks since the size of the 

model it is not univocally related to the number of weights.  

It is also important to relate this method with the early stopping criterion that we 

established in Chapter IV using crossvalidation. Remember that we stopped training 

based on the performance in the validation set. The early stopping criterion measures 

directly some type of distance between the model and the data. We can choose the best 

model by utilizing different model sizes (k) and pick the one that provides the minimum 

error in the crossvalidation set, i.e.  

( )min J k
k

val

   Equation 29 
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It has been shown that this use of crossvalidation is asymptotically equivalent to Akaike’s 

criterion. In neural networks, these equations have to be interpreted in an approximate 

sense, in particular for multilayer architectures.  In fact the role of the PEs and their 

weights is very different so it is not enough to naively count the number of free 

parameters. The principle of structural Risk Minimization and the VCdimension is the 

most principled way to select the best size model. We will address it shortly.  
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5.11 Akaike’s criterion for RBFs 

This example demonstrates Akaike’s criterion for selecting the number of PEs in 

the RBF network.  We have added a few DLLs to the breadboard, one of which 

computes Akaike’s criterion.  The other(s) change the widths and centers of the 

RBFs to automatically span the input range [0,1] based upon the number of hidden 

PEs.  Thus, you can change the number of RBFs and run the network to see what 

the final Akaike’s criterion value will be. 

 NeuroSolutions Example 

 

6.4. Regularization  
Regularization theory was proposed by Tikhonov to deal with ill-posed problems . As an 

example, the equation xA=y is said ill-conditioned when a slight modification Δy due to 

noise in a dependent variable y produces an enormous change in the solution for x. One 

way to solve this type of problem is to minimize the residue 

( ) ( )R x Ax y y= − + Δ
2

  Equation 30 

Tikhonov proposed to stabilize the solutions to such problems by adding a regularizing 

function Γ(x) to the solution 

( ) ( ) ( )R x Ax y y x= − + +Δ
2

λΓ   Equation 31 

and was able to show that when Δy approaches 0 the solution approaches the true value 
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yA −1
 . λ is a small constant called the regularization constant, and the regularizing 

function is a non-negative function that includes some a priori information to help the 

solution. Normally these regularizers impose smooth constraints, i.e. they impose limits 

on the variability of the solution. Inverse problems in general are ill-posed.  

When one deals with the determination of the complexity of a learning machine with 

information restricted to the training set, the problem is ill-posed because we do not have 

access to the performance in the test set. The basic idea of regularization theory is to add 

an extra term to the cost function such that the optimization problem becomes more 

constrained, i.e  

J Jnew c rJ= + λ   Equation 32 

where Jc is the cost function, Jr is the regularizer and λ is a parameter that weights the 

influence of the regularizer versus the cost. Tikhonov regularizers penalize the curvature 

of the original solution, i.e. they seek smoother solutions to the optimization problem. If 

we recall the training algorithms, we should choose regularizers for which derivatives with 

respect to the weights are efficiently computed. One such regularizer is 
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   Equation 33 

which penalizes large values of the second derivative of the input-output map. There is 

evidence that even first order penalty works in practice. The value of λ must be 

experimentally selected.  

Regularization is closely related to the optimal brain damage (which uses the Hessian to 

compute saliencies) and to the weight decay ideas to eliminate weights. In fact, weight 

decay (Eq. 16 in Chapter IV) is equivalent to a regularization term that is a function of the 

L2 norm of the weights (Gaussian prior), i.e.  

J J wnew c i
i

= + ∑λ 2

   Equation 34 
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The square in Eq. 34 can be substituted by the absolute value to obtain a L1 norm of the 

weight yielding Eq. 19 in Chapter IV (Laplacian prior).  

It is interesting to compare Eq. 34 with Eq. 27 . Both are effectively creating a new cost 

function that penalizes large models. However the principles utilized to derive both 

expressions are very different. This analogy suggests that the determination of the 

regularization constant λ is critical to find the best possible model order. Too large a 

value for λ will choose networks that are smaller than the optimum, while too small λ will 

yield too large networks. Moreover, we can relate these choices to the bias and variance 

of the model. We can expect that large λ will produce smooth models (too large a bias), 

while too small λ will produce models with large variance. The best value of the 

regularization constant can be computed from statistical arguments Wahba . Let us 

experimentally verify these statements.  

NeuroSolutions 12 

5.12 Weight-decay to prune RBFs 

As discussed above, the weight decay DLL which we introduced in Chapter IV can 

be used to implement the regularization discussed above.  We will use the same 

RBF breadboard and set the number of hidden PEs to 20.  Then, using weight 

decay on the output synapse, we can dynamically “turn off” unnecessary PEs by 

driving their output weights to zero.  By adjusting the decay parameter of the 

weight decay algorithm, we can produce smoother or more exact outputs from the 

network. 

 NeuroSolutions Example 

Go to next section  

7.  Applications of Radial Basis Functions 
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7.1. Radial Basis functions for Classification 
Going back to Eq. 1 and 2, let us interpret them for a classification problem. In 

classification f(x) becomes the indicator function {-1 (or 0),1}. So what this equation says 

is that one can construct arbitrary complex discriminant function in the input space by 

constructing linear discriminant functions in an auxiliary space (the space of the 

elementary functions) of large dimension which is nonlinearly related (by ϕ(x)) to the 

input space x. This is a counter intuitive result that was first proved by Cover (Cover 

Theorem  ) and is associated with the fact that in sufficiently high dimensional spaces 

data is always sparse, i.e. the data clusters are always far apart. So it is always possible 

to use hyperplanes to separate them. The problem is that one needs to determine many 

parameters.  

Radial basis function networks implement directly this idea by using Gaussian functions 

to project the input space to an intermediary space where the classification is done with 

an hyperplane implemented as the weighted sum of the Gaussian PE outputs. This result 

can be understood if we focus on the output of each Gaussian. No matter how 

intertwined the classes are, if the centers of the Gaussians and its radius (the variance) is 

properly controlled, each Gaussian can always be made to respond to a single classes. 

The obvious limit is to assign a Gaussian to each sample. But generally this is not 

necessary.  

One can assign a Gaussian to a sub-cluster of one of the classes. Then the classification 

is made by linearly combining the responses of each one of the Gaussians such that it is 

+1 for one class and -1 (or 0) for the other. From this discussion, one sees that there are 

two fundamental steps in designing RBFs for classification: the first is the placement and 

the selection of the radius for each Gaussian. The second is the weighting of the 

individual Gaussian responses to obtain the desired classification. It would also be 

convenient to assign a radius that would change with direction, which extends the 

contours of the Gaussians from circles to ellipses.  
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5.13 MLPs and RBFs for classification 

This example uses RBFs to do classification.  We are repeating the problem from 

chapter 1 where we have height and weight data on various people and are trying 

to classify whether they are male or female. 
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Remember that we cannot get perfect classification. For reference, we have 

included a link to the MLP which solves this problem. 

 NeuroSolutions Example (MLP) 
Now run the RBF network and see how the classifier performs at the same level 

but the discrimant functions are different (her they are more curved). You should 

change the number of RBF PEs and see how the discriminant plot and confusion 

matrix are affected. 

 NeuroSolutions Example (RBF) 

7.2. Radial Basis Functions as Regularizers 
Radial basis functions can be derived mathematically from the theory of Tikhonov 

regularizers Poggio . Interestingly, when the solution of Eq. 32 is carried out using 
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calculus of variations, radial basis functions appear as the natural solution for 

regularization (for rotationally and translation invariant kernels). So this means that 

instead of using directly the data collected from the outside world, there is advantages in 

first fitting one radial basis function to each data point, and work with their outputs. In a 

sense the RBFs are interpolating the collected data, but the method is too cumbersome 

for large data sets (and the variances must be experimentally determined).  

7.3. Radial Basis Functions as Regressors - The probabilistic Neural 
Network 

We can also utilize radial basis functions to estimate a regression function from noisy 

data following the ideas of kernel regression. In kernel regression we seek to estimate 

the probability density function p(x, d) of the input-desired pairs (xi, di) using the Parzen 

window method (which is a nonparametric method). Parzen window method . One can 

show that the regression of the target data yields RBF as kernel regression  
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   Equation 35 

where σ is the width of the Gaussian and has to be experimentally determined. Basically 

the method places a Gaussian in each sample multiplied by the desired response di and 

normalized by the response in the input space. This network is called in neural network 

circles the probabilistic neural network and can be easily implemented using RBF 

networks.  

  NeuroSolutions 14 

5.14 Density estimation with RBFs 

In this example we are going to train a normalized radial basis function network 

according to Eq. 35 to show how the network handles probability density function 

approximation. We have a few samples in the input space that belong to two 

classes, and will train a probabilistic neural network to solve the problem. We 

select the number of RBFs equal to the number of samples. During training notice 
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that the RBF centers converge to the input data, and that the output of the net 

provides the conditional average of the target data conditioned on each input. 

Change the variance of the RBFs to see how they affect the estimates for the 

targets as given by the output weights.   

 NeuroSolutions Example 

Go to the next section  

 

8. Support Vector Machines 
Support vector machines (SVMs) are a radically different type of classifiers that have 

attracted lately lots of attention due to the novelty of the concepts that they brought to 

pattern recognition, to their strong mathematical foundation, and also due to the excellent 

results in practical problems. We already covered in Chapter II and Chapter III two of the 

motivating concepts behind SVMs, namely: the idea that transforming the data into a high 

dimensional spaces makes linear discriminant functions practical; and the idea of large 

margin classifiers discussed to train the perceptron. Here we will couple these two 

concepts and create the Support Vector Machine. We refer to Vapnik’s books for a full 

treatment.  

Let us go back to the concept of kernel machines. We saw in Chapter II that the 

advantage of a kernel machine is that its capacity (number of degrees of freedom) is 

decoupled from the size of the input space. By going into a sufficiently large feature 

space, patterns become basically linearly separable and so a simple perceptron in 

feature space can do the classification. In this chapter we have discussed the RBF 

network, which can be considered a kernel classifier. In fact, the RBF places Gaussian 

kernels over the data and linearly weights their outputs to create the system output. So it 

conforms exactly with the notion of kernel machine presented in Chapter II, Figure 12. 

When used as an SVM, the RBF network places a Gaussian in each data sample, such 
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that the feature space becomes as large as the number of samples.  

But an SVM is much more than an RBF. In order to train a RBF network as a SVM we will 

utilize the idea of large margin classifiers discussed in Chapter III. There we presented 

the Adatron algorithm which only works with perceptrons. Training an RBF for large 

margin will at the same time decouple the capacity of the classifier from the input space 

and also provides good generalization. We can not get better than this in our road to 

powerful classifiers. We will extend the Adatron algorithm here in two ways: we will apply 

it to kernel based classifiers such as RBFs and we will extend the training for non-linearly 

separable patterns. 

8.1 Extension of the Adatron to Kernel Machines 
Recall that the Adatron algorithm was able to adapt the perceptron with maximal margin. 

The idea was to work with data dependent representations, which lead to a very simple 

on-line algorithm to adapt the multipliers.  

We will write the discriminant function of the RBF in terms of the data dependent 

representation, i.e.  
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 Equation 36 

where  represents a Gaussian function, L is the number of PEs in the RBF, wl 

are the weights, N is the number of samples, αi are a set of multipliers one for each 

sample, and we consider the input space augmented  by one dimension with a constant 

value of 1 to provide the bias. Notice that for the special case of the Gaussian the 

inner-product of Gaussians is still a Gaussian. The kernel function (the Gaussian) is first 

projecting the inputs (x, xi) onto a high dimensional space, and then computing an inner 

product there. The amazing thing is that the Gaussian kernel avoids the explicit 

computation of the pattern projections into the high dimensional space, as shown in Eq. 

36 (the inner product of Gaussians is still a Gaussian). Any other symmetric function that 

),( 2σxG
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obeys the Mercer condition has the same properties. This topology is depicted in Figure 

12, where we can easily see that it is a RBF, but where each Gaussian is centered at 

each sample, and the weights are the multipliers αi. 
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Figure 12. Topology of the SVM machine with RBF kernels 

The Adatron algorithm can be easily extended to the RBF network by substituting the 

inner product of patterns in the input space by the kernel function, leading to the following 

quadratic optimization problem 
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  Equation 37 

Following the same procedure as in Chapter III we can define   

   and choose a 

common starting multiplier (e.g. αi=0.1), learning rate η, and a small threshold (e.g., t = 

0.01). 
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Then, while M>t, choose a pattern xi, and calculate an update ))(1( ii xg−η=αΔ  and 

perform the update 
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After adaptation only some of the αi are different from zero (called the support vectors). 

They correspond to the samples that are closest to the boundary.  This algorithm is the 

kernel Adatron with bias that can adapt an RBF with optimal margin. This algorithm can 

be considered the “on-line” version of the quadratic optimization approach utilized for 

SVMs, and it is guaranteed to find identical solutions as Vapnik’s original algorithm for 

SVMs, Freiss . Notice that it is easy to implement the kernel Adatron algorithm since g(xi) 

can be computed locally to each multiplier, provided the desired response is available in 

the input file. In fact the expression for g(xi) resembles the multiplication of an error with 

an activation, so it can be included in the framework of neural network learning.  

So the Adatrom algorithm basically pruned the RBF network of Figure 12 so that its 

output for testing is given by 
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8.2 Extension of the Adatron with Soft Margin 
What happens if the patterns are not exactly linearly separable? The idea is to introduce 

a soft margin using a slack variable 0≥ξ i  , and a function  , which will 

penalize the cost function. We will still minimize the function F, but now subject to the 

constraints 
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Normally, instead of computing the optimal C we choose a value a priori. C can be 

regarded as a regularizer. This means that the matrix of kernel inner products is 

augmented in the diagonal by the factor 1/C, i.e.  

),(),(/1),(),( jijijiji xxKxxelseCxxGxxjiif =Ω+=Ω=   
The only difference in the algorithm for this case is the calculation of g(xi) which becomes 

 . As we can see these calculations can be easily 

implemented as an iterative algorithm, but notice that large data sets produce 

tremendously large RBF networks (one Gaussian per data sample). Since the input layer 

has no free parameters, effectively the mapping can be computed once and saved on a 

big matrix.  
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SVMs have been applied to numerous problems with excellent results. They consistently 

are at par with the best reported results, which have taken many years of fine tuning. One 

of the weaknesses of the method is that it does not control the number of support vectors 

that solve the problem. In principle SVMs should be sensitive to outliers, even in the case 

of the slack variables.  

8.3. A Summary of the SVM theory 
We would like to present in a more principled manner the beautiful theory that gave rise 

to the SVMs, and show the equivalence to the above algorithms. However, this theory is 

beyond the scope of an introductory texbook as this one. So we will only highlight the 

most important concepts that gave rise to this design methodology. We will see how the 

ad-hoc observations made in Chapter II and III have been formulated mathematically by 

Vapnik and co-workers.  
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Learning theory can be framed as a functional approximation problem in spaces with a 

probability measure. The goal is to approximate a function d=f(x) where f(.) is a fixed but 

unknown conditional distribution function F(d|x). The approximant is a learning machine 

that implements a set of functions ( )wxf ,ˆ
  where the parameters w are to be 

determined through learning. The inputs x are random vectors with a fixed but also 

unknown probability distribution function F(x). The selection of the parameters w is done 

through a finite number M of input output observations (xi,di) which are independent and 

identically distributed (i.i.d.).  

You should be able to see how similar this is to the block diagram of Figure 1. Now we 

are saying that what links the desired response to the input is a conditional distribution 

function, which is unknown but fixed. The machine should discover this function by the 

repeated presentation of a finite set of exemplars which are assumed i.i.d. In learning 

theory, the best parameters w* are chosen to minimize the risk functional  

( ) ( )( ) ( )∫= dxdFwxfdLwR ,,,   Equation 38 

where L(d,f(x,w)), the loss function, measures the discrepancy between the desired 

response y and the learning machine output. However, we can not compute this integral 

since we do not know the joint distribution F(x,d), but we have the finite number of 

observation pairs (xi,di). So we will substitute Eq. 38 by  
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  Equation 39 

which is called the empiric risk, and we will minimize this quantity instead. This method of 

solving the risk problem is called empirical risk minimization (ERM) principle. Notice that 

ERM is a principle based on induction. We may think that this substitution of the risk 

functional by the empiric risk would constraint the possible cases that could be solved. 

But it turns out that Glivenko and Cantelli proved that the empiric distribution function 

converges to the actual distribution and Kolmogorov even proved that the empirical 
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distribution function has asymptotic exponential rate of convergence. This is the basis for 

statistical inference.     

The two problems treated so far in Chapter I and III, the regression problem and the 

classification problem are special cases of this formulation. In fact it is enough to define 

the loss function as 

( )( ) ([ ]2,ˆ,, wxfdwxfdL −= )   Equation 40 

to obtain the formulation of the regression, provided the output y is a real value and if one 

assumes that the class of functions ( )wxf ,ˆ
  includes the regression function we are 

seeking. 

If the output y takes the integer values d={0,1} and if the function ( )wxf ,ˆ
  is the set of 

indicator functions, i.e. functions that take only two values -zero and one-, if the loss 

function is defined as 
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then the risk functional computes the probability of an error in the classification.  

One could even show that this same formalism can provide as a special case density 

estimation over the class of functions p(x,w) if  

( )( ) ( )L p x w p x w, log ,= −    Equation 42 

Learning theory provides the most general way to think about training adaptive systems. 

The theory addresses mathematically the problem of generalization that is vital to 

neurocomputing. Vapnik establishes four fundamental questions for learning machines: 

• What are the necessary and sufficient conditions for consistency of a learning process. 

• How fast is the rate of convergence to the solution. 

• How to control the generalization ability of the learning machine. 
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• How to construct algorithms that implement these pre-requisites. 

We will restrict ourselves to the special case of pattern recognition (where the function is 

an indicator function). To study SVMs we need to address basically the last two bullets, 

but first provide the definition of VC (Vapnik-Chervonenkis) dimension. One of the 

fundamental problems in pattern recognition has always been the estimation of the Bayes 

error. There is no known procedure to directly minimize the Bayes error, because it 

involves the integration over the tails of the pdfs, which are unknown (and the 

multidimensional integral is not trivial either). Our procedure of designing classifiers by 

minimizing the training error (which in this theory corresponds to the empiric risk) is not 

appropriate as we have discussed in Chapter IV and in this Chapter. All the methods we 

discussed to control the generalization error are in fact indirect (and sometimes not 

principled). So researchers have tried to find methods that minimize an upperbound of 

the Bayes error. It is in this framework that Vapnik’s contributions should be placed. 

Vapnik argues that the necessary and sufficient conditions of consistency (generalization) 

of the ERM principle depend on the capacity of the set of functions implemented by the 

learning machine. He has shown that the VC dimension is an upperbound for the Bayes 

error.  

The VC dimension h of a set of functions is defined as the maximum number of vectors 

that can be separated into two classes in all 2h possible ways using functions of the set. 

For the case of linear functions in n dimensional space, the VC dimension is h=n+1. So 

the VC dimension is a more principled way to measure the capacity of a learning 

machine which we discussed in Chapter II.  For general topologies the VC dimension is 

not easy to determine, but the trend is that larger topologies will correspond to larger VC 

dimension. 

The VC dimension of a learning machine appears as a fundamental parameter to 

determine its generalization ability. In fact Vapnik proved that the generalization ability 

(the risk R) of a learning machine Q(x,α) of size k parametrized by α is bounded by  
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   Equation 43 

where  is the empirical risk (the error measured in the training set) and the 

second term is a confidence interval. So the generalization ability depends upon the 

training error, the number of observations and the VC dimension of the learning machine. 

There are basically two ways to handle the design.  

)(αempR

The first is to design a learning machine with a given topology, which will have a given 

VC dimension (that needs to be estimated). This is the conventional neural network 

design. Once this is done, Eq.43 tells us all. We train the ANN and this gives us an 

estimate of the empirical risk, but also a confidence interval. Eq. 43 describes the bias 

variance dilemma very precisely. In order to decrease the training set error, we may have 

to go to large ANNs which will provide a large confidence interval, i.e. the test error may 

be much larger than the training error. We say that the machine memorized the training 

data. So the problem becomes one of trading-off training set error and small VC 

dimension, which is handled heuristically by the size of the learning machine. This 

compromise was thought intrinsic in inductive inference, going back to the famous 

Occam razor principle (the simplest explanation is the best).  

The second approach is called the structural risk minimization (SRM) principle and gives 

rise to the support vector machines (SVMs). The principle specifies to keep the empirical 

risk fixed (at zero if possible) and minimize the confidence interval. Since the confidence 

interval depends inversely on the VC dimension, this principle is equivalent to searching 

for the machine that has the smallest VC dimension. Notice that there is no compromise 

in the SRM principle. It states that the best strategy is to use a machine with the smallest 

VC dimension. Another point to make is that VC dimension and number of free 

parameters are two very different things, unlike the indications from Akaike and Rissanen 

work. We now know that we can  apply very large machines to small data sets and still 

be able to generalize due to capacity control. So this SRM approach has profound 

implications in the design and use of classifiers. Let us now see how we can implement 
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SRM in practice.  

Here the concept of hyperplanes and margin becomes critical. Although the VC 

dimension of the set of hyperplanes in n dimensions is n+1, it can be less for a subset. In 

fact Vapnik proved that the optimal hyperplane (the smallest norm) provides the smallest 

confidence interval. So the problem in SRM is one of designing a large margin classifier. 

Let us briefly describe here Vapnik’s formulation to allow us a comparison with our 

previous approaches.  

Assume we have a set of data samples 

{ } }1,1{,),(),.....,,( 11 −∈= iNN ddxdxS   
What we want is to find the hyperplane y = w.x+b with the smallest norm of coefficients 

2w
 (largest margin). To find this hyperplane we can solve the following quadratic 

programming problem: minimize the functional  
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where the operation is an inner product. The solution to this optimization is given by the 

saddle points of the Lagrangian 
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By using the dual formulation, we can rewrite Eq. 44 as  
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under the constraint  . The solution is a set of α* . We can show that only 

some of the samples will correspond to Lagrangian multipliers different from zero, and 

will be called the support vectors. They are the ones that control the positioning of the 

optimal hyperplane. So the large margin classifier will be specified by 
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  Equation 45 

One of the characteristics of the SVM is that the user has no control on the number of 

support vectors, i.e. the size of the final machine. During training all the RBFs are used, 

but once the SVM is trained the RBF should be trimmed, discarding the RBFs that are 

not support vectors. The number of support vectors is dependent upon the data, which 

makes sense but practically it is not a useful feature. The expressions we arrived are 

exactly the same as the one for the Adatron algorithm we discussed in Chapter III. 

Except that Vapnik suggests a quadratic programming solution, while the Adatron is an 

“on-line” solution, easily implementable in neural network software. As any on-line 

algorithm, the Adatron requires the control of learning rate and suffers from the problem 

of misadjustment and stoping criterion. We can expect that training SVMs with large data 

sets demands a lot from computer resources (memory or computation).  

Now we have a better understanding of why optimal margins are good for classification. 

SVMs can also be used for regression and density estimation. 

Go to the next section  

9. Project: Applications of Neural Networks as 
Function Approximators 

In Chapter IV we have seen how neural networks can be applied to classification. Here 

we would like to show how the same topologies can be applied as function approximators 
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(nonlinear regressors) in a wealth of practical applications. We selected one application 

in the financial industry, and another in real state. The goal is to discover nonlinear 

mappings between input variables and important outcomes. In the financial arena the 

outcome is to predict the value of the S&P 500 using several financial indicators, while in 

the real state application, the problem is to estimate the price of a house based on 

several indicators. We will see that neural networks provide a very powerful analysis tool.  

Prediction of S&P 500 
This example will develop a very simple model for predicting the S&P 500 one week in 

advance.  You can use this demo as a starting point for developing your own more 

complex financial models.  The inputs to the model consist of the 1 year Treasury Bill 

Yield,  the earnings per share and dividend per share for the S&P 500, and the current 

week’s S&P 500.   The desired output is the next week’s S&P 500.  The data has been 

stored in the file “Financial Data”.  There are 507 weeks worth of data which cover 

approximately a ten year period.  

The data has been pre-sampled such that the first 254 exemplars contain the data for 

weeks 1, 3, 5,…, 505, 507 and the last 253 exemplars contain the data for weeks 2, 4, 

6,..., 504, 506.  The first 254 exemplars will be used for training and the last 253 

exemplars will be used for evaluating the trained networks performance.  

NeuroSolutions 15 

5.15 Prediction of SP 500 

We will use a simple one hidden layer MLP to model this data.  The network has 4 

inputs and the desired response is the next week value of the S&P 500. The 

topology has to be carefully developed as we exemplified in Chapter IV. We 

recommend that weight decay be utilized to avoid overfitting. Alternatively, 

Akaike’s criterion should be used to find the best model order as we did in 

example 11. Let us train the network until the error stabilizes.  

The next step is to verify the performance of the network in the unseen data. In the 

figure below we show the performance of the network we trained. The solid line is 
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the actual value while the network output is dashed. As we can see the network fits 

rather well the actual value of the S&P 500 with the 4 inputs selected. We can 

compute the correlation coefficient between the actual and predicted curves to 

have  normalized (but linear) measure of performance.  

We suggest that you try RBFs for the same problem and compare performance. 

This can be the embrio of a financial model, but remember that predicting the value 

of the stock is just one of many factors needed to come up with an investment 

strategy.  

 NeuroSolutions Example
 

Desired Output and Actual Network Output

0

100

200

300

400

500

600

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

Exemplar

O
ut

pu
t

S&P500 Next Week

S&P500 Next Week Output

  
 

Estimating the price of a house 
The final example that we will like to address in this chapter is how to help decide which 

inputs are more significant  in our application. This is an important issue because in 

many practical problems we have many different indicators or sensors which may require 

very large input layers (hence many network weights), and very few exemplars to train 

the networks. One possibility is to prune the number of inputs without affecting 
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performance.  

We have to understand that this is a compromise. The more variables we have about a 

problem the better is the theoretical performance, assuming that we have infinite noise 

free data. One can think that each variable is a dimension to represent our problem, so 

the higher the number of dimensions the better the representation. But notice that for 

each extra input the representation problem is posed in a larger dimensionality space, so 

training the regressor (or the classifier) appropriately requires many more data samples. 

This is where the compromise comes in. Since we always have finite, noisy data, the 

fundamental issue is to find the best “projection” to represent our data well.  

One approach is to use all the available data to train a neural network and then ask which 

are the most important inputs for our model. It is obvious that this requires the calculation 

of the relative importance of each input for the overall result, i.e. the sensitivity of the 

outcome with respect to each input.  

In this example we will develop a model for real estate appraisal in the Boston area.  We 

will use 13 indicators as inputs to this model.  These indicators are per capita crime rate 

by town (CRIM), proportion of residential land zoned for lots over 25,000 sq.ft. (ZN), 

proportion of non-retail business acres per town (INDUS), bounds Charles River (CHAS), 

nitric oxides concentration (NOX), average number of rooms per dwelling (RM), 

proportion of owner-occupied units built prior to 1940 (AGE), weighted distances to five 

Boston employment centers (DIS), index of accessibility to radial highways (RAD), 

full-value property-tax rate per $10,000 (TAX), pupil-teacher ratio by town (PTRATIO), 

1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town (B), % lower status of the 

population (LSTAT).  

The desired output for this model is the Median value of owner-occupied homes (in 

$1000’s). Hence this is a mapping problem which we will solve with a MLP (nonlinear 

regression).  There are 400 total samples.  Three hundred of them will be used as 

“Training” and the other 100 as “Testing”.  The data is located in the file named “Housing 
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Data”. 

The way we can do input sensitivity analysis is to train the network as we normally do 

and then fix the weights. The next step is to randomly perturb, one at a time, each 

channel of the input vector around its mean value, while keeping the other inputs at their 

mean values, and measure the change in the output. The change in the input is normally 

done by adding a random value of a known variance to each sample and compute the 

output. The sensitivity for input k is expressed as  

S
y y

k

ip ip
i

o

p

P

k
=

−
==
∑∑ ( )2

11
2σ   

where 
yip  is the  output obtained with the fixed weights for the  pattern, o is the 

number of network outputs, P is the number of patterns, and   is the variance of the 

input perturbation. So this is really easy to compute in the trained network, and effectively 

measures how much a change in a given input affects the output across the training data 

set. Inputs that have large sensitivities are the ones that have more importance in the 

mapping and therefore are the ones we should keep. The inputs with small sensitivities 

can be discarded. This helps the training (because it decreases the size of the network) 

and decreases the cost of data collection, and when done right has negligible impact on 

performance.  

i th pth

σ k
2

NeuroSolutions 16 

5.16 Estimating prices in the Boston housing data 

Let us train a one hidden layer MLP initially with 14 inputs and one output.  The 

choice of the number of hidden PEs should be done as before, i.e. starting small 

and plotting the output MSE for several different runs as a function of the number 

of PEs.  Train the network and run it on the test set to visually observe the 

performance in the test set. The network produces a very good fit  in most cases 

indicating a successful model. 
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Then the next step is to run the sensitivity analysis which will estimate the 

importance of each input to the overall performance. NeuroSolutions has this built 

in feature. Let us work with the trained network and turn learning off (fix the 

weights). We have to specify the amount of random noise we want to add to each 

individual input (which is done automatically one input at a time), while keeping 

the other inputs at their mean values. NeuroSolutions computes the sensitivity at 

the output. Let us place a MatrixViewer at the L2 criterion in the sensitivity access 

point, and write down the values. We should use different values of dither to obtain 

a reasonable linear approximation to the operating point of the regressor. We can 

then plot the different values of the sensitivity for each input variable as shown in 

the Figure below 
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From the figure we see that there are 5 inputs that display a very low sensitivity so 

they can be omitted without affecting appreciably the quality of the mapping. 

Hence, a reduced network with the inputs INDUS, CHAS, NOX, RM, DIS, RAD, 

PTRATIO, LSTAT shall be trained again. As you can see in the figure below, the 

matching is basically the same, but now we have a smaller network that will 

generalize better, and we can reduce the cost of collecting data for this problem.  
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 NeuroSolutions Example

Go to next section  

10. Conclusion 
 

In this chapter we provided a view of neural networks as function approximators. This is 

the more general view of this family of systems and impacts our understanding about 

their capabilities, establishes new links to alternate methods and provides, we hope, a 

better understanding of the problems faced in training and using adaptive systems. 

One of the interesting things about neurocomputing is that it lies at the intersection of 

many diverse and complementary theories, so it is a very rich field. The price paid is that 

the reader was bombarded with many different concepts and since our goal is to keep the 

text at the introductory level the presentation only addressed the key concepts. Our hope 

is that the reader was motivated enough to pursue some of these topics.  

MLPs are very important for function approximation because they are universal 

approximators and their approximation properties have remarkably nice properties (the 

approximation error decays independently of the size of the input space). This may 

explain why MLPs have been shown to outperform other statistical approaches in 

classification.  

In this chapter we also introduced another class of neural networks, called the radial 

basis function networks (RBFs). RBFs can be used in the same way as MLPs since they 

are also universal approximators, i.e. they can be classifiers, regressors or density 

estimators. 

We also presented the basic concepts of the structural risk minimization principle and 

support vector machines (SVM). This is a difficult theory so we merely highlighted the 

important implications, which are many. At the top is the paradigm shift from the 

conventional compromise between generalization and network size, to the strict recipe of 
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using the smallest capacity machine for best generalization. The innovative ideas 

contained in the SRM principle will impact tremendously the evolution of the whole field of 

learning from examples and inductive inference. So you should be alert to follow the 

developments.  

SVMs are practical learning machines that minimize an upper bound to the Bayes error, 

so they are very useful in pattern recognition. SVMs are very easy to apply to practical 

problems, provided the user has large computers since they do not have free parameters 

(just the slack variable for the nonseparable case). The kernel Adatron algorithm allows a 

simple sample by sample implementation of the quadratic programming required to find 

the support vectors, and conquers one of the difficulties of the method (having access to 

quadratic programming software).   

For the reader with a background in engineering this chapter provided a view of MLPs 

and RBFs as implementing function approximation with a new set of bases (the sigmoids 

which are global or the Gaussians, which are local). For the reader with a statistical 

background, the chapter provided a new view of generalization. Neural networks belong 

to the exciting class of nonparametric nonlinear models, which learn directly from the 

data, and so can be used in experimental science.    

NeuroSolutions Examples 
5.1 Sinc interpolation  

5.2 Fourier decomposition  
5.3 Linear regression  

5.4 Function approximation with the MLP  

5.5 MLP to approximate a squarewave (classification)  

5.6 Function approximation with RBFs  

5.7 Nonlinear regressors  
5.8 MLPs for function approximation with L1 norm  

5.9 Training RBFs for classification  

5.10 Overfitting  
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5.11 Akaike’s criterion for RBFs  

5.12 Weight-decay to prune RBFs  
5.13 MLPs and RBFs for classification  

5.14 Density estimation with RBFs  

5.15 Prediction of SP 500  

5.16 Estimating prices in the Boston housing data  
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calculation of the orthonormal weights 
Let us assume that the bases ϕ(x) are orthonormal. Let f(x) be any square integrable 

function . The goal is to find the coefficients wi such that 

     
f x w xi i

i

N

( ) ( )=
=
∑ ϕ

1

Taking the inner product of f(x) with ϕi(x)  

    
< >= < >= <

=
∑f x w wi i
i

N

( ), , ,ϕ ϕ ϕ ϕ1 1 0
1

>ϕ1 1

since the vectors are orthogonal. Moreover since they are of unit length (orthonormal), 

we get  

    w f x1 1=< >( ),ϕ   
which corroborates the interpretation that the weight can be thought as the projection in 

each elementary function. So in general we get the pair of relations 

    

f x w x

w f x x d

i i
i

i i
D

( ) ( )

( ) ( )

=

=

⎧

⎨
⎪

⎩
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∑

∫

ϕ

ϕ
  

(Note: if the signals are complex, then the coefficients are given by 

  
w f x x di i

D
= ∫ ( ) ( )*ϕ x
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where * means complex conjugate). On the other hand if we are working with discrete 

spaces, this pair of equations becomes 

       ⎪
⎪
⎩

⎪⎪
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∑
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(where once again in the second equation the basis has to be the complex conjugate if 

they are complex). This pair is what we need to know to apply the projection theorem for 

orthogonal basis and provide the relationships for the Fourier transforms and Fourier 

series respectively. 

Return to Text  

 

sinc decomposition 
The formulas derived above can be used to find out exactly what is the decomposition 

obtained when the basis are sinc functions. We would like to write 

    
f x w xi i

i
( ) ( )= ∑ ϕ

The bases are 

  ϕi ix c x( ) sin ( )= − x

i

  

Applying now Eq 7 we have that the weights become 

    
w f x c x x dx f xi i

D

= − =∫ ( ) sin ( ) ( )

which means that the weights become exactly the value of the function at the point (i.e. 

the sample value). So this explains figure 4.  

Return to text  
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Fourier formulas 
Applying again the pair of formulas of Eq 7 and Eq. 8 we will present the Fourier 

transform pair. Remember that the Fourier uses as basis the complex exponentials, i.e.  

    ϕ
π

i
j

T
it

t e( ) =
2

   

where T is related to the interval where the function f(t) is defined and j = − 1  . The 

complex exponentials are a set of orthogonal basis. This means that we are going to 

expand the function f(t) as 

    
f t w ei

j
T

it

i
( ) =

=−∞

∞

∑
2π

  
In the interval D= [0,T] we can compute the weights as (Eq.7) 

   
w

T
f t e dti

j
T

itT
=

−

∫
1 2

0
( )

π

  
This means that we have formulas to compute the weights so we do not need to use 

adaptation.  

Note that the complex exponential can be expressed as (Euler relation)  

    e wt jjwt = +cos( ) sin( )wt

so in fact we are decomposing the signals in sums of sinusoids (but pairs of them).  

Return to Text   

eigendecomposition 
In engineering we use systems to modify time signals according to the user specifications. 

So a system is a piece of equipment that modifies input signals x(t) to produce another 
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signal y(t) (see Figure) 

x(t)
y(t)

H

  
 

Mathematically we can describe a system by a function  H operating on the real (or 

complex) numbers  

H x H: → x   
and we will call H an operator. The output y of the system H when x is applied at the input 

is  

y Hx=   
The response of the system at time t is written y(t) = [Hx](t).  

A linear system is a system described by the operator H which obeys the following 

properties 

H x Hx
H x y Hx Hy

α α=
+ = +[ ]   

 
where α is a scalar. We are normally interested in linear systems that are shift invariant, 

i.e. where the response does not depend upon the particular instant of application. Let us 

define another operator T which delays x by t seconds, i.e. 

 
x t Tx( ) [ ](t)− =τ   

 
In shift invariant systems, H and T commute, i.e. THx = HTx.  

So lets ask the following question. Which are the signals x(t) that when applied to a linear 

time invariant system H produce a response that has the same form as the input, apart 

from a multiplicative factor (gain factor)? 
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Mathematically this can be written  
Hx = λx 

This is the same problem that gives rise to the eigenvector problem of matrices, and this 

is the reason why the input x that obeys this condition is called an eigenfuntion of H.  

Linear shift invariant systems have the special property that they commute with the 

derivative operator D (which is a composition of T operators), i.e. 

If y = Hx and x’ = Dx, then y’ = Hx’ 
or in words, if we know the response of the system to an input, and we want to know the 

response to the derivative of the input, then it is enough to take the derivative of the 

output.   

This is what we need to answer the original question. This property shows that the 

question is equivalent to finding a signal x(t) that is proportional to its derivative, i.e. 

dx t
dt

sx t
( )

( )=
  

which we know accepts the solution  ,i.e. a complex exponential. x t e st( ) = α

What this means is that a linear shift invariant operator H when applied to a complex 

exponential  will only change its magnitude and phase, i.e.  esx

y He esx sx= = α   Equation 46 

where α is a complex number . So, if an arbitrary function u(x) is decomposed into 

exponentials,  

( )u x w ei
s x

i

i= ∑
  Equation 47 

then the response of H to u(x) can always be evaluated as a sum of weighted responses 

to exponentials, i.e.  

( ) [ ]Hu x H w e w H e w ei
s x

i
i

s x

i
i i

s x

i

i i=
⎡

⎣
⎢

⎤

⎦
⎥ = =∑ ∑ ∑ α i

   Equation 48 
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where the αi do not depend of u(x). The importance of this equation has to be noted, 

since it tells us that no matter how complicated the input might be, we always can 

compute its output by adding the responses to individual exponential components. It also 

tells us that all we need to know to describe the linear system are the complex numbers 

αi. 

Fourier analysis is a special case of this decomposition where the complex exponentials 

have zero real part, i.e. s = jw yielding 

e w x jjw x
i i

i = +cos( ) sin( )w x

ε

  
Now we understand the relevance of complex exponentials to study linear systems.  

Return to text  

 

Weierstrass Theorem 
Weierstrass proved the following important theorem: Let S[a,b] be the space of 

continuous real valued functions defined in the real segment [a,b]. If   then 

there exists a polynomial  with real coefficients α  for which  

f S a b∈ [ , ]

P x xi
i

i

N

( ) =
=
∑α

0

| ( ) ( )|f x P x− <   

for ε>0 and   x a b∈[ , ]

In words this says that any function can be approximately arbitrary well (i.e. with an error 

as small as we want) by a sufficiently large order polynomial.  

The Weierstrass theorem is the starting point for most proofs of the universal mapping 

properties of the MLP.  

Return to text  
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multi-hidden-layer MLPs 
The multilayer perceptron architecture is not in the general form of the projection theorem 

discussed above. As seen in Chapter III the MLP implements an embedding of functions 

so its approximation properties can not be directly studied with the projection theorem 

except for the case of the one hidden layer MLP with linear output PE as mentioned 

above. For this case we can recognize the output of each hidden PE has producing the 

elementary functions. When the output PE is a logistic function (or tanh) these values are 

nonlinearly combined, so the projection space is no longer an hyperplane in the input 

space.  

Remember also the properties discussed in Chapter III that the MLP with two hidden 

layers is an universal approximator, and even with a single hidden layer can approximate 

any continuous function on a compact set. There are now many theorems that provide 

proofs depending upon the nonlinearity. So we can conclude that the essence of the 

power of the approximation is in the topology, not in the specifics of the nonlinearity. As 

remarked before, these are existence theorems, so the designer still needs to select the 

topology to actually create the universal approximation properties for the class of 

functions of interest.  

Return to text  

 

 

outline of proof 
We will only outline here the proof for the universal mapping characteristics of the MLP. 

We start by extending the Weierstrass theorem to metric spaces (the Stone- Weierstrass 

theorem). 

Polynomials can be extended to metric spaces by defining the concept of an algebra. A 
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family of functions F that map the metric space V to the real line is an algebra if their 

elements have the properties 

f f F f f F
and f f F

1 2 1 2

1 2

,
.

∈ ⇒ + ∈
∈

α β

   
where α and β are real numbers.  

The Stone Weierstrass theorem can be enunciated in the following way. Let V be a 

metric space and F an algebra that maps V into the reals. If there is a function  

for which 

f F∈

f v f v for v v( ) ( )1 2 1≠ 2≠   and f v( ) ≠ 0   in V, then F is dense in the 

mapping of V into the reals. The idea of dense is the same as arbitrary close 

approximation as stated in the Weierstrass theorem. 

This theorem has been used to show the universal mapping capabilities of the MLP. In 

fact, the function f(v) can be expanded in a special type of “Fourier series” with squashing 

cosine functions, i.e. 
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The nonlinearity of the MLP belongs to this family of squashing functions. Notice that f(v) 

is exactly the output of the one hidden layer MLP with a cosine nonlinearity.  

Return to text  

 

local minima for Gaussian adaptation 
We should be able after Chapter III and IV to understand the difficulty of using 
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backpropagation to adapt the centers and variances of the Gaussians. With this method, 

the centers (and variances) are moved in the input space by virtue of the gradient. 

However, with the RBF, both the local activity and the local error are attenuated by the 

shape of the Gaussian kernel, while in the MLP only the error was attenuated by the 

derivative of the sigmoid. The net effect is that training becomes very slow and the 

chances of getting stuck in local minima are large. Another reported problem is that 

during adaptation the variances of the Gaussians can become very broad and the RBF 

looses its local nature. 

Return to Text  

approximation properties of RBF 
The formulation of function approximation using the projection theorem (Eq. 1) can be 

directly applied to study the approximation properties of the RBF network. Sandberg 

showed that the RBF network is in fact a general function approximator. This is an 

existence theorem, so it is up to the designer to choose the number, localize, set the 

variance and the weighting of Gaussians to achieve an error as small as required.  

Using again the Stone Weierstrass theorem, they showed  that the RBFs were dense in 

the mapping from a metric space V to the real line. This is not difficult because the RBFs 

create an algebra and they do not vanish in V.   

The RBF and the MLP achieve the property of universal approximation with different 

characteristics since the basis functions are very different. In the RBF the basis are local, 

so each can be changed without disturbing the approximation of the net in other areas of 

the space. But one needs exponentially more RBF to cover high dimensional spaces (the 

curse of dimensionality). In the MLP this is not the case as we mentioned in the result by 

Barron. As we saw in Chapter III, changing one MLP weight has the potential to produce 

drastic changes in the overall input-output map. This has advantages in some aspects 

such as more efficient use of PEs, but also disadvantages since the training becomes 
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slower and the adaptation can be caught in local minima.  

RBFs train very efficiently once the centers are determined, since the error is linear in the 

weights. This fact also guarantees the convergence for the global minimum (if the centers 

are optimally set). This makes RBFs very useful for system identification. 

From the theoretical point of view of function approximation, RBFs possess the property 

of best approximation as defined by Chebyshev, unlike the MLP (i.e. there is always a 

RBF that provides the minimum error for a given function to be approximated).  

Return to text  

 

MDL and Bayesian theory 
There are some technical details in implementing this idea of measuring errors by code 

lengths, but they have been worked out in Information theory. See Rissanen .  

Another interesting link is to look at model selection from the point of view of Bayes 

theory. The probability of a model given the data can be computed using Bayes rule, i.e. 

P M D
P D M P M

P Di
i i( | )

( | ) ( )
( )

=
  

We can forget about P(D) since it is common to all the models. So the most probable 

model will maximize the numerator. We know that the maximization is not affected if we 

take the log (since the log is a monotonic function), i.e. 

max [log( ( | ) log( ( ))]
i

i iP D M P M+
  

This expression is very similar to the result obtained using Rissanen’s idea. In fact we 

can interpret Rissanen description length as the sum of the error and the complexity of 

the model. Now the minimum amount of information required to transmit a message x is 

given by  . If p(x) is the correct distribution for the message x (our model), )(ln xp−
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then it will correspond to the smallest message length for a given error. The error in turn 

can be interpreted as the conditional probability of the data given the model. So we can 

say that the description length can be expressed as 

))(log())|(log( MpMDpMDL −−=   
Since the maximization is equivalent to the minimization of the negative we get the 

minimal code lengths for the data and the model. See Zemel for a complete treatment.  

Return to Text  

derivation of the conditional average 
This results can be demonstrated (see Bishop for a full treatment) if we write the MSE for 

the case of large number of patterns as an integral (t is the desired response) 

  
[ ]∑∫∫ −=

k
kkkk dxdtxdptwxyJ ),(),(

2
1 2

  
Note that the index k sums over the targets, and the sum over the data exemplars was 

transformed in the integral, which has to be written as a function of the joint probability of 

the desired response and the input. This joint probability can be factored in the product of  

the input pdf p(x) and the conditional of the target data given the input p(tk|x).  

The square can be written 

   ( ) ( 22 ||),(),( kkkkkk txtxtwxytwxy −>><<+>><<−=− )
where <<tk|x>> is the conditional average given by Eq. 14. We can write further 

( ) ( ) 222 )|()|)(|),((2|),(),( kkkkkkkkkk txttxtxtwxyxtwxytwxy −><+−><><−+><−=−
  

Now if we substitute back into the MSE equation we obtain 
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The second term of this expression is independent of the network, so will not change 

during training. The minimum of the first term is obtained when the weights produce  

   )|*),( >>=<< xtwxy kk    
since the integrand is always positive. This is the result presented in the text. 

Return to Text  

 

Parzen window method 
The Parzen window method is a nonparametric density estimation method widely used in 

statistics. It is related to learning because it provides a way to estimate the pdf of the data, 

and unlike the maximum likelihood method it can be applied to a wide range of functions.  

In the Parzen window method we start by choosing a symmetrical and unimodal kernel 

function 

   
K x x K

x x
i n

i( , , ) ( )β
β β

=
−1

  
and construct the pdf estimator 

   
p x

M
K x xi

i

M

( ) ( , , )=
=
∑1

1
β

  
Normally used kernels are the Gaussian, the rectangular, and the spectral windows 

(Tukey, Hanning, Hamming). The Parzen estimator is consistent and its asymptotic rate 

of convergence is optimal for smooth densities. But it requires large number of samples 

to  provide good results. 

Return to text  

 74 



 

 

RBF as kernel regression 
Here the windows are multidimensional Gaussian functions (as utilized in RBF networks) 

that quantify the joint data distribution in the input-desired signal space, given by  
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As we discussed in section 3.4.1, regression can be thought as estimating the condition 

average of the target data ti conditional to the input xi, i.e. <ti|xi>. When the MSE is used 

the output of the network approaches this value. The conditional average can be written 

as a function of the pdf which yields 
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This yields Eq. 33 in the text. In general we can utilize fewer Gaussians as done in the 

RBF network, yielding  
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where θ are the centers of the Gaussians in the desired space. 

Return to text  

L1 versus L2 
There are minor differences between the two norms that have been used in function 

approximation. Eq. 2 utilizes the absolute value of the error which is commonly called 

uniform approximation. So strictly speaking the L1 norm should be used for function 

 75



approximation. However, the L2 norm which minimizes not the absolute value of the error 

but the error power is much easier to apply (in linear systems) and also produces an 

important interpretation of the results (nonlinear regression) as we saw in the probabilistic 

interpretation of the mappings. In practical situations either norm can be used.  

Return to Text  

 

function approximation 
Became a theory last century with the formal definition of a limit by Cauchy and  

Weierstrass . It culminated a long road of discoveries by mathematical giants such as 

Euler, Legendre and Gauss, motivated by astronomical observations. The goal was to 

approximate difficult mathematical functions by ensembles of simpler functions. 

Approximation requires the definition of an error which implies a metric space to define 

the distance between the true function and the approximation. Moreover, the availability 

of a set of simpler functions is postulated.  

 

functional analysis 
Is the branch of analysis where the functions do not depend on single numbers but on 

collections (eventually an entire range of a numerical function) of components. An 

example is a function of a vector. 

 

Weierstrass 
Augustin Cauchy (1789-1857) and  Karl Weierstrass (1815-1897) were the fathers of 

calculus. They captured the idea of the limit in a precise mathematical way, and open up 

new horizons in approximation theory. 
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series 
are iterated sums of terms produced by a general rule, with eventually an infinite number 

of terms. An example is  

1
1

10
1

100
1

1000
+ + + +.....

  
 

sampling theorem 
Also called the Nyquist theorem states that one can uniquely reconstruct a time signal 

from its sampled representation if we sample at least at twice the highest frequency 

present in the signal. 

sinc 

Is a time signal given by 

sinat
at   . It is the noncausal response of the ideal 

reconstruction filter.  

Fourier series 
Joseph Fourier in the late XVIII century showed that any periodic signal no matter how 

complex could be decomposed in sums (eventually infinite) of simple sinewaves of 

different frequencies. These decompositions are called the Fourier series. If y(t) is real 

y t Y Y
it

Ti
i

i( ) cos( )= + +
=

∞

∑0
1

2π
θ

  
 

delta function 
The delta function can be thought of as the limit of a  rectangular pulse of high 1/ε and 

width ε when ε goes to zero. Mathematically, it is a function δ(t) that obeys the relation  
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linear systems theory 
It is a highly mathematical branch of  electrical engineering that studies linear functions, 

their properties and their implementations. 

eigenfunctions 
Are the natural modes of a system, i.e. a signal is an eigenfunction of a system when the 

system output is a signal of the same shape, eventually of a different amplitude and 

phase. Eigenfunctions are related to the concept of eigenvector in linear algebra. 

shift-invariant 
A shift-invariant system is a system that produces the same output no matter if the signal 

appears at t=t0 or any other time . 

complex number 
A complex number is a number z that can be written as z = Re(z)+j Im (z) where 

j = − 1  . 

statistical learning theory 
Is a new branch of statistics that analyzes mathematically (in functional spaces) the 

learning process. 

manifold 
A manifold is a space in which the local geometry of each point looks like a little piece of 

Eucledian space. 

 78 



polynomials 

Are rational functions that can be put in the form   where both x and a are 

real numbers 

y ai
i

i

N

=
=
∑

1
x

..

scientific method 
Is the methodology utilized in science. See Karl Poper, “The logic of scientific discovery”, 

Harper Torch, 1968. 

Volterra expansions 
of a discrete system (y the output, u the input) have the form 
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square integrable 
Is a function where the integral of the square of the function over the domain (here the 

real numbers) is finite. 

 Jorma Rissanen 
See the book Stochastic Complexity in Statistical Inquiry, World Scientific, 1989. 

Akaike 
See “A new look at the statistical model identification”, IEEE Trans. Auto. Control, AC-19, 

716-723, 1974 
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Tikonov 
A. Tikhnov and V. Arsenin, “Solution of ill-posed problems”, Winston, Washington, 1977. 

ill-posed 
Is a term coined by Hadamard to mean that solutions are extremely dependent upon 

minor changes in the form of simple equations. Ill-posed problems arise very often when 

one tries to reverse a cause-effect relation. 

indicator function 
is a function that takes only two values 1 and 0 (or -1). 

splines 
The kth normalized B spline of degree r-1 is given by Cox-deBoor formula 
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fiducial 
is the name given to the point where the function is being approximated. 

code 
code is a systematic translation of the data into bits.  

VC dimension 
Vapnik-Chervonenkis introduced the concept of dimension of the learning machine which 

guarantees good generalization ability.  
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Cover Theorem 
states that it is always possible to use a linear classifier to separate arbitrary data sets if 

the data is nonlinear mapped to a sufficient large feature space.   

learning theory 
see Vladmir Vapnik, The nature of statistical learning theory”, Springer, 1995. 

 

A. Barron 
Approximation and estimation bounds for ANNs, IEEE Trans. Information Theory 39, #3, 

930-945, 1993. 

 

Park and Sandberg, 
“Universal approximation using radial basis function networks”, Neural Computation, vol 3, 
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Bishop 
Pattern Recognition with Neural Networks, Oxford, 1995. 

 

Vladimir Vapnik 
The Nature of Statistical Learning Theory, Springer Verlag, 1995 and Statistical Learning 

Theory, Wiley, 1998. 
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Eq.30 
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Eq.25 
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Eq.16 
( ) ( )( )w n w n xij ij i j+ = − +1 1 λ ηδ   

 

Eq.19 
( ) ( ) ( )w n w n x wij ij i j ij+ = + +1 ηδ λ sgn
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