
Table of Contents
CHAPTER IV - DESIGNING AND TRAINING MLPS ...3
2. CONTROLLING LEARNING IN PRACTICE ...4
3. OTHER SEARCH PROCEDURES ..15
4. STOP CRITERIA...29
5. HOW GOOD ARE MLPS AS LEARNING MACHINES? ...33
6. ERROR CRITERION..38
7. NETWORK SIZE AND GENERALIZATION ...45
8. PROJECT: APPLICATION OF THE MLP TO REAL WORLD DATA..51
9. CONCLUSION ..58
ALGORITHM LOCALITY AND DISTRIBUTED SYSTEMS ..61
SYSTEM IDENTIFICATION VERSUS MODELING ...62
GOOD INITIAL WEIGHT VALUES..62
MINSKOWSKI MEASURES ...63
CROSS ENTROPY CRITERION ..63
EARLY STOPPING AND MODEL COMPLEXITY ...64
LEARNING RATE ANNEALING ...65
SHALLOW NETWORKS ..65
EQ.6 ..65
OUTLIERS ...65
EQ.8 ..65
ACTIVATION...65
DUAL ..66
FAN-IN ..66
SIMON HAYKIN..66
NONCONVEX ...66
CONFUSION MATRIX...66
GENERALIZATION...66
VLADIMIR VAPNIK..67
BARRON ...67
SALIENCY..67
HESSIAN...67
COMMITTEES...67
SIMULATED ANNEALING..67
FIRST ORDER ..68
VALIDATION...68
CLASSIFICATION ERROR...68
ROBUST..68
OCCAM...68
VC DIMENSION..69
GENETIC ALGORITHMS ..69
LUENBERGER..69
SCOTT FAHLMAN...69
CAMPBELL..69
R. A. FISHER ..70
LINE SEARCH METHODS ...70
BISHOP ..70
EQ. 24 ...70
FLETCHER ..71
HORST, PARDALOS AND THOAI ..71
SHEPHERD ...71
PEARLMUTTER..71
HERTZ, KROGH, PALMER...71
LECUN, DENKER AND SOLLA ...71
PERRONE ...72

 1

COVER ...72
LECUN, SIMARD, PEARLMUTTER..72
SILVA E ALMEIDA ..72
ALMEIDA’S ADAPTIVE STEPSIZE ..72

 2

 Chapter IV - Designing and Training MLPs

Version 3.0

This Chapter is Part of:

Neural and Adaptive Systems: Fundamentals Through
Simulation© by

Jose C. Principe
Neil R. Euliano

W. Curt Lefebvre

Copyright 1997 Principe

In this Chapter, we will address the more practical aspects of using MLPs, which include:

• Search strategies to find the minimum

• Alternate cost functions

• Control of generalization (topologies)

After presenting these aspects from a practical point of view, real world problems will be

solved with the MLP topology.

• 1. Introduction

• 2. Controlling Learning in Practice

• 3. Other Search Procedures

• 4. Stop Criteria

• 5. How good are MLPs as learning machines?

• 6. Error Criterion

• 7. Network Size and Generalization

• 8. Project: Application of the MLP to crab classification

Go to next section

 3

2. Controlling Learning in Practice
Learning (or adaptation) is a crucial step in neural network technology. Learning is the

procedure to extract the required information from the input data (with the help of the

desired response in the supervised case). If learning is incomplete the weight values will

not be near their optimal values and performance will suffer. As we have seen in Chapter

I and III, the good news is that there are systematic procedures (learning algorithms) to

search the performance surface. The bad news is that the search has to be controlled

heuristically.

The user directly affects the search through:

• the selection of the initial weights

• the learning rates

• the search algorithms, and

• the stop criterion

One has to understand the issues affecting each one of these topics to effectively train

neural networks. One should also remember that the ultimate performance is also

dependent upon the amount and quality of the data set utilized to train the system.

A large portion of this chapter is devoted to extend the basic gradient descent learning

developed in Chapter III, so we will concentrate on the aspects that can be improved. But

it is good to remember up-front that straight gradient descent learning and its different

implementations (LMS, delta rule, backpropagation) are one of the most widely utilized

methods to train adaptive systems because they are an excellent compromise of

simplicity, efficiency and power. So while the tone of the chapter may seem negative

towards gradient descent learning, this is just derived from the exposition goal and the

reader should balance the impression with the amazing power of the technique displayed

already in Chapters I and III. algorithm locality and distributed systems

Before we develop a methodology to appropriately set the learning parameters, let’s see

how we can visualize what is happening inside the neural network during training and

 4

describe some of the features of learning.

2.1 Visualizing Learning in a Neural Network
We will use the breadboard for the XOR, initially implemented in NeuroSolutions with

tanh nonlinearities. The point is that learning is much richer than what can be imaged

from the learning curve (the thermometer of learning as we call it in Chapter I). All the

internal parameters of the network are being changed simultaneously according to the

activation flowing in the network, the errors flowing in the dual network, and the particular

search algorithm utilized to update the weights.

Since the set up of the learning parameters is problem dependent, the user has to make

decisions that are particular to the problem being solved. The only way to make

appropriate judgments when a theory is lacking is to understand, through

experimentation, the principles at work. Hence, it is very instructive to visualize the

behavior of the network parameters during learning, and we can do this effortlessly with

NeuroSolutions.

NeuroSolutions 1

4.1. Visualization of Learning

In this example we will use the XOR network from Chapter 2 and place scopes on

the weights and backpropagated errors. By viewing the errors, weights, decision

surface and learning curve we will get a much better feel for what is going on in the

network. Compare the evolution of the weights with the backpropagated errors.

Also, compare the location of the decision surface with the actual value of the

weights. Finally compare all of this activity with the learning curve, the external

variable that we normally observe. Do this several times. Try to understand the

relationships among the different pieces. Ultimately, everything is dependent upon

the input data and the errors.

Notice that the time evolution of the weights differs every time we run the network,

but the final MSE is almost the same from run to run. Every run will also produce a

 5

different set of weights. Learning in a neural network is a very rich process and

that the learning curve can only give a glimpse of these activities. Nonetheless it

is a valuable tool for gauging the progress in the network.

 NeuroSolutions Example

2.2. Network weights and minimum MSE
It is important to understand why the adaptation of the same topology with the same

training data produces so many different sets of final weights. There are three basic

reasons for this fact.

• First, there are many symmetries in the input-output mapping created by the MLP. Thus, two
networks which produce the exact same results may have different weights. For instance, as
we discussed in Chapter III, the position of the discriminant function is determined by the ratio
of the weights, not their values. Also, changing the sign of the output weight of a PE will
compensate for input weights with a reversed sign.

• Secondly, there is no guarantee in general that the problem has a single solution. In
particular, when non-minimum topologies are utilized, the redundancies may create many
possible solutions. Remember that the minimization of the output error is an external
constraint. Nothing is said about the uniqueness of the weight values to provide a given
output error. In fact, from the point of view of the problem formulation as long as the output
error is minimized, any solution is as good as any other. system identification versus
modeling

• Thirdly, the final weights are obtained in an iterated fashion, from a random initial condition.
Even when we stop the adaptation at a fixed iteration number in two different training runs
over the same data, the random initial weights will create different weight tracks during
adaptation. Therefore, the final weight values will most likely be different.

The size of the topology will often magnify these differences and produce very different

final weights from run to run. Additionally, if the topology is not minimal, there will be

redundant discriminant functions, and as such there are many possible solutions for

mapping the training data. Each one, however, may perform quite differently on data

the network has not seen yet (test set). This aspect will be addressed later.

This analysis points out one important methodological issue. Learning is a stochastic

process that depends not only on the learning parameters but also on the initial

conditions. So, if one wants to compare network convergence times (i.e. how much faster

one update rule is with respect to another) or final MSE error after a number of iterations,

it is pointless to run the network only once. One needs to run each network several times,

 6

with random initial conditions and pick the best or use some other strategy (such as

committees).

When the goal is to compare different training algorithms, it is common practice to

average out the results, i.e. to present the “mean” learning curve across the different

trials. This means that learning curves should be presented also with “error bars” or at

least with a percentage of the number of times the minimum was reached.

NeuroSolutions 2

4.2. Learning as a stochastic process (XOR)

Remember that adaptation is a stochastic process - depending on the initial

conditions and other factors, the path that the network will take down the

performance surface will be very different. There are many possible endpoints

(local minimum, global minimum, saddle points, etc.) to the adaptation process

and even more trajectories to get there. It is important to remember that if we are

to compare one learning algorithm to another, you must average the comparison

criteria over multiple runs. For example, the learning curve should always be

presented as an average of the individual learning curves over many runs. In this

example we show the many possible trajectories and endpoints for the XOR

problem. We use a custom DLL to compute the average learning curve.

 NeuroSolutions Example

2.3. Control of the step size during learning
We have already encountered the problem of step size selection when we studied the

linear regression and the MLP adaptation. In the linear case we can summarize the

discussion by saying that the learning rate is a trade-off between speed of adaptation and

accuracy in the final weight values. In nonlinear topologies such as the MLP, we have the

same basic phenomenon but the problem is compounded by the nonconvex nature of the

performance surface, as we discussed in Chapter III.

It is important to realize that for quadratic performance surfaces there are ways of

 7

selecting optimally at each iteration the stepsize through a line search. However,

normally we use a trial and error approach due to the computational complexity of

determining the best stepsize at each iteration (line search methods). The determination

of the best stepsize for the MLP does not have an analytic solution anymore, so this

approach is even less interesting.

Usually, the solution of practical classification problems requires large values for some

weights, because the PEs have to saturate to approach the desired response of 0 (-1) and

+1. The only way that the weights can grow is through cumulative changes during the

training process. If the learning rates are small, it will take a long time to obtain weights

that provide small errors. On the other hand, if the learning rates are too high, then

instabilities will result. As we saw in Chapter 1, even for convergent learning dynamics,

when high learning rates are applied the final values are not very accurate since the

solution will “rattle” around the global minimum.

In a nonlinear network (e.g. MLP), the stepsize selection is even more important.

The new situation is the existence of local minima and saddle points that may

stall learning. We will discuss ways to manage this problem with more powerful

search procedures later in the chapter.

The goal for the stepsize selection is to use a large learning rate in the beginning of

training to decrease the time spent in the search phase of learning, and then decrease

the learning rate to obtain good accuracy for the final weight values in the tunning

phase. This is sometimes called learning rate scheduling or annealing . This simple

idea can be implemented with a variable step size controlled by

 8

()η
η

n n
n

=
+

0

0
1

 Equation 1

where ηo is the initial step size, and n0 is an iteration count. Note that for n<<no, the step

size is practically equal to ηo, while when n>>no it approaches zero geometrically. The

values of ηo and no need to be experimentally found. Alternatively, one can schedule

the step size linearly, or logarithmically as we did in Chapter I.

If the initial value of ηo is set too high, learning may diverge. The selection of no is tricky

because it depends a lot on the performance surface. If no is too small, the search phase

may be too short and learning can stall. If no is too large, then we spend too much time in

the search phase, rattling around near the global minimum before we fine tune our

solution with lower learning rates.

In non-convex surfaces, the annealing schedule has the added advantage of enabling the

search to escape from local minima when they are encountered early in the search. In

fact, with a large learning rate, the search will bounce out of local minima and when the

learning rate decreases, the global minimum can be reached with accuracy. The problem

is that we do not know a priori what is the best schedule rate, so the selection of the

learning constants in Eq. 1 is problem dependent. The following example illustrates how

the learning rate affects performance, and how to schedule learning rates during

adaptation.

NeuroSolutions 3

4.3. Learning rate scheduling

In this example we will show how to anneal the learning rate (change the step size

over time during the simulation). We start with the XOR problem and add

scheduling components to the gradient descent layer. There are three available

scheduling components in NeuroSolutions, the linear, exponential, and logarithmic

schedulers. Each one varies the parameter over time in a slightly different

manner.

 9

Make sure you use the randomize button and play with the simulation. It is

important that you change the learning parameters to make the network learn as

fast as it can this problem. You should also notice that from time to time the

learning will get stuck at MSE of 0.5, and will take a long time to get out of this

mode. The weights will remain practically constant, and the error will not decrease.

This may be due to either a region of very low gradient (flat spot) or a local

minimum. Here it is a flat spot.

 NeuroSolutions Example

2.4. Setting the learning rates across the network PEs
The neurocomputing literature (Haykin) suggests that the goal for robust and fast

convergence is to have all the adaptive network parameters learn at the same rate. This

is easy to accomplish in linear networks (same step size for all weights), but it is not so

easy for MLPs, since in nonlinear systems the error is attenuated by the derivative of the

PE nonlinearity evaluated at the operating point (see backpropagation in Chapter III). It is

therefore essential to understand how the error flows inside the network to properly set

the learning rates. The rule of thumb is to increase the learning rate from the output layer

to the input layer by a factor of 2-5 from layer to layer. In the following example we will

observe the squelching effect of the nonlinearity from layer to layer.

NeuroSolutions 4

4.4. Flow of errors across MLP layers

In this example we will again delve into the inner workings of the neural network.

The problem to be solved is the star problem, a two class problem with a set of 4

samples per class which are placed on the vertices of two stars rotated by 45

degrees (and one smaller).

We will place matrix viewers at nearly every access point in the MLP and single

step through the training. By doing this we gain many insights. We can watch

the data flow through the network and understand exactly how each component of

NeuroSolutions fits into the big picture. It is OK to gloss over the details of exactly

 10

how the network operates for a while, but eventually it is important to understand

the details. Notice that the data flows forward through the network and than the

error flows backwards from the criterion back to the input layer. You should

study these outputs in relation to the equations we derived for the MLP in chapter

2. The figure below shows how the data flows through the arrangement of viewers

in the NeuroSolutions Example:

An important insight you should get is that the magnitude of the errors flowing

back through the network shrinks through each layer. This is due to the

multiplication by the derivative of the saturating nonlinearity that is a bell shaped

curve around zero. This means that large magnitude (negative or positive) errors

are multiplied by values close to zero, so they are attenuated. This means that if we

set the learning rates constant across the net, the network learns faster in the

layers closer to the output than deeper in the net (closer to the input). Hence to

equalize training in each layer we should increase the learning rates of the

components closer to the input. If we run the network with equal learning rates,

and with unequal learning rates (double the step size of the gradient search over

the first synapse) there will be a marked difference.

 NeuroSolutions Example

 11

2.5 Nonlinear PEs as a source of internal competition
The MLP ability to learn to discriminate patterns in the input space is linked to the

attenuation of the error through the nonlinearity coupled with the saturation of the PE.

The PE nonlinearity works as an internal competition mechanism which allows different

PEs to specialize in different areas of the input space. In fact, recall that the weight

update is a product of the local activity, the error, and the derivative of the nonlinearity

f’(.), which is a bell shaped curve for sigmoid nonlinearities (Figure 1). So the question is

the following: given several PEs in the hidden layer with different operating points

(different values of net) are they updated equally by the presentation of a given pattern?

net

y=f(net)

f’(net)

yf’(net)
net

net

Figure 1. The derivative of the nonlinearity

The weights connected to PEs that for a particular input are operating in the first or third

tier of their linear regions will be adjusted the most (assuming that they receive a

constant error from the top layer). Effectively, these are the operating points with the

 12

highest product activation x (Figure 1). So during learning, different PE will

tune to different areas of the input space. A ballpark analysis shows that sigmoid PEs are

most sensitive to samples that make net ~ +/- 0.707. For normalized inputs these values

correspond to approximately 45 degrees from their weight vectors.

′f netmax ()

If one of the PEs is saturated (net is very large in absolute value), the weights connected

to it will be multiplied by a very small value of f’(net), so the weights will not change much.

On the other hand if the PE is operating near net=0 its output will also be small, so the

weights leaving the PE will likewise have a small increment. This diverse rate of updating

of the different weights due to the nonlinearity is a source of internal competition that

tends to assign some PEs to one pattern cluster and other PEs to a different pattern

cluster. Since the PEs in a MLP create the discriminant functions, this is the source of the

power of the nonlinear systems for classification, and what differentiates them from linear

systems. If the PEs were linear (or nonlinear but non-saturating), there would not be any

internal competition and the weights associated with each PE would tend to have the

same value (remember what happens in the adaline). PEs would never specialize and

the network would not be able to respond sharply with high values for some patterns and

low values to other patterns.

However, the attenuation of the error across a layer also imposes some constraints on

the learning process. Here we will discuss:

• the choice of the number of layers

• the weight initialization.

For the sake of training efficiency, we should not create topologies with many layers,

since the layers closer to the input will train very slowly, if at all. One should always start

to solve a problem with shallow networks (i.e. a perceptron) for quicker training. If the

perceptron does not provide a reasonable error, then try the one hidden layer MLP, and

finally the two hidden layer MLPs should be tried. Since two hidden layer MLPs are

universal mappers, more than two nonlinear hidden layers are rarely recommended.

 13

Another variable that the user can set before starting a training run is the initial weight

values. The initial weights affect the learning performance of the network, because an

initialization far away from the final weights will increase the training time, but also

because we would like that all the PEs in the network would learn at the same speed.

good initial weight values

In order to break possible symmetries that could stall learning (i.e. the degenerate

solution where all weights are zero in the XOR problem), or saturate the PEs, it is

common practice to start the network weights with random initial conditions. The random

initial condition is implemented with a random number generator that provides a random

value.

As we discussed earlier, a PE which is in its linear region learns faster than one that is in

the saturated region. For better training performance the goal is to have each PE learn

at approximately the same rate. If we set the variance of the random initial conditions

based on the fan-in of the PE (i.e. the number of inputs it receives), each PE will be in its

linear region, so all will learn at the “same” rate. For the tanh nonlinearity, a rule of thumb

is to set the variance of the random number generator that assigns the initial weights at

−⎛
⎝⎜

⎞
⎠⎟

2 4 2 4.
,

.
I I Equation 2

where I is the fan-in of the PE.

NeuroSolutions 5

4.5. Effect of initial conditions on adaptation

In this example we will show how the initial conditions dramatically affect the

adaptation of the weights in the XOR problem. When we set the initial conditions

to the values discussed above, we get significantly better performance and better

learning curves.

 NeuroSolutions Example
Go to next section

 14

3. Other Search Procedures
The popularity of gradient descent is more based on its simplicity (can be computed

locally with two multiplications and one addition per weight) than on its search power.

There are many other search procedures more powerful than backpropagation. We

already discussed in Chapter I Newton’s method which is a second order method

because it uses the information on the curvature to adapt the weights. However Newton’s

method is much more costly to implement in terms of number of operations and

nonlocality of information, so it has been used little in neurocomputing. Although more

powerful, Newton’s method is still a local search method, and so may be caught in local

minima, and diverge sometimes due to the difficult neural network performance

landscapes. Simulated Annealing or genetic algorithms (GA) are global search

procedures, i.e. they can avoid local minima. The issue is that they are more costly to

implement in a distributed system as a neural network, either because they are inherently

slow or they require nonlocal quantities. Global Optimization is beyond the scope of this

book, and the interested reader is directed to (Horst)

Here we will cover improvements to the basic gradient descent learning

)()(ijij wJnw ∇η−=Δ
which is generally called a first order method . Recall that the LMS algorithm, delta rule

and backpropgation use weight updates that are all particular implementations of this

basic concept. They use a sample (noisy) estimate of the gradient that essentially

multiplies the local error by the local activation

)()()(nxnnw jiij ηδ=Δ Equation 3

We will improve Eq. 3 to cope with the added difficulty of searching nonconvex

performance and surfaces that may have flat regions. It is obvious that a gradient-based

algorithm will be trapped in any local minima since the search is based on local gradient

information only (see Chapter III). In terms of local curvature, a local minimum and the

 15

global minimum are identical, so the gradient descent will be trapped in any local

concavity of the performance surface. The gradient descent method will move very slowly,

if at all (called stalling), when the search traverses a flat region of the performance

surface because the weights are modified proportional to the gradient. If the gradient is

small the weight updates will be small (for a constant step size), so many iterations are

needed to overcome the flat spot (or saddle point). This situation is easily confused with

the end of adaptation when the search reaches the global minimum of the performance

surface.

Not everything is bad in gradient descent. Fortunately, the gradient estimate in

backpropagation is noisy, so adaptation has a chance to escape shallow local minima

and to pass through flat spots using momentum learning. Conversely, noisy gradients

make the adaptation slower (the weights are not always moving towards the minimum

error). These arguments point to an appropriate control of the step sizes or learning rates

and to seek improved search methodologies. In this section, we will introduce a few

methods that help alleviate these problems of gradient descent search (local minimum

and saddle points).

3.1. Momentum Learning
Momentum learning is an improvement to the straight gradient descent search in the

sense that a memory term (the past increment to the weight) is utilized to speed up and

stabilize convergence. In momentum learning the equation to update the weights

becomes

() () () () () ()()w n w n n x n w n w nij ij i j ij j+ = + + − −1 1ηδ α Equation 4

where α is the momentum constant. Normally α should be set between 0.5 and 0.9. The

reason this is called momentum learning is due to the form of the last term that

resembles the momentum in mechanics. Note that the weights are changed

proportionally to how much they were updated in the last iteration. So if the search is

 16

going down the hill and finds a flat region, the weights will still be changed not because of

the gradient (which is practically zero in a flat spot) but due to the rate of change in the

weights. Likewise in a narrow valley, where the gradient tends to ping-pong between

hillsides, the momentum stabilizes the search because it tends to make the weights

follow a smooth path. The figure below summarizes the advantage of momentum

learning. Imagine a ball (weight vector position) rolling down a hill (performance surface).

If the ball reaches a small flat part of the hill it will continue past this local minimum

because of its momentum. A ball without momentum, however, will get stuck in this

valley. Momentum learning is a robust method to speed up learning and we recommend

it as the default search rule.

Gradient Descent Gradient Descent with
Momentum

Direction of
weight change

11

2
3

2,3...

Figure 2. Why momentum learning helps

NeuroSolutions 6

4.6. Momentum Learning

This example compares the speed of adaptation of the straight gradient search

procedure with momentum learning. Since there are many local minima in this

problem, the momentum learning works much better since it helps us “roll”

through the flat parts of the performance surface. The problem is already our well

known STAR problem. Notice that with momentum learning the speed of

adaptation is much higher for the same learning rate.

 NeuroSolutions Example

3.2. Adaptive Stepsizes

 17

Simplicity is the only reason to utilize the same stepsize for each weight and during the

entire training phase. In fact, we know from Chapter I that the stepsize should be

determined according to the eigenvalue for that particular direction. The problem is that

eigenvalues are not normally known, so it is impractical to set them by hand. However,

we have the feeling that observing the behavior of the error and/or weight tracks should

allow a better control of the training. In fact, when the learning curve is flat, the step size

should be increased to speed up learning. On the other hand, when the learning curve

oscillates up and down the step size should be decreased. In the extreme, the error can

go steadily up, showing that the learning is unstable. At this point the network should be

reset. We can automate this reasoning in an algorithm by adapting the step sizes

independently for each weight and through the training phase.

The idea is very simple: when consecutive weight updates produce the same error sign,

the learning rate is too slow. Conversely, when the error sign is toggling from iteration to

iteration, the step size is too large. These simple principles can be put into a rule called

the adaptive step size method that adapts each step size continuously during training. If

the following rules are applied to a single stepsize then there is no benefit for adaptation

speed. Let us denote the learning rate for the weight wij as ηij. The update to each step

size is

() ()
() ()
() ()Δηij ij

ij ij

ij ijn
k

b n
if
if

S n D n
S n D n

otherwise
+ = −

− >
− <

⎧

⎨
⎪

⎩
⎪

1
0

1 0
1 0η

 Equation 5

where the products of Sij and Dij are measuring simply the sign of the gradient over the

iterations. The first case refers to the case of slow convergence, so the step size is

arithmetically increased at each iteration (increased by a constant, which is a slow

process). The second case refer to the case that the present stepsize is too large, so the

algorithm decreases the stepsize proportionally to its current value, which is a geometric

decrease (very fast). The reason for these two different regimes comes from the fact that

 18

one wants to avoid divergence at any cost (the search algorithm looses the information

where it is in the performance surface and has to start over).

Now let us analyze carefully the conditions to increase or decrease the stepsize. Dij (n) is

the partial derivative of the cost with respect to weight wij (i.e. the gradient), and Sij (n) is

a running average of the current and past partial derivatives given by

() () () ()S n D n S nij ij ij= − − + −1 1γ γ 1 Equation 6

where γ is a number between 0, 1 (the exponential time constant). The product of Sij and

Dij is checking if the present gradient has the same sign as the previous gradients

(reflected in the value of Sij).

NeuroSolutions 7

4.7 Adaptive Stepsizes

Let us solve the STAR problem now with the adaptive stepsize (delta bar delta)

search to see the speedup achieved. The adaptive stepsize algorithm gives us the

flexibility to have high learning rates when we are in flat parts of the performance

surface and low learning rates when the adaptation begins to rattle or get unstable.

The NeuroSolutions version of the delta bar delta algorithm includes momentum,

so this algorithm should work better than any of the methods we have discussed

so far.

 NeuroSolutions Example
There are many other alternate algorithms to adapt the stepsize, such as Fahlman ’s

quickprop, and Almeida ’s adaptive stepsize Almeida’s adaptive stepsize . You should

experiment with them in NeuroSolutions since they are implemented there. The big

problem is that all these algorithms increase the number of free parameters that the user

has to heuristically set. So they can be fine-tuned for each application only after

extensive experimentation.

Another alternative is to inject random noise at either the input, weights, and desired

 19

response. The motivation is to “shake” the weights during adaptation in order to minimize

the probability of having the search caught in local minima. This idea is reminiscent of the

operating principle of simulated annealing which uses a scheduling of noise to reach the

global minimum of the performance surface. The process is also very simple to

implement when applied to the input or the desired response. In fact, if we add zero

mean white Gaussian noise to the desired response, we obtain

)()()(nnndnd ww +=
which is then transmitted to the injected error e(n) and then to the weight update through

backpropagation. The advantage of applying the noise to the desired response is that we

have a single noise source, and since the dual network is linear as we saw in Chapter III,

it is still an additive zero-mean perturbation to the weight update. But remember that the

noise variance should be scheduled to zero such that the optimum solution is obtained.

Unfortunately, there is no principled approach to set the noise variance, nor to schedule it.

The injection of noise at the input is no longer a linear contribution to the weight update,

but it has been shown to produce better generalization (see Bishop) which is highly

desirable.

NeuroSolutions 8

4.8. Adaptation with noise in the desired signal

This example adds the noise component to the desired signal to show how we can

get better performance. The noise helps the algorithm to bounce out of local

minima. We will also anneal the noise variance so that we have a lot of noise at

the beginning of training to help us move out of local minima quickly but a little

noise at the end of training to reduce rattle and increase precision.

 NeuroSolutions Example
Notice that until now all the modifications to the gradient descent rule of Eq. 3 utilize the

same basic information, namely the activation to the PE and the error to its dual which

characterize first order search methods. In NeuroSolutions, the dataflow architecture for

backpropagation and the layered nature of its implementation provide a straightforward

 20

selection of any of these methods. In fact, only the weight update rule (the search

component) needs to be modified which can be accomplished by simply changing the

search component icon on the breadboard. This enhances even further the value of the

data flow concept for simulation of neural networks.

3.3. Advanced Search Methods
Numeric optimization techniques are a vast and mature field. We will only provide here a

synopsis of the classes of search methods that are important for neural network

researchers. The interested reader is referred to Luenberger , and Fletcher for a full

coverage of the topic.

The problem of search with local information can be formulated as an approximation to

the functional form of the cost function J (w) at the operating point . This

immediately points to the Taylor series expansion of J around

w0

w0

J J() () () / () () ...w w w J w w w H w w0= + − ∇ + − − +0 0 01 2 0

where ∇ is our already familiar gradient, and H is the Hessian matrix, i.e. the matrix of

second derivatives with entries

J

0

)(2

ww
ji

ij ww
wJH =∂∂

∂
=

evaluated at the operating point. We can immediately see that the Hessian can NOT be

computed locally since it uses information from two different weights. If we differentiate J

with respect to the weights, we get

∇ = ∇ + − +J J() () () ...w w H w w0 0 Equation 7

so we can see that in order to compute the full gradient at w we need all the higher terms

of the derivatives of J. This is impossible to do. Since the performance surface tends to

be bowl shaped (quadratic) near the minimum we normally are only interested in the first

and second terms of the expansion.

 21

If the expansion of Eq. 7 is restricted to the first term we obtain the gradient search

methods (hence their name - first order methods), where the gradient is estimated with its

value at w0.

If we expand to use the second order term, we obtain Newton’s method (hence the name

second order method). It is interesting to note that if we solve the equation we

immediately get

∇ =J 0

w w H J w= − ∇−
0

1
0() Equation 8

which is exactly the equation for the Newton’s method presented in Chapter I. Newton’s

method has the nice property of quadratic termination (it is guaranteed to find the exact

minimum in a finite number of steps for quadratic performance surfaces). For most

quadratic performance surfaces it can converge in one iteration.

The real difficulty is the memory and the computationally cost (and precision) to estimate

the Hessian. Neural networks can have a thousand of weights, which means that the

Hessian will have a million entries….This is the reason why methods of approximating

the Hessian have been heavily investigated. There are two basic class of

approximations:

• line search methods

• pseudo-Newton methods.

The information in the first type is restricted to the gradient together with line searches

along certain directions, while the second seeks approximations to the Hessian matrix.

Line search methods
The basic idea of line search is to start with the gradient descent direction and search for

the minimum along the line, i.e.

))()((min)()()()()1(nnnwherennnn sw λ+=λλ+=+
λ

Jsww

Steepest descent is itself a line search method where the direction s is the gradient

 22

direction . Batch learning with the LMS, delta rule or backpropagation

basically implement steepest descent. The problem with the gradient direction is that it is

sensitive to the excentricity of the performance surface (caused by the eigenvalue

spread), so following the gradient is not the quickest path to the minimum. We analyzed

this aspect in Chapter I. Alternatively, one can compute the optimal stepsize at each point

which corresponds to a line search as we saw above. But we can prove that successive

directions have to be perpendicular to each other, i.e. the path to the minimum is

intrinsically a zig-zag path (Luenberger).

)(0wJs −∇=

Figure 3. Path to the minimum with line minimization

We can improve this procedure if we weight the previous direction to the minimum with

the new direction, i.e. cutting across the zig-zag. The formulation becomes

oldnewnew sJs α+−∇=
where α is a parameter that compromises between the two directions. This is called the

conjugate gradient method. For quadratic performance surfaces, the conjugate gradient

algorithm preserves quadratic termination and can reach the minimum in n steps where n

is the dimension of the weight space. As we will see below, the interesting thing is that

we do not need to compute second derivatives (Hessian), and in fact the algorithm is

compatible with backpropagation.

Notice that the momentum learning implements this idea to a certain extent, since we can

view the difference between the previous weights as the estimate of the old direction. But

 23

α is fixed throughout instead of being estimated at each step, and there is no search for

the best stepsize.

Pseudo Newton methods
In pseudo Newton methods, the idea is to come up with computationally simple and

reasonable approximations to the Hessian. The simplest is just to forget about the cross

terms in the Hessian matrix, i.e. use only the diagonal terms. This is equivalent to

performing Newton’s algorithm separately for each weight, which transforms Eq. 8 into

2

2)(
)()(

i

i n
nn

w
J
Jw

∂
∂

∇−
=Δ

Normally we replace this rule by

β+
∂

∂

∇−
=Δ

2

2)(
)()(

i

i
n

nn

w
J

Jw

 Equation 9

where β is a small constant and avoids the problem of negative curvature and a zero

denominator. Notice that Eq. 9 is in fact very similar to the normalized LMS we presented

in Chapter I, since for the linear network we can estimate the diagonal entries of the

Hessian by the power (or the trace) of the input. ‘

This is a very crude approximation of the Hessian. More accurate approximations which

still are less computationally expensive than the full procedure (which is O(N³), with N

being the number of weights) are : the Levenberg-Marquadt (LM), the

Davidson-Fletcher-Powell (DFP) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS).

See Luenberger . LM is the most interesting for neural networks since it is formulated as

a sum of quadratic terms just like the cost functions in neural networks.

3.3.1 Conjugate gradient method
A set of vectors {sj} is conjugate with respect to a positive definite matrix (e.g. the

Hessian) if . What this expression says is that the rotation by H of
iji ≠= 0HssT

j

 24

the vector sj must by orthogonal to si. In Rn there are an infinite number of conjugate

vector sets. It is easy to show that the eigenvectors of the Hessian form a conjugate set

and can then be used to search the performance surface. The problem is that one needs

to know the Hessian, which is not practical. However, there is a way to find a conjugate

set of vectors that does not require the knowledge of the Hessian. The idea is to

express the conditions for a conjugate vector set as a function of differences in

consecutive gradient directions as

jijii T ≠=−∇−∇ 0)())1()((sJJ
For this expression to be true, the minimum of the gradient of J(i) in the direction s(j) is

needed. So the algorithm works as follows:

Start with the gradient descent direction, i.e.)0()0(Js −∇= . Search the minimum

along this direction. Then construct a vector s(j) which is orthogonal to the set of vectors

 which can be accomplished by)}1(),...,1(),0({ −∇∇∇ jJJJ

)1()()(−α+−∇= jjj sJs
There are basically three well known ways to find α, namely the Fletcher-Reeves, the

Polak-Ribiere, or the Hestenes-Steifel formulas which are equivalent for quadratic

performance surfaces, and are given by

)1()1(
)())1()((

)1()1(
)())1()((

)1()1(
)()(

−−∇
∇−∇−∇

=α
−∇−∇
∇−∇−∇

=α
−∇−∇

∇∇
=α

jsjJ
jJjJjJ

jJjJ
jJjJjJ

jJjJ
jJjJ

T

T

jT

T

jT

T

j

In quadratic performance surfaces, repeat the procedure n times, where n is the size of

the search space. The minimization along the line can be accomplished for quadratic

performance surfaces as Eq. 29 .

The problem is that for non-quadratic performance surfaces such the ones found in

neurocomputing, quadratic termination is not guaranteed and the line search does not

have an analytic solution.

 25

The lack of quadratic termination can be overcome by executing the algorithm for n

iterations and then reset it to the current gradient direction again. The problem of the line

search is more difficult to solve. There are two basic approaches: search or the scaled

conjugate method (Shepherd). The first involves multiple cost function evaluations and

estimations to find the minimum which complicates the mechanics of the algorithm (an

unknown number of samples are needed, and we have to go back and forth in the

estimations). The scaled conjugate is more appropriate for neural network

implementations. It uses Eq. 24 and avoids the problem of non-quadratic surfaces by

massaging the Hessian such to guarantee positive definiteness, which is accomplished

by H+λI, where I is the identity matrix. Eq. 24 becomes

2

jjj
T
j

j
T
j

j
ssHs

sJ

λ+

∇−
=μ

 Equation 10

At first, we may think that this method is more computationally expensive than search

due to the Hessian matrix. But in fact this is not the case, since there are fast methods to

estimate the product of a vector by the Hessian (the product only has n components). We

can use the perturbation method to estimate the product LeCun, Simard, Pearlmutter

)()()()(ε+
ε

∇−ε+∇
=∇∇ OT wJswJJs

or use an analytic approach due to Pearlmutter . Both methods are compatible with

backpropagation as we will see below.

We still need to address how to set λ, which is not difficult, but involves trial and error.

The idea is the following: if from one step to the next the error increases is because we

are in an area of J that is far from quadratic, so the Hessian is not positive definite. In

such cases, we should back-off and increase λ until the error decreases. Notice in fact

that for large λ (the denominator becomes approximately
2sλ

) we are just using

gradient descent which is known to be convergent to the minimum (albeit slow). When

 26

the error decreases, then λ should be again decreased to fully utilize the potential of

exploiting the local quadratic information of the performance surface. NeuroSolutions

implements conjugate gradients with re-scaling.

3.3.2. Levenberg-Marquadt Quasi-Newton Method

The Levenberg-Marquadt algorithm uses the Gauss-Newton method to approximate the

Hessian. Let us assume that the performance function is a sum of individual components

)()()()(
1

2 weweww T
N

i
ieJ == ∑

=
where N is the number of samples in the training set, and ei are the instantaneous errors.

Then it is easy to show that the gradient is

)()(2)(wewJwJ T=∇ Equation 11

where J is the Jacobian matrix given by

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

n

NN

n

w
e

w
e

w
e

w
e

J
)(

...
)(

.........

)(
...

)(

)(

1

1

1

1

ww

ww

w

The Hessian is easily obtained from Eq. 11 as

∑
=

∇=+=∇
N

i
i

T wewewSwherewSwJwJwJ
1

22)()()()(2)()(2)(

Assuming that S(w) is small, the Hessian can be approximated by

)()(2)(2 wJwJwJ T≅∇
So Eq. 8 can be written

))(())(())](())(([)()1(1 nnnnnn wewJwJwJww TT −−=+
This weight update does not require second order derivatives. The approximation

introduced, may result in difficulties in inverting H. But as we saw above for the conjugate

gradient, we can add a small value (λ) to the diagonal of J to make sure that the matrix is

full rank. This provides the Levenberg-Marquardt algorithm

 27

))(())((])())(())(([)(1 nnnnnn wewJIwJwJw TT −λ+−=Δ Equation 12

This is a really interesting formula: Notice that if λ is increased such that the first term of

the inverse is negligeable, then the weight update is basically gradient descent with a

stepsize (1/ λ (n)). On the other hand if λ is zero than the information about the curvature

is utilized in the search.

We mentioned this fact because we have to practically set λ during the adaptation. The

goal is to have λ as small as possible to guarantee inversion. But this depends upon the

data. So we should start with a small value of λ (λ =0.01), and see if the next weight

vector produces a smaller error. If it does, continue. If the error for this new position is

higher than before, we have to backtrack to the old weight vector, increase λ and try

again. At each try λ should be increased by a nominal amount (5 to 10 is normally

recommended). Notice that if we continue doing this, we will default to gradient descent

which is known to be convergent with small stepsizes. When the error for the new

evaluation of the weights produces a smaller error, then start decreasing λ by the same

factor.

This algorithm is particularly well suited for training neural networks with the MSE.

Moreover, it interfaces well with the backpropagation formalism. Note however, that here

we need to keep separated all the errors since we need to use the Jacobian matrix. In

conventional backprop the errors from all the outputs get added up at each PE, and in

batch we even add all these errors across the training set. However, here each partial of

the error must remain accessible during training of a batch, which causes huge storage

requirements. Nevertheless, the backpropagation algorithm can still propagate

sensitivities from the output to each node to evaluate each entry in the Jacobian. As a

rule, backprop must be applied repeatedly and independently to each output to avoid the

addition of errors, i.e. the injected error vector for a P output system becomes

 28

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎯→⎯

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎯→⎯

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

P

P

e

e
e

e

e

e
...
0
0

0
...

0

0
...
0 22

1

1

So each input-desired response pair creates P errors. Each of these backprop sweeps

for a given sample will create a row of the Jacobian (the number of columns is given by

the number of weights in the network). Each new sample will repeat the process. So one

can see that the Jacobian matrix gets very large very quickly. The other difficulty is that

the algorithm is no longer local to the weight. Nevertheless the Levenberg-Marquardt

algorithm has been shown much faster than backpropagation in a variety of applications.

As a side note, the conjugate gradient of Eq. 10 also requires the use of the Jacobian

matrix, so it uses the basic same procedure.

Go to next section

4. Stop Criteria
We have addressed many aspects of gradient descent learning, but we have not yet

discussed how and when to stop the training of the neural network. Obviously training

should be stopped when the learning machine has learned the task. The problem,

however, is that there are no direct indicators that measure this.

4.1. Stopping based on training set error
One of the simplest ways to stop the training phase is to limit the number of iterations to a

pre-determined value, as we have done so far. But the only appeal of this criterion is

simplicity. It does not use any information or feedback from the system before or during

training. When the number of iterations are capped at a predefined value, there is no

guarantee that the learning machine has found coefficients that are close to the optimal

values.

This suggests an analysis of the output MSE to stop the training. One can choose an

acceptable error level for the problem and threshold the MSE. Choosing the MSE

 29

threshold value, however, is tricky because the MSE is just an indirect variable in

classification. Moreover, one has no guarantee that the learning system will achieve the

pre-selected MSE value, so the training may never end.

Still another alternative is to let the system train until the decrease of the MSE from one

iteration to the next is below a given value (threshold the incremental MSE). The idea is

to let the system train until a point of “diminishing returns”, i.e. until it basically can not

extract more information from the training data. Unfortunately, this method has the

problem of prematurely stopping the training in flat regions of the performance surface.

 NeuroSolutions 9

4.9. Stopping based on MSE value

In this example we use a new component, the transmitter, to stop training. There

are two types of transmitters, the threshold transmitter and the delta transmitter.

The threshold transmitter transmits a message (in this case to the controller to

stop training) when the value of the error gets below a certain point. The delta

transmitter stops training when the difference between two successive errors is

below a certain value. When you look at the properties of the delta transmitter

you will notice that there is a smoothing algorithm applied to the error – this can

help reduce the probability of stopping because of outliers. Notice that both of

these stop criterion have their problems – we will discuss better methods in the

next section.

 NeuroSolutions Example

4.2. Stopping criterion based on generalization
The previous stop criteria did not address the problem of generalization , i.e. how well the

learning system performs in data that does not belong to the training set. Old ideas in

data modeling and recent developments in learning theory (Vapnik) clearly indicate that

after a critical point, an MLP trained with backpropagation will continue to do better in the

training set but the test set performance will begin to deteriorate. This phenomenon is

called overtraining.

 30

One method to stop the training is at the point of maximum generalization (given the

present data and topology). This method is called early stopping, or stopping with

crossvalidation. It has been experimentally verified that the training error always

decreases (for a sufficient large net) when the number of iterations is increased. If we plot

the error in a set of data that the network was not trained with (the validation set) we find

that the error starts to decrease with the number of iterations, but then starts to increase

again (Figure 4). So training should be stopped at the point of the smallest error in the

validation set.

training set

validation
J

iterations

early stopping
for best

generalization set

Figure 4 . Cross validation or early stopping

To implement this method, the training set should be divided in two sets, the training and

the crossvalidation sets. The crossvalidation set is normally taken as 10% of the total

training samples. Every so often (i.e., 50 -100 iteration), the learning machine

performance with the present weights is tested against the validation set. Training should

be stopped when the error in the crossvalidation set starts to increase. This point is the

point of maximum generalization.

The problem with this methodology is that crossvalidation decreases the size of the

training set. Since neurocomputing tends to suffer from a lack of data to begin with,

crossvalidation makes this situation even worse. In this case, however, the benefits

(accurate stopping point) typically outweigh the costs (less data). This method is the

recommended stopping criterion for real world applications mainly when comparisons of

neural topologies are being conducted. NeuroSolutions implements this method as we

 31

will exemplify next.

NeuroSolutions 10

4.10 Stopping with Crossvalidation

We will again solve the STAR problem but this time using Cross Validation as the

stop criteria. We have created an additional set of points which we will use as our

Cross Validation (or test) set. The figure below shows the training set and test set:

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Cross Validation Data - Red = 1, Blue = -1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Training Data - Red = 1, Blue = -1

In order to implement the crossvalidation in NeuroSolutions we have to bring two

input and desired files. In the file component we have to specify one pair will be

the training/desired files while the other will be the crossvalidation files. Likewise

in the controller we have to specify that we are using crossvalidation.

This example will clearly show that overtraining can greatly reduce the

generalization ability of the network. You will also see how important it is to have a

sufficient amount of training data that covers the input space as much as possible.

 32

Any points in the input space which are not in the training set are considered to be

“don’t cares” by the network. This can result in odd shaped discriminant plots

which have very good mean square errors but poor performance with new data.

 NeuroSolutions Example
Go to next section

5. How good are MLPs as learning machines?

5.1. Training set size
The size of the training set directly influences the performance of any classifier trained

non-parametrically (e.g. as neural networks). This class of learning machines requires a

lot of data for appropriate training, because there are no a priori assumptions about the

data. It is important to know how the requirement in training set size scales as a function

of the size of the network for a given precision in the mapping.

The number of training patterns (N) required to classify test examples with an error of δ is

approximately given by

N
W

>
δ Equation 13

where W is the number of weights in the network. This equation shows that the number

of required training patterns increases linearly with the number of free parameters of the

MLP, which is excellent compared to other classification methods. A rule of thumb states

that N~10W, that is, the training set size should be 10 times larger than the number of

network weights to accurately classify test data with 90% accuracy.

In this rule of thumb it is assumed that the training set data is representative of all the

conditions encountered in the test set. The main focus when creating the training set

should be to collect data that covers the full known operating conditions of the problem

we want to model. If the training set does not contain data from some areas of patterns

 33

space, the machine classification in those areas will be based on generalization. This

may or may not correspond to the true classification boundary (your desired output), so

one should always choose samples for the training set that cover as much of the input

space as possible.

We should remark that in Eq.13 the practical limiting quantity is the number of training

patterns. So, most of the time one needs to compromise the size of the network to

achieve appropriate training for the learning machine. A reasonable approach to reduce

the number of weights in the network is to sparsely connect the input layer to the first

hidden layer (which normally contain the largest number of weights). This will help

achieve the requirement of Eq. 13. Another possibility is to use feature extraction (i.e. a

preprocessor) that decreases the input space dimensionality, thus reducing the number

of weights in your network.

NeuroSolutions 11

4.11 Sparse connectivity in the input layer

Here we will show that with the arbitrary synapse generalization can be improved

with respect to the fully connected case. We will use the STAR data set that we

have been training with 4 hidden PEs. But instead of 8 weights in the first Synapse

now we will restrict the number to 4, randomly connected. Run the network and

show that the solutions found are normally more reasonable as the ones using 8

weights.

One way to show this is to use the cross data as you did before,

 NeuroSolutions Example

5.2. Scalability
Another very important point in learning machines is to address how well their properties

scale when the size of the problem increases. The literature is full of examples of

systems that perform very well in small problems, but are unable to extend the same

performance to larger problems. One very important proof advanced by Barron through

the analysis of the MSE for several size problems, states that the (one hidden layer) MLP

 34

error is independent of the size of the input space and scales as the inverse of the

number of hidden PEs (O(1/N)). This is much better than polynomial approximators

where the error is a function of D, the dimension of the space, i.e. when the input space

dimension increases to keep the same error one has to exponentially increase the

number of parameters (O ND(/1 2
). So this means that MLPs are particularly well

suited to deal with large input dimensional problems. This may explain the good

performance of MLPs in large classification problems.

5.3. Trainability
The training time of an MLP using backpropagation was experimentally verified to

increase exponentially with the size of the problem, i.e. although the required number of

patterns increases only linearly with the number of weights, the training of larger

networks seems to scale exponentially to their size. This indicates that there are

problems that can not be solved practically with MLPs trained with backpropagation.

However, we can use modular network architectures or sparse connections to counteract

this law, as well as training rules that do not converge linearly with the number of

iterations as the gradient descent. In practice, this exponential scaling of training times

with network size provides another argument to start first with small networks and

increase their size if the results are not satisfactory. Moreover, this property emphasizes

the importance of training methods that extract information more efficiently from the data

than gradient descent. Now you may understand a little better the importance of the

discussion of the conjugate gradient and the quasi-Newton methods presented in section

3.3.

5.4. Did the network learn the task?
In the application of neural networks to real world problems, it is very important to have a

criterion for accepting the solution. Only then can we successfully act to overcome any

potential difficulties.

The learning curve is a precious indicator for observing the progression of learning, but

 35

the MSE either in the training or test sets is only an indirect measure of classification

performance. The MSE is dependent upon the normalization and characteristics of the

input data and desired response. One should normalize the total error by the variance of

the desired response to have an idea of how much of the desired variance was captured

by the neural model. This is reminiscent of the correlation coefficient for linear regression,

but there is no precise relation between classification accuracy and MSE.

The performance of a classifier is measured in terms of classification error as we saw in

Chapter II. The accuracy of the classifier is one minus the classification error. Therefore,

a much better approach is to construct the confusion matrix to count exactly the number

of misclassifications. The confusion matrix is a table where the true classification is

compared with the output of the classifier (see Table I). Let us assume that the true

classification per class is the column and the classifier is the row. The classification of

each sample (specified by a row) is added to the column of the true classification. A

perfect classification provides a confusion matrix that has only the diagonal populated. All

the other entries are zero.

Confusion Matrix
true/
machine

class 1 class 2 total
machine

class 1 # entries (or
percentage)

class 2
total true total samples

The confusion matrix also enables easy visualization of where the classifier has

difficulties. In general some of the classes will be more separable than others, so the

confusion matrix immediately pin points which classes produce miscalssifications (off

diagonal entries that have large values). In summary, the confusion matrix is an excellent

way of quantifying the accuracy of a classifier. As we discussed in Chapter II, the test of

the classifier should be performed in the test set, so the confusion matrix should be

 36

constructed in the test set.

NeuroSolutions 12

4.12 Confusion matrix for classification performance

In this example we will show how for classification, the confusion matrix gives us a

much better picture of the performance of the network than the Mean Squared

Error. The confusion matrix tells us exactly what we want to know – how well the

network is classifying the data. The mean squared error only tells us the average

difference between the network output and the desired output. Since

classification is an “all or nothing” type of problem, it doesn’t always matter how

close you are to the desired +/- 1 as long as you are beyond the classification

threshold.

 NeuroSolutions Example
Once we find that learning is not successful (a large classification error assessed by the

confusion matrix), the next step is to find out why the network did not learn correctly. Poor

performance may have many different explanations:

• the network may not have the discrimination power (number of layers) to correctly classify the
data (just remember the perceptron and the XOR);

• the network may not have enough PEs (remember the case of the bump with two hidden
PEs); or

• learning may be stuck in a local minimum or flat spot.

• we may not have collect enough data to represent the problem well.

• the problem may be intrinsically difficult with the features (measurements) that we are using,
so we may also want to transform/filter the inputs or add new inputs to simplify the
classification problem.

When the learning curve stabilizes after many iterations at an error level or classification

error that is not acceptable, it is time to rethink the network topology (more hidden PEs or

more hidden layers, or a different topology altogether) or the training procedure (other

more sophisticated gradient search techniques).

Unfortunately there is no general rule to test any of these issues, so the designer of

classifiers must use his insight and knowledge of the problem to improve the machine

 37

classification. And adopt a “manual supervision” of the learning instead of setting initially

the learning parameters and dim the monitor until the next morning. We have shown how

NeuroSolutions probes are particularly useful to check what is going on during learning.

5.5. Some hints on how to improve training

We will present below a set of heuristics that will help decrease the training times and

produce in general better performance.

“ Normalize your data to the range of the network activations.

“ Use the tanh nonlinearity instead of the logistic function.

“ Use a sofmax PE at the output layer.

“ Normalize the desired signal to be just below the output nonlinearity “rail”
values (i.e. if you use the tanh, use desired signals of +/- 0.9 instead of +/- 1).

“ Add a constant value of 0.05 in the derivative of the nonlinearity (errors will
always flow through the dual).

“ Set the step size higher in the layers closer to the input.

“ Shuffle the training set from epoch to epoch in on-line learning.

“ Initialize the net weights in the linear region of the nonlinearity (choose the
standard deviation of the random noise source as Eq. 2).

“ Use more sophisticated learning methods (delta bar delta, add noise,
conjugate gradients).

“ Always have more training patterns than weights. You can expect the test set
performance of your MLP to be limited by the relation N>W/ε, where N is
the number of training patterns, W the number of weights and ε the
performance error. You should train until the mean square error is less than
ε/2.

“ Use cross validation to stop training.

“ Always run the network several times to gauge performance.

“ Use a committee of networks to improve classification.

Go to next section

6. Error Criterion
6.1. Lp norms

 38

In supervised learning, the difference between the desired response and the actual

learning system output is utilized to move the system state such that a minimum error of

the performance surface is achieved. The issue is how to define the performance, also

called the error criterion or the cost. In normal operation the learning machine will provide

an output for each input pattern. So the total cost will be computed as a sum of individual

costs, Jn,k, obtained from each input pattern presentation, i.e.

J Jn k
nk

= ∑∑ ,
 Equation 14

where k is an index over the system outputs, n is an index over the input patterns, Jn,k is

the individual cost defined as Jn,k=f(dn,k-yn,k)=f(εn,k). The only issue is then how to

compute the individual cost as a function of εn,k, which will be called the instantaneous

error εn,k.

The mean square error (MSE) criterion defines the individual cost as the square of the

instantaneous error between the desired response and the system output, i.e

Jn,k=(dn,k-yn,k)². The error power (MSE) has a meaning in itself, and has three other major

appeals:

• it leads to a linear optimization problem in linear feedforward networks, which accepts an
analytical solution;

• it provides a probabilistic interpretation for the output of the learning machine as we
discussed in Chapter 2;

• the criterion is easy to implement since it is the instantaneous error that is injected into
the dual system (no additional computations are needed).

Is there a need for other error criteria? Let’s look at Figure 5 and understand what the

mean square error criterion does.

 39

Error Norms

0

-1
.1 0 1.1Error

Jn

p=1
p=2

p>2

Figure 5 Error norms

In Figure 4 we present several cost functions derived from different powers p of the

instantaneous error. With the MSE, the instantaneous cost is the square of the magnitude

of the instantaneous error (p=2). This means that when the learning machine minimizes

the error power, it weights the large errors more (quadratically). If you recall the weight

update performed by gradient descent,
Δw xij j i= ηδ

 , you will realize that the weight

values will be updated proportionally to the size of the error, so the weights are very

sensitive to the larger errors. This is reasonable if the data is clean without many large

deviations, but in practice the data sets may have outliers. So, outliers may have an

inordinate effect on the optimal parameter values of the learning machine. Learning

machines with saturating nonlinearities control this aspect better than linear PE machines,

but they still are more sensitive to large errors than small errors. Since the values of the

weights set the orientation and position of the discriminant function one can deduce that

outliers will “bias” the position of the discriminant function.

NeuroSolutions 13

4.13 Regression performance as a function of the norm

In this example we use the linear regressor and the data from chapter 1 to show

 40

how the choice of error criterion affects the performance of the linear regression.

We have modified the data set so that one point is an outlier, it is much higher than

the others. As you will see in the example, the norms which weight large errors

more heavily will skew their regression line much closer to the outlier (giving a

less accurate estimate of the rest of the data). Remember not to try to compare the

errors as displayed in neurosolutions – the values of the error reported are

dependent on the error criterion and thus can’t be compared.

 NeuroSolutions Example
This argument shows that if we want to modify how the instantaneous error influences

the weights we can define the instantaneous cost more generally as

J d yn k n k n k

p

, , ,= −
 Equation 15

where p is an integer, which is normally called the p norm of the instantaneous error εn,k.

When p=2 we obtain the L2 norm that leads to the MSE criterion. When p=1 one obtains

the L1 norm that is called also the Manhattan metric. Notice that the L1 norm weights the

differences proportional to their magnitude, so it is far less sensitive to outliers than the L2

norm. For this reason it is called a more robust norm . In general the Lp norm for p>2

weights large deviations even more. Different norms will provide different solutions to a

learning problem, because the weights are being modified with information that depends

on the choice of the norm, so the positioning of the discriminant functions is affected by

the norm (for the same training data set).

For positive finite integers p, the derivative of the norm can be computed quite easily, as

∂
∂
J
y

d y sign d yn k

n k
n k n k

p

n k n k
,

,
, , , ,()= − −

−1

 Equation 16

but Lp norms do not cover all the cases of interest. In Lp norms the instantaneous cost Jn,k

increases for errors larger than 1 always at the same rate or faster than the

instantaneous error, which may not be our goal. There are cases of practical relevance

 41

that do not have an analytic solution such as the norm (all errors are zero except

the largest). Another possible criterion is to simply use the sign of the deviation (p=0).

Minskowski measures

L∞

NeuroSolutions 14

4.14 Classification performance as a function of the norm

In this example we will show how the choice of error criterion affects the location

of the discriminant function. We will use the height and weight data (trying to

classify male/female subjects based on their height and weight) using different

norms. You will see that the discriminant function ends up in different places

depending on the norms since each norm weights the errors differently.

 NeuroSolutions Example
6.2. Constructing the error directly

In backpropagation learning, the partial derivative of the cost with respect to the weight is

given by

∂
∂

∂
∂

∂
∂

J
w

J
y

y
wij k

k

ij
=

 Equation 17

The first partial is the instantaneous error that is injected in the dual network. Given a

cost function one can differentiate it to compute the instantaneous error of Eq.16 and

then use backpropagation to compute the sensitivity with respect to the individual weights

wij (the second term in Eq. 16).

An alternate practical approach is to separate the propagation of the instantaneous error

(done by the backpropagation algorithm) from its generation. Instead of thinking of an

error produced by the derivative of a cost function (which requires differentiable cost

functions) a function of the error, g(εk,n), can be directly injected in the dual system, i.e.

()∂
∂

ε
∂
∂

J
w

g
y
wij

k
k

ij
=

 Equation 18

 42

The function g(.) is derived to meet our needs. For instance arctanh (εk,n) implements a

reasonable approximation of the norm, since it weights large errors exponentially.

Another example is simply to take the sign of the instantaneous error and inject +/- 1, but

many more examples with unexplored properties exist.

L∞

6.3. Information theoretical error measures
In information theory, one can measure the divergence (divergence is a water down

definition of distance) between two probability distributions q(x) and p(x) by the

Kullback-Leibler (K-L) information criterion or cross entropy cross entropy criterion

L P
P
Qr

r

rr
= ∑ ln()

 Equation 19

Since the learning system output is approximating the desired response in a statistical

sense, it is reasonable to utilize the K-L criterion as our cost. In this case P becomes the

target density constructed by +1/-1, and Q the learning system output density. This is

particularly appropriate for classification problems where the L2 assumption is weak

because the distribution of the targets is far from Gaussian. In classification we work with

a discrete training set, so the integral is substituted by a summation. For c classes, the

cost function becomes

J d
y
dn k

k

n k

n kn
=

⎛

⎝
⎜

⎞

⎠
⎟∑∑ ,

,

,
ln

 Equation 20

where n is the index over the input patterns and k over the classes. Since this criterion

works on probabilities, the output PEs should be a softmax PE which exponentiates the

sum of the inputs. One can easily show (Hertz) that the instantaneous error

backpropagated through the network (the partial of J with respect to y) with the softmax is

∂
∂

J
net

y d
k

k k= −
 Equation 21

This is an interesting result, since it says that the cross entropy criterion can be

 43

implemented by the MSE criterion (which also specifies the injection of the error as Eq.

21). However, the network utilizes an output PEs that implement the softmax function.

This can be easily accommodated if we associate the softmax PE with a linear PE in the

backplane as its dual (Figure 6).

This result reduces in the two-class problem (single output PE) to the use of a logistic

output PE. By not subjecting the error to the attenuation produced by the derivative of the

output PE nonlinearity, the network converges faster. It is also possible to show that the

cross entropy is similar to the L1 norm, which means that this criterion weights small

errors more heavily when compared to the L2 norm.

MSE

output
PE

back PE

Figure 6. Implementation of the cross-entropy criterion

The other interesting thing about training the MLP with cross entropy is that the

interpretation of the output as the a posteriori probability of the class given the data, also

hold in this case (Bishop).

 NeuroSolutions 15

4.15 Cross-entropy training

In this example we will show you how easy it is to implement the cross entropy

criterion for the two class case in NeuroSolutions. All we need to do is change

the back-PE of the logistic nonlinearity at the network output to a linear back-PE.

This PE changes the backpropagated error such that the network will learn using

entropy. Notice that the learning is faster, as we would expect since the error is not

attenuated by the derivative of the nonlinearity.

 44

 NeuroSolutions Example
Go to next section

7. Network Size and Generalization
The coupling between the number of required discriminant functions to solve a problem

and the number of PEs was heuristically established in Chapter III, and the relation

between the number of weights and training patterns was just discussed in section 5.1.

From these facts one could think that the larger the learning machine the better its

performance (provided we have enough data to train it). The point about scalability shows

however that larger machines may never learn well. But this is not the most pressing

issue. All these arguments pertain to the training data. The fundamental question in any

practical application is: how does the learning machine perform in data that it was not

trained with, i.e. the test set data? This is the problem of generalization .

As we discussed earlier, MLPs trained with backpropagation do not control their

generalization ability, which can be considered a shortcoming of the technology. Using

a cross validation set to stop the training allows us to maximize generalization for a given

network size. However it does not provide a mechanism for establishing the best network

topology for generalization. The issue is the following: do networks of growing size

preserve generalization?

If we reflect on how the network performs its function, we immediately see that the size of

the machine (sometimes called the model complexity) is related to performance: too few

degrees of freedom (weights) affect the network ability to achieve a good fitting to the

target function. However, if the network is too large, then it will not generalize well,

because the fitting is too specific to the training set data (memorization). An intermediate

size network is our best choice. Therefore, for good performance, methods of controlling

the network complexity become indispensable in the MLP design methodology.

The problem of network size can be stated in a simplified manner using Occam’s razor

argument as follows:

 45

Any learning machine should be sufficiently large to solve the problem, but not larger.

The issue is to know what is large enough. Structural learning theory (V-C dimension)

gives a theoretical answer to generalization but it is difficult to apply to the MLP. Alternate

theories give partial answers that elucidate the principles at work, and will be covered in

Chapter IV. early stopping and model complexity

There are two basic approaches that deal with the learning machine size (Hertz, Krogh,

Palmer). Either we start with a small machine and increase its size (growing method); or

we start with a large machine and decrease its size by pruning unimportant components

(pruning method). Pruning is the only method we will address here.

Pruning reduces the size of the learning machine, by eliminating either weights or PEs.

The basic issue of pruning is to find a good criterion to determine which parameters

should be removed without significantly affecting the overall performance of the network.

We will describe two basic methods: eliminate weights based on their values, or compute

the importance of the weight in the mapping.

7.1. Weight elimination
The idea is to create a driving force that will attempt to decrease to zero all the weights

during adaptation. If the input-output map requires some large weights, learning will keep

bumping up the important weights, but the ones that are not important will be driven to

zero. This idea is called weight decay. Weight decay can be implemented very simply by

adding an extra term into the weight adaptation as shown next for the gradient descent

rule

() ()()w n w n xij ij i j+ = − +1 1 λ ηδ Equation 22

where δ is the local error, x the local activation, η the learning rate, and λ the weight

decay constant. Weights that are smaller than a certain value can be eliminated, reducing

the overall number of degrees of freedom of the network. Weight decay should not be

applied to the biases of the network, just to the weights.

 46

Alternatively one can only use the sign of the weight to change its value. i.e.

() () ()w n w n x wij ij i j ij+ = + +1 ηδ λ sgn Equation 23

where sgn(.) is the signum function. The problem with Eq. 22 is that it favors many small

weights instead of a large one, producing normally model bias (Bishop). One way to

counteract this problem is to create a weight decay term that is smaller for larger weights,

i.e.

() ()
()

w n w n
w

xij ij
ij

i j+ = −
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +1 1

1 2 2

λ
ηδ

 Equation 24

The weight elimination method is very easy to implement because the weights are being

updated and decayed during adaptation. The issue is how to select a good weight decay

constant λ such that convergence is achieved, and unnecessary weights do go to zero.

The weight decay equations can also be applied in lieu of the early stopping as a method

to constrain the complexity of the model. It has been shown that for quadratic

performance surfaces, weight decay is equivalent to early stopping. This will be further

described in Chapter V.

 NeuroSolutions 16

4.16. Weight-decay

In this example we will use the weight decay algorithm from

() ()()w n w n xij ij i j+ = − +1 1 λ ηδ Equation 22. In general, we do not know how

many PEs will be required to solve a given problem. However, based on

generalization considerations, we know that we want as small a network as

possible. If we have too many nodes we can obtain low errors during training but

our generalization will be poor since we may have overtrained the network or

obtained a solution too specific to the training data. Weight decay subtracts a

small portion from each weight during each update. Since the weights which are

 47

important to the solution will be constantly updated while the others are not, the

important weights will move to the correct location and the other weights will move

towards zero. This is effectively limiting the number of PEs to only those which

are required. A very good result.

 NeuroSolutions Example
7.2. Optimal brain damage

The previous method is solely based on weight magnitude, which is a crude measure of

the importance of the weight in the input-output map. A better measure to compute

weight saliency is to find the effect on the cost of setting a weight to zero (LeCun). It has

been shown that the Hessian H with elements

H
J

w wij
i j

=
∂

∂ ∂ Equation 25

contains the required information. The problem with this computation is that it is non-local

(requires information from pairs of weights). A local approximation (sometimes poor) to

the Hessian can be computed taking into consideration only the diagonal terms, which

leads to the following calculation of the saliency si for each weight wi,

s H wi ii i= 2 2/ Equation 26

To apply this method, a large network should be trained in the normal way and saliencies

computed for each weight. Then the weights are ordered in terms of saliency and a

percentage with the smaller saliences discarded. The network needs to be retrained

using the previous values of the weights as the initial condition. The process can be

repeated. We have covered the basic principles of topology selection and training of the

MLP. We are ready now to apply MLPs to a real world problem.

7.3. Committee of networks
We saw that learning was a stochastic process, which means we should run the same

network several times to make sure we get a good and stable training. We just saw that

 48

even the topology of a neural network is a difficult decision because we have to take into

consideration the generalization ability of the machine that is dependent upon its size.

A way of improving the performance of neural network classifiers is to use several

networks of different sizes and characteristics to solve the same problem. Suppose we

train C different networks in the same data. One temptation is to utilize the network that

produced the best possible error in the training set. This strategy is not very good

because it first wastes the training of all the other runs, and second because the best

performer in the training set does not guarantee that this would extrapolate to the test set.

A much better strategy is to use ALL the trained networks, i.e. making decisions with a

committee of networks. Let us analyze what happens if we simply add their outputs, i.e.

y
C

ycom i
i

=
=
∑1

1 Equation 27

If we assume that the errors from each network are zero mean and uncorrelated with

each other, we can show (Perrone) that the error of the committee is

J
C

Jcom i=
1

 Equation 28

which is a large reduction. This is optimistic in general since the errors among networks

are not independent. The advantage comes exactly from a reduction to the variance of

the error due to the averaging produced by the addition of each individual outputs. When

we use networks to be used in committees we should use a network larger than the usual

since we would like to improve the bias, since the variance will be reduced by the

averaging produced by the committee.

Weight factors (proportional to how good each network is) can be used instead of the

fixed weighting for even better results. This is easy to do using the backpropagation

formalism. The goal is to train just the weights from each network to the output adder (or

softmax). We will demonstrate committees in NeuroSolutions

NeuroSolutions 17

 49

4.17 Committees

The idea of the committees is an interesting way out from the approach of putting

“all the eggs in one basket”, i.e. designing an unique neural network which we

tweak for optimal performance. One can in principle use very different topologies

(in fact the more distinct the better, since their performance will tend to be less

correlated) in a more or less ad-hoc fashion to improve classification results. Of

course the price paid is a large increase in the computational cost of the

simulation. But these days with the increasing power of PCs and workstations this

in fact just a little price to pay for increased performance. When taken to the limit

this method of design sidetracks some of the difficulties we found in optimally

selecting the topology, setting the number of PEs, the stopping criterion, and the

training parameters. We rely on statistics to provide the improvement of all

sub-optimal solutions, which is comparable to the best possible. This is only

possible because the big difficulty in neural network performance is the variance

of the estimation. So when used in committees the topologies should be larger

than when they used stand alone (we would like to have small bias, because the

committee improves the variance through averaging).

Here we will implement the training on-line of all the individual networks. But

notice that each network has its own criterion to guarantee that each network is

trained indepdendently from the others. We will use two MLPs (one hidden layer

and 2 hidden layer) and a RBF network (it is another class of networks - more on

this latter in Chapter V) to solve the male/female classification using the height and

weight variables. If you recall we had about 5 errors when we solved this problem

with the MLP in Chapter III. So this is the number to beat, but the real proof is to

test the performnace in a test set.

We will start by fixing the vote of each network to 1/3. Notice that the

performance is basically the same as a single network. Now we will also train the

vote of each network. The performance improves dramatically from before, since

 50

the number of mistakes decreases to 2 misclassifications. As you can see this is a

powerful way to “throw” technology at the problem.

You should create a test set to validate the improvement of the committee with

respect to a single network. Notice also that this method lends itself very nicely to

parallelization since each network can be run in a separate machine and the

results combined.

 NeuroSolutions Example
Alternatively, we can simply train all the networks on-line, i.e. concurrently, as if they

were a larger modular network made up of MLPs and the like. Effectively this is similar to

train a much larger network and set some of its weights to zero, i.e. add some a priori

structure. This configuration looks very similar to the committee, but notice that it is

trained together, so the networks interact during training. Normally each will specialize in

a given portion of the pattern space. The big advantage comes when the networks have

different discriminant functions. But notice that this training is collaborative, not

competitive (as we will exemplify later in Chapter VII). Modular networks can be easily

implemented in NeuroSolutions, so you should modify the previous breadboard to create

a modular network and compare results.

Go to next section

8. Project: Application of the MLP to real world
data

In this section we are going to use MLPs to solve several real world classification

problems. There are several URL sites that store very nice data for classification

purposes. Please see the WEB sites in Chapter I, and also the following:

http://markov.stats.ox.ac.uk/pub/PRNN

http://128.2.209.79/afs/cs/project/ai-repository/ai/areas/neural/bench/0.html

 51

http://markov.stats.ox.ac.uk/pub/PRNN
http://128.2.209.79/afs/cs/project/ai-repository/ai/areas/neural/bench/0.html

http://www.scs.unr.edu/~cbmr/research/data.html

http://neural-server.aston.ac.uk/NN/databases.html

We will start with the crab data taken from the book by Campbell and Mahon , 1974. The

goal is to classify rock crabs from two species as male or female utilizing anatomic

measurements of front lip, rear width, length, width and depth. The data set is composed

of 200 specimens, 50 males and 50 females from the two species.

We will then move to a more demanding data set - the Iris data set (source Fisher - to

show the importance of the topology of the classifier in performance. The goal is to

classify three types of Iris plants (Setosa, Versicolour, and Virginica) based on

measurements of sepal length, sepal width, petal length, and petal width (all in cm).

There are 50 samples of each class for a total of 150 samples. As you can see this

problem formulation is very similar to the previous, however the distribution of the data

clusters in the input space is more complex. The difficulty of the task is not knwon a priori

so a step by step approach to define the optimal classifier is normally required.

NeuroSolutions 18

4.18 Crab data classification

The first thing to do is to examine the data sets. The data is composed of 5

parameters per crab, and one tag for the species for a total of 6 inputs. The

desired result is a classification of male or female, so we can either use one or two

outputs. In the first case we would code male as 1 and female as 0 (or vice-versa).

In the second case each gender will have its own output. In this case the desired

file is composed of two columns with pairs of values (0, 1) depending upon the

class membership.

The next step is to normalize and divided the data. Normalization of the data allow

us to get experience with stepsizes and use systematic weight initializations. Since

the data is all positive, we will normalize it between [0,1]. We will divide the data

in training and test sets (and validation set). The training will be used to arrive at

 52

http://www.scs.unr.edu/%7Ecbmr/research/data.html
http://neural-server.aston.ac.uk/NN/databases.html

optimal weights. The test data is used to gauge the performance of the classifier,

and the validation set to help us stop the training at the point of best generalization.

A good rule of thumb is to use 2/3 (66%) of the data for training and 1/3 (33%) for

testing.

The next important definition is the topology. The idea is always to start small, so

we should star with a perceptron to see if the machine can separate the data. Since

the data is normalized between [0,1] let us use the logistic function as the

nonlinearity.

The next important decision is how to stop the training. Here we can use first the

number of iterations (I=200) to get a feel for how difficult is the problem, and then

when the topology is finally chosen switch to crossvalidation.

We still have to decide on the search method and the criterion. The search as we

said should be momentum and the criterion L2.

We are ready to run the network on the crab data. Do it several times and watch the

learning curve. If the network converges to the same small error in basically the

same number of epochs than the training is successful and we can worry on how

to stop the training with crossvalidation. If not we should select a different learning

rate, search procedure, and/or modify the topology.

The error is around 0.1 so it means that almost all the data was classified correctly

in the training set. We also see that the training is repeatable, since the learning

curves are very similar to each other. Let us go to the test set to see the

performance. As we mentioned in the test, the best way to test the classifier is not

by MSE but with the confusion matrix. We see that we get 3 errors in the test set

which is reasonable. But can we improve the performance?

In order to answer this question we have to change the topology and try a one

hidden layer network with 5 hidden PEs. Let us train the network and see what is

the performance. As you can see the error is much smaller. Let us test the system.

 53

The confusion matrix shows that the classification is perfect. In this case it is

questionable if the data is in fact linearly separable or not, since we do not have

enough data points. The errors could be due to imprecise measurements (noise

in the data).

We can now make sure that we fine tune the system. We can first train it with the

crossvalidation and see up to where we should train. The crossvalidation for this

problem/topology does not help since there is no observable increase in the

learning curve.

An alternative to cross validation is to use the weight decay on the weights. We

start with the same network but we use the idea of driving to zero all the weights.

Training the network we can see that the network size was slightly reduced but our

initial guess was pretty good.

 NeuroSolutions Example
NeuroSolutions 19

4.19. Iris data classification

In order to see how data dependent is the performance of a classifier, let us

change the data set to the iris data. The inputs to the network are sepal length,

sepal width, petal length, and petal width (i.e. 4 inputs) and the three classes of Iris

plants (which are used as the desired outputs) are Setosa, Versicolour, and

Virginica. There are 50 samples of each class for a total of 150 samples. The 150

samples have been pre-randomized. Furthermore, 100 samples will be used for

“Training” and 50 samples for “Testing”. This data is contained within the

worksheet named “Iris Data Randomized”.

Starting with the perceptron we see that the result is not satisfactory. There is a

large confusion between the classes of Virginica and Versicolour. So we need to

go to a one hidden layer MLP. The issue is how to choose the number of hidden

PEs.

 54

Let us run the MLP first with one PE in the hidden layer for several runs and record

the minimum MSE value. Then increase this number to 2, 4, 6 and run the network

several times for each. Finally we should plot the mean MSE as a function of the

number of PEs. The MSE error curve stabilizes after 2 PEs so we will put 2 PEs in

the hidden layer.

Average of Minimum MSEs with Standard Deviation
Boundaries for 3 Runs

0

0.05

0.1

0.15

0.2

0.25

1.000 2.000 3.000 4.000

Hidden 1 PEs

A
ve

ra
ge

 o
f M

in
 M

SE
s

Training

+ 1 Standard Deviation

- 1 Standard Deviation

The classification performance for this network is much improved (only 3 mistakes

instead of 19). We can then conclude that the data set is not linearly separable

since the perceptron could not solve it but the one hidden layer MLP can.

 NeuroSolutions Example
Neural Networks for decision making

The next problem we will discuss is an interesting one. Assume that we want to create a

computer aided diagnostic tool for breast cancer using a neural network. Ten features

(radius, texture, perimeter, area, smoothness, compactness, concavity, concave points,

symmetry, and fractal dimension) have been computed from a digitized image of a fine

needle aspirate of a breast mass. The inputs to the neural network model consist of the

mean, standard error, and “worst” (mean of the three largest values) for each of these 10

features resulting in 30 total inputs for each image. This data is contained within the file

 55

named “Breast Cancer Data”. We have only data from 150 images. A two hidden layer

MLP configured with 10 inputs and 2 outputs will be used as the neural network model.

The difficulty in this application is that we want to estimate a decision (sick or healthy)

based on the outcome of the neural network, i.e., we have to estimate the “probability” of

a decision. How can a neural network do that? We saw that the MLP can be trained to

give us the a posteriori probability of a class given the particular data example. The a

posteriori probability interpretation means that when the net output for class 1 is 0.9 this

can be interpreted as saying that the a posteriori probability of that example belong to

class 1 is 0.9. This is an important step, but from here to a diagnostic many other things

must be taken into consideration.

First, we used 50% of sick and 50% of normals to train the system, but the ratio of sick to

normals in the population is (fortunately) very different from this. So we have to

compensate for the a priori probabilities when we interpret the results. If you recall from

Chapter II (Figure 2), when the a priori probabilities for each class are the same, the

decision that minimizes the probability of misclassification is directly given by the a

posteriori probability. In general, when the a priori probabilities are different they multiply

the corresponding likelihoods, so the decision boundary is moved proportionally to the

ratio of the logarithm of the a priori probabilities.

The advantage of ANNs is that we do not need to retrain the network. We can still

interpret the outputs as likelihoods, and in order to obtain the a posteriori probability

simply multiply the outputs by the priors (Bayes theorem) when the training set is

constructed with equal number of exemplars from each class. For example, suppose that

the net output for the class sick was 0.9 and we know that the probability of being sick in

the population is 0.2, and equal number of cases were used in the training set. So the

probability is 0.18 that the subject has the disease. If the training set is not formed

equally by the two classes, then we should also divide the outputs by the relative

frequency of training exemplars in the respective class.

 56

The other difficulty is that there is a risk in making a decision, and the two types of errors

(the subject is normal and the network says sick - called a false positive; or the subject is

sick and the net says normal - called a false negative) have different costs. It is

preferable to initially tell a normal patient that she needs to make further exams than

simply state that she is normal when in fact she has breast cancer since the implications

are vastly different.

This means that minimizing the probability of misclassification may not be the best

strategy. We should weight the a posteriori probabilities by the risk of making the

decisions. A matrix of penalties Lij of making the wrong decisions must first be

constructed. Normally in medicine this is rather subjective, but the idea is the following.

We would like to penalize much more the false negatives (calling a sick subject normal)

than the false positives (calling a normal patient sick). The penalties are numbers

between 0 and 1, where the penalty for being correct is 0, while the penalty to being

wrong is 1. Let us call sick the hypothesis 1, and healthy the hypothesis 2. Here let us

say that the penalty of the false negative is L12=0.3 and the penalty of the false positive

is L21=0.5. So the matrix of penalties is

⎥
⎦

⎤
⎢
⎣

⎡
=

05.0
3.00

L

We compute the average penalty by

∑
=

=
c

j
ijiji CxpLR

1

)|(

where c is the number of classes and x is the random variable. We call risk the expected

value of the penalties, i.e.

R R P Ci i
i

c

=
=
∑ ()

1
where P(Ci) are the a priori probabilities. So the best decision should be done by

minimizing the risk (instead of minimizing the probability of misclassification as we did

when we applied the Bayes rule), as

 57

L p x C P C L p x C P C for all k jik i i ij i i
i

c

i

c

(|) () (|) ()< ≠
==
∑∑

11
Notice that when the network provides p(x|Ci) it is trivial to make the decision based on

risks.

NeuroSolutions 20

4.20 Risk decision in the Cancer data

In order to solve this problem we will start with a MLP and we should make sure

that the network is well configured (try several number of hidden PEs as we did

above) and it is well trained. So we should use crossvalidation to stop at the point

of maximum generalization. We should also try different initial conditions to make

sure that we are really converging to the absolute minimum.

Then the next step is to create a DLL that will compute the risk based on the above

formulas. The computer aided diagnostic is then made based on the class that

produces the smallest risk.

 NeuroSolutions Example

Go to next section

9. Conclusion

In this Chapter we covered the most fundamental practical aspects of applying MLPs to

real world problems. We learned about new search procedures, how to control the

initialization, the stopping criterion, and how to effectively decide if a reasonably solution

was obtained (the confusion matrix).

We also discussed ways to build more flexibility into the solution in the form of different

norms. One of the fundamental problems of MLPs (and other learning machines) is that

they can not control their generalization ability. This is crucial for good results, so we

 58

present a method (weight decay) to set to zero unnecessary weights and so provide

tighter topologies that tends to generalize better. We also present the idea of committees

of networks as a form to decrease the variance of performance in the test set. We end

the chapter with the application of MLPs to several interesting and real world problems.

List of NeuroSolutions Examples
4.1. Visualization of Learning

4.2. Learning as a stochastic process (XOR)

4.3. Learning rate scheduling

4.4. Flow of errors across MLP layers

4.5. Effect of initial conditions on adaptation

4.6. Momentum Learning

4.7 Adaptive Stepsizes

4.8. Adaptation with noise in the desired signal

4.9. Stopping based on MSE value

4.10 Stopping with Crossvalidation

4.11 Sparse connectivity in the input layer

4.12 Confusion matrix for classification performance

4.13 Regression performance as a function of the norm

4.14 Classification performance as a function of the norm

4.15 Cross-entropy training

4.16. Weight-decay

4.17 Committees

4.18 Crab data classification

4.19. Iris data classification

4.20 Risk decision in the Cancer data

Concept Maps for Chapter IV

 59

 60

Practical Training of
Adaptive Systems

1

Nonlinear Models
Chapter X, XI

Control of
Learning

2

Stop
Criterion

4

Search
Algorithms

3

Control of Criterion
5

Control of Networ
Size and

Generalization
6

Wei
Elimin

6.

Information
Learning

5.3

Momentum
Learning

3.1 Adaptive
Stepsizes

3.2

Learning Rates
2.3

LP Norms
5.1

Visualization
2.1, 7.4

Committees of
Networks

6.3

Cross
Validation

4.2

Training
set error

4.1

Selection of
Initial weights
2.2, 2.4, 2.5

How good are
ANNs?

7.1, 7.2, 7.3

Projects
8

Function Approximation
Chapter V

Direct
Construction

5.2

Chapter IV

Hints
7.5

OBD
6.2

Go to Next Chapter
Go to the Table of Contents

algorithm locality and distributed systems
One of the appealing issues of gradient descent learning is the locality of the computation.

Recall that any of the LMS, delta rule and backpropagation use only local quantities

available at the weight to perform its adaptation. This is crucial for the efficiency of the

algorithms in particular for distributed system implementations. If the algorithm was not

local, then the necessary variables would have to be fetched from intermediate storage or

across the neural network. This means that there would be lots of overhead for algorithm

implementation, and more importantly, that a centralize control was necessary.

Adaptation would loose the biological appeal that locality provides.

Complexity imposes stringent constraints in the system design. One of the luxuries that

the designer must give up is centralize control, because otherwise most of the system

resources will be eaten up by the control, not to perform the required function. This is the

beauty of distributed systems with local rules of interactions: they do not require

centralized control. They may potentially be the only way to break the barrier of system

complexity as our own brain exemplifies.

Going back to the learning rules, lets for a minute appreciate the formidable task of

moving a distributed system with thousands of parameters to its optimum parameter set.

There is no one that is orchestrating the change in weights. Each weight receives an

error and an activation and independently of all the other weights, changes its own value

using only two multiplications. Overall the system approaches the optimum operating

point, but we can not finger where the control is.

This is a great model to construct optimal complex systems.

 61

Return to text

system identification versus modeling
Not all the problems of interest can be formulated in terms of an external, input-output

constraint. But the class of these problems is very large indeed, ranging from system

identification, prediction, classification, etc. For instance, when we are predicting the

stock market, we are not interested in preserving the individual components of the

economy, we are simply interested in a small prediction error.

On the other hand, there are problems that require more than an input-output relation,

such as modeling. In modeling we are interested not only in good predictions but also in

preserving some (or all) of the underlying features of the phenomenon we are interested

in. Examples of modeling appear in the physical and biological sciences and in

engineering when applied to these problems.

Return to text

good initial weight values
Very little work has been done in good initial weight values for training, since the problem

is very difficult to formulate. Intuitively we can see that if the initial weights can be chosen

close to the optimal, then search will be fast and reliable. Unfortunately, we do not know

where the optimal weights are in pattern space (this is the reason we are adapting the

system…). And faster and more reliable methods to find the optimum are unknown.

Some work has been done proposing the linear solution as the initial weight values, but

this does not always work. In many cases the linear solution is exactly the point that

search should avoid because it is a strong local minimum.

Return to Text

 62

Minskowski measures
An alternate interpretation of the error norms is provided in the statistical literature as

Minskowski measures. In this perspective, the L2 norm appears as the maximum

likelihood solution when the instantaneous errors are Gaussian distributed. When the

data set is such that they produce error pdfs that deviates from the Gaussian distribution,

the L2 norm does not provide the maximum likelihood solution. So, if one has a priori

information about the error distributions, the appropriate Minskowski measure can be

used to establish the best performance.

In classification problems the most reasonable distribution seems to be the Bernoulli

distribution, which points to the use of the Kullback-Leibler criterion as we will see.

Return to Text

cross entropy criterion
In order to understand cross-entropy we have to give a short definition of what is

information and the related concept of entropy. Information theory was invented by

Shannon in the late 40’s to explain the content of messages and how they are corrupted

through communication channels. The key concept in information theory is that of

information. Information is a measure of randomness of a message. If the message is

totally predictable, it contains no information. On the other hand something very

unexpected has a high information content. So the concept is inversely associated with

the probability of an event. We can define the amount of information in a random event xk

as

I x
p xk

k
() log(

()
)=

1

Entropy then becomes the mean value of I(x) over the complete range of discrete

 63

messages (2K+1) with probabilities pk as

H x p I xk k
k K

K

() ()=
=−
∑

Entropy is a measure of the average amount of information contained in the event.

Now assume that we have two probability distributions {pk} and {qk}. The relative entropy

of the probability distribution P (function of some event r) with respect to the second

distribution Q is given by

L P
P
Qr

r

rr
= ∑ log()

This concept called relative entropy was introduced by Kullback, and is also called

Kullback-Leibler information criterion Cover .

Return to Text

early stopping and model complexity
We saw before in section 4.2 that early stopping provides a criterion to stop training at

the point of smallest error in the validation set, i.e. the point of best generalization for that

particular combination topology/training set. From the point of view of model complexity,

early stopping is effectively controlling the complexity of the model, which may seem

strange since the number of free parameters is constant. It turns out that in nonlinear

systems the model complexity depends not only on the number of parameters (as in

linear systems) but also on the actual value of the free parameters, so it may change

during training.

Early stopping does not address the size of the learning machine, which is also a

determining factor to control the model complexity. In linear learning machines, model

size turns out to be the only way to control model complexity. So parsimonious

architectures should be a design goal. The full discussion of this topic is rather theoretical

 64

and will be left to Chapter V. Here we will use a heuristic approach.

Return to text

learning rate annealing
is the progressive decrease of the learning rate across iterations.

shallow networks
are networks with few layers, i.e. typically one of two hidden layers.

Eq.6

N

W
>

δ

outliers
erroneous samples produced by observation noise.

Eq.8

∂
∂

∂
∂

∂
∂

J
w

J
y

y
wij k

k

ij
=

activation
is the PE output in the MLP topology.

 65

dual
or transpose network is the network obtained from the original MLP by reversing the

signal flow, and changing summing junctions with splitting nodes and vice-versa.

fan-in
is the number of inputs that feed a given PE.

Simon Haykin
Artificial Neural Networks: A Comprehensive Foundation, IEEE Press 1995.

nonconvex
a surface is nonconvex when it has multiple minima.

confusion matrix
is a matrix where the man made (rows) and the machine classification (columns) per

class is entered. A perfect classifier will have only the diagonal populated. Errors appear

in non-diagonal positions. The confusion matrix is an efficient way to observe the

confusion between classes.

generalization
is the ability to correctly classify samples unknown to the learning machine

 66

Vladimir Vapnik
The Nature of Statistical Learning Theory, Springer Verlag, 1995.

Barron
Universal approximation bounds for superpositions of sigmoid functions, IEEE Trans.

Information Theory 39, #3, 930-945, 1993.

saliency
is the importance of a weight for the overall input-output map

Hessian
is the matrix of the second derivative of the cost with respect to the weights

committees
are ensembles of ANNs trained in the same data, eventually with different topologies,

whose output is interpreted as a vote for the classification. Committees have the appeal

that they decrease the variance of the final decision which is considered one of the most

severe problems in semi-parametric classification.

simulated annealing
is a global search criterion where the space is searched with a random rule. In the

beginning the variance of the random jumps is very large. Every so often the variance is

decreased and a more local search is undertaken. It has been shown that if the decrease

 67

of the variance is set appropriately, then the global optimum can be found with probability

one. The method is called simulated annealing because it is similar to the annealing

process of creating crystals from a hot liquid). See van Laarhoven and Aarts, Simmulated

Annealing: theory and applications, Kluwer, 1988.

first order
Gradient descent is called a first order method because it only uses information of the

performance surface tangent space. Newton is a second order method because it uses

information of the curvature.

validation
Validation set is the ensemble of samples that will be used to validate the parameters

used in the training (not to be confused with the test set, which assesses the

performance of the classifier).

classification error
The classification error is the number of samples that were incorrectly classified

-misclassifications- normalized by the total number of samples

robust
A method is robust if it is not very sensitive to outliers. The term was coined in statistics

and control theory to represent methods that have low sensitivity to perturbations.

Occam
William of Occam was a monk that lived in the XIV century England and enunciated a

principle that has echoed across the scientific circles for centuries: He said that a

scientific model should favor simplicity. Hence the name for the principle: Occam’s razor

(shave-off the fat in the model) .

 68

VC dimension
Stands for Vapnik-Chervonenkis dimension and measures the capacity of a learning

machine . See Vapnik’s book, The nature of statistical learning theory, Springer, 1995.

Genetic Algorithms
are global search procedures proposed by John Holland that search the performance

surface concentrating on the areas that provide better solutions. They use “generations”

of search points computed from the previous search points using the operators of

crossover and mutation (hence the name). See Goldberg, Genetic Algorithms in search,

optimization and machine learning, Addison Wesley, 1989.

Luenberger
Linear and Nonlinear Programming, Addison Wesley, 1986

Scott Fahlman
Fast learning variations of backpropagation: an empirical study, Proc. 1988 Connectionist

Models Summer School, 38-51, Morgan Kaufmann.

Campbell
Campbell N., Mahon R., A multivariate study of variation in two species of rock crabs of

genus Leptograpsus”, Australian Journal of Zoology, 22, 417-425, 1974.

 69

R. A. Fisher
The use of multiple measurements in taxonomic problems, Annal Eugenics 7, Pt II,

179-188, 1936.

line search methods
A principled approach to find the optimal stepsize at each iteration is to minimize

 with respect to μ, where sk represents the direction of the search at

sample k. For quadratic surfaces, there is an analytic solution given by

)(kkk swJ μ+

kk
T
k

k
T
k

k sHs
sJ∇−

=μ
 Equation 29

where H is the Hessian. Since the Hessian for quadratic surfaces is independent of the

point, this expression needs to be computed just once. We can prove that the algorithm

zig-zags to the minimum (orthogonal directions) with this choice of the stepsize. Note that

at each iteration we need to perform vector computations, which makes the adaptation

computationally heavier.

In general the optimal value of m must be solved by line search since the performance

surfaces are not quadratic. This gives rize to the conjugate gradient algorithms.

Return to Text

Bishop
Neural Networks for Pattern Recognition, Oxford, 1995, pp 347.

Eq. 24

kk
T
k

k
T
k

k sHs
sJ∇−

=μ

 70

Fletcher
Practical Methods of Optimization, John Wiley, 1987

Horst, Pardalos and Thoai
Introduction to Global Optimization, Kluwer, 1995

Shepherd
Second-order methods for neural networks, Springer, 1997.

Pearlmutter
Fast exact multiplications by the Hessian, Neural Computation 6 (1), 147-160, 1994

Hertz, Krogh, Palmer
Introduction to the theory of neural computation, Addison_Wesley, 1991

LeCun, Denker and Solla
Optimal Brain Damage, Advances in Neural Information Processing Systems, vol 2,

598-605, 1993.

 71

Perrone
General averaging results for convex optimization, Mozer et al (Ed), Proc. 1993

Connectionist Models Summer School, 364-371, Lawrence Erlbaum, 1994.

Cover
Elements of Information Theory, Wiley, 1991.

LeCun, Simard, Pearlmutter
Automatic learning rate maximization by on-line estimation of the Hessian eigenvectors,

in Advances of Neural Information Processing Systems, vol 5, 1556-163, 1993, Morgan

Kaufmann.

Silva e Almeida
Acceleration techniques for the backpropagation algorithm, Almeida and Wellekens (Ed),

Neural Networks, Lecture notes in Computer Science, 110-119, 1990, Springer.

Almeida’s adaptive stepsize
The idea is very close to the adaptive stepsize algorithm described above, but it is more

stable due to the inclusion of nonlinearity. As before there will be a different stepsize per

weight. The reasoning is as follows:

1- If the gradient component has the same size in two consecutive iterations, the stepsize
should be increased.

2- 2- If the gradient alternates sign, the stepsize should be decreased.

So the weight update is

 72

)()()1()(nCnnwnw kjkjkjkj ∇η+−=

where is each gradient component, and at each iteration
)(nCkj∇

⎩
⎨
⎧

<−∇∇−η
>−∇∇−η

=η
0)1()()1(
0)1()()1(

)(
nCnCifnd
nCnCifnu

n
kjkjkj

kjkjkj

 Equation 30

where u and d are positive constants with values slightly above and below unity,

respectively. They suggest to make ud /1≈ .The initial value of each stepsize is set

the same for all weights. Note that unlike the delta-bar-delta, here the update of the

stepsize is geometric in both directions (decrease or increase).

There are 3 heuristics to help control the growth of the stepsize:

1- The error obtained at each iteration should be compared with the previous error. The new
weight vector is accepted only if the new error is at most larger than the previous by 1 or
2.5%.

2- If the new error is higher than the previous by more than this margin, then compute a new
stepsize as Eq. 30, but apply it to the old weights.

3- If #2 does not decrease the error in 2 to 3 iterations, then reduce all the stepsizes by a
constant factor α, until the error starts to decrease again.

4- At this point restart with the normal adaptation of stepsizes.

This method works well when the gradient is known with high precision as in batch

learning. The method can be also applied to on-line adaptation, but we can not utilize the

instantaneous estimates of the gradient since they are too noisy. The authors propose to

keep a running estimate of the gradient in each epoch (P is the number of training set

exemplars)

∑
= ∂

∂
=∇

P

p kj

p
kj w

eJ
nC

1

)(
)(

to be used in the adaptive stepsize computation.

Return to text

 73

Index

2

2. Controlling Learning in Practice .. 3

3

3. Other Search Procedures ... 10

4

4. Stop Criteria ... 19

5

5. How good are MLPs as learning machines? .. 22

6

6. Error Criterion .. 26

7

7. Network Size and Generalization ... 30

8

8. Project
Application of the MLP to crab classification ... 34

9

9. Conclusion ... 38

A

algorithm locality and distributed systems .. 41
Almeida’s adaptive stepsize... 49

C

Chapter 3 .. 3, 10, 19, 22, 26, 30
Chapter III - Designing and Training MLPs ... 3
cross entropy criterion ... 42

E

early stopping and model complexity ... 43

G

good initial weight values... 42

M

Minskowski measures ... 42

S

system identification versus modeling ... 41

 74

	 Chapter IV - Designing and Training MLPs
	2. Controlling Learning in Practice
	3. Other Search Procedures
	4. Stop Criteria
	5. How good are MLPs as learning machines?
	6. Error Criterion
	7. Network Size and Generalization
	8. Project: Application of the MLP to real world data
	9. Conclusion
	algorithm locality and distributed systems
	system identification versus modeling
	good initial weight values
	Minskowski measures
	cross entropy criterion
	early stopping and model complexity
	learning rate annealing
	shallow networks
	Eq.6
	outliers
	Eq.8
	activation
	dual
	fan-in
	Simon Haykin
	nonconvex
	confusion matrix
	generalization
	Vladimir Vapnik
	Barron
	saliency
	Hessian
	committees
	simulated annealing
	first order
	validation
	classification error
	robust
	Occam
	VC dimension
	Genetic Algorithms
	Luenberger
	Scott Fahlman
	Campbell
	R. A. Fisher
	line search methods
	Bishop
	Eq. 24
	Fletcher
	Horst, Pardalos and Thoai
	Shepherd
	Pearlmutter
	Hertz, Krogh, Palmer
	LeCun, Denker and Solla
	Perrone
	Cover
	LeCun, Simard, Pearlmutter
	Silva e Almeida
	Almeida’s adaptive stepsize

