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The goal of this chapter is to provide the basic understanding of: 

• Definition of neural networks 

• McCulloch-Pitts PE 

• Perceptron and its separation surfaces 

• Training the perceptron 

• Multilayer perceptron and its separation surfaces 

• Backpropagation 

• Ordered derivatives and computation complexity 

• Dataflow implementation of backpropagation 

 
 
 

• 1. Artificial Neural Networks (ANNs)  

• 2. The McCulloch-Pitts PE  

• 3. The Perceptron 

• 4. One hidden layer Multilayer Perceptrons 

• 5. MLPs with two hidden layers 

• 6. Training static networks with backprop 

• 7. Training embedded adaptive systems  

• 8. MLPs as optimal classifiers  

• 9. Conclusions  
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1. Artificial Neural Networks (ANNs) 
There are many definitions of artificial neural networks  . We will use a pragmatic 

definition that emphasizes the key features of the technology. ANNs are learning 

machines built from many different processing elements (PEs). Each PE receives 

connections from itself and/or other PEs. The interconnectivity defines the topology of the 

ANN. The signals flowing on the connections are scaled by adjustable parameters called 

weights, wij. The PEs sum all these contributions and produce an output that is a 

nonlinear (static) function of the sum. The PEs’ outputs become either system outputs or 

are sent to the same or other PEs. Figure 1 shows an example of an ANN. Note that a 

weight is associated with every connection. 

w1

w2

w3

w4

w5

∑ f(.)

w - weights
f - nonlinearity

PE - processing
element

PE

PE

w6

  

Figure 1. An artificial neural network 

The ANN builds discriminant functions from its PEs. The ANN topology determines the 

number and shape of discriminant functions. The shape of the discriminant functions 

changes with the topology, so ANNs are considered semi-parametric classifiers. One of 

the central advantages of ANNs is that they are sufficiently powerful to create arbitrary 
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discriminant functions so, ANNs can achieve optimal classification.  

The placement of the discriminant functions is controlled by the network weights. 

Following the ideas of nonparametric training, the weights are adjusted directly from the 

training data without any assumptions about their statistical distribution. Hence, one of 

the central issues in neural network design is to utilize systematic procedures (a training 

algorithm) to modify the weights such that a classification as accurate as possible is 

achieved. The accuracy has to be quantified by an error criterion. 

There is a style in training an ANN (Figure 2). First, data are presented and an output is 

computed. An error is obtained by comparing the output with a desired response and it is 

utilized to modify the weights. This procedure is repeated using all the data in the training 

set until a convergence criterion is met. So, in ANNs (and in adaptive systems in general), 

the designer does not have to specify the parameters of the system. They are 

automatically extracted from the input data/desired response by means of the training 

algorithm.  
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Figure 2. General principles of adaptive system’s training 

The two central issues in neural network design (semi-parametric classifiers) are the 

selection of the shape and number of the discriminant functions, and their placement in 

pattern space such that the classification error is minimized. We will address all these 

issues in this chapter in a systematic manner. The function of the PE is explained, both in 
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terms of discriminant function capability and learning. Once this is understood, we will 

start putting PEs together in feedforward  neural topologies with many layers. We will 

discuss both the mapping capabilities and training algorithms for each of the network 

configurations.  

Go to next section  

2. Pattern recognition ability of the 
McCulloch-Pitts PE 

The McCulloch-Pitts (M-P) processing element is simply a sum-of-products followed by a 

threshold nonlinearity (Figure 3). Its input-output equation is  

 
( )y f net f w x bi
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            Equation 1 

where wi are the weights and b is a bias term. The activation function ƒ is a threshold 

function defined by  
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which is commonly referred as the signum function. Note that the M-P PE is the adaptive 

linear element (adaline) studied in Chapter I followed by a nonlinearity.  

We will now study the pattern recognition ability of the M-P PE. The study will utilize the 

interpretation of a single discriminant function as given by Eq.10 of Chapter II. Note that 

such a system is able to separate only two classes (one class associated with the +1, the 

other with the -1 response). Figure 3 represents the network we are going to build in 

NeuroSolutions.  
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Figure 3. Two input, one output (2-1) McCulloch-Pitts PE. 

NeuroSolutions  1 

3.1 McCulloch and Pitts PE for classification 

The McCulloch and Pitts PE is created by the concatenation of a Synapse and of 

an Axon. The synapse contains the weights wi, and performs the sum-of-products. 

The Synapse Inspector shows that the element has 2 inputs and one output. The 

number of inputs xi is set by the input Axon. The soma level of the Inspector 

shows that the element has two weights. The number of outputs is set by the 

component to its right (the ThresholdAxon).  

The ThresholdAxon adds its own bias b to the sum-of-products and computes a 

static nonlinearity. The shape of the nonlinearity is stamped in the Axon icon, 

which is a step for the ThresholdAxon. So this M-P PE maps 2D patterns to the 

values {-1, 1}. Basically the M-P PE is like the adaline we built in Chapter I, but now 

the BiasAxon (which is linear) is substituted by a nonlinearity. This network is very 

simple, but we can call upon our geometric intuition to understand the 

input-output map of the M-P PE. 

In this example, we will use two new components, threshold axon and the function 

generator.  The function generator is a component which is typically used for 

input and can create common signals such as sine waves, ramps, impulse trains, 

etc. 
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 NeuroSolutions Example 
The question that we want to raise now is: what is the discriminant function created by 

this neural network? Using Eq.2 the output of the processing unit is 

∑

∑

=

=
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=
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01

j
jj

j
jj

bxwif

bxwif

y

                           Equation 3 

We can recognize that the output is controlled by the value of w x w x b1 1 2 2+ +  , which 

is the equation of a plane in 2D. This is the discriminant function g(x1, x2) utilized by the 

M-P PE, and we see that it is the output of the adaline.  When the threshold works on 

this function it divides the space into two half planes, one with a positive value (+1) and 

another with a negative value (-1). This is exactly what we need to implement a classifier 

for the two-class case (see Chapter II, section 2.6). The equation for the decision surface 

reads 

( )g x x w x w x b x
w
w

x
b

w1 2 1 1 2 2 2
1

2
1

2
0, = + + = → = − −

                   Equation 4 

which can be readily recognized as a straight line with slope  

m
w

w
=

− 1

2                     Equation 5 

passing through the point (0, -b/w2) of the plane (x2-intercept). Or alternatively at a 

distance -b/|w| from the origin, where w w w= +1
2

2
2

 . For this reason b is called a 

bias.  
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Can we visualize the response of this system to inputs? If the system was linear, linear 

system theory could be applied to arrive at a closed form solution for the input-output 

map (the transfer function). But for nonlinear systems the concept of transfer function 

does not apply. Eq.3 provides the answer for the M-P PE, but this is a very simple case 

where the output has just 2 values (-1,1). In general the output is difficult to obtain 

analytically, so we will resort to an exhaustive calculation of the input-output map, i.e. 

values (of 1) are placed in every location of the input space and the corresponding output 

is computed. Let us restrict our attention to a square region of the input space between -1, 

1 (  ) for now.  x x1 2 11, [ ,∈ − ]

NeuroSolutions has a probe component that will exactly compute and display this 

input-output map. It is called the discriminant probe. Its function is to fire a sequence of 

x1,x2 coordinates scanning the input field, compute the corresponding output, and 

display it as a gray scale image. Negative values are displayed as black. The 

discriminant probe computes Eq. 3 and displays the results in the input space. The 

discriminant function is a plane and its intersection with the   plane is a line (the 

decisioin surface) that is given by Eq. 4. This is the line we see in the scatter plot 

between the white and the black regions, and represents the decision surface.  

21, xx

Before actually starting the simulation, let us raise the question: what do you expect to 

see? Eq.4 prescribes the dividing line between the 1 and -1 responses. Using the values 

of NeuroSolutions Example 2, the decision surface is a line described by the equation 

( ) 0277.0, 2121 =++= xxxxg                        Equation 6 

with slope m=-1 and passing through the point x2=0.277. vector interpretation of the 

separation surface . The dividing line (that is the decision surface for the two class case) 

passes through the point x2=-0.277 and the slope is -1, corresponding to the angle 135° 

(second quadrant). The position of the decision surface allows us to imagine the location 

of the discriminant function (figure 4).  
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Figure 4.  Linear Discriminant function in two dimensions for the two class case 

Let us now observe the simulation.  

NeuroSolutions    2 

3.2 Discriminant probe to visualize the decision surface  

This example brings the discriminant probe to the breadboard. The discriminant 

probe is a pair of DLLs which force data through the network and display the 

system response, giving us an image of the input/output map of the system.  In 

our case we will use it to show the discriminant line (separation surface) created 

by the M-P PE as given by Eq.4 .  One component of the discriminant probe is 

placed on the input axon to send the sequential data through the network and the 

other component is placed on the output axon to display the system response. 
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You are free to experiment with the M-P PE. We suggest that you modify the 

Synapse weight values, and the Threshold Axon bias by placing the cursor in the 

Matrix Editor field with the mouse and typing in the new values. For every 

combination, you should first guess the solution by computing the slope and y 

intersect according to Eq.4 , and then finding out if you are correct by running the 

example. To run the example you need to press the Start button on the toolbar 

controller. 

 NeuroSolutions Example 

2.1. Sigmoid Nonlinearities 
This simple example shows that the decision surface between the 1/-1 responses created 

by the M-P PE is a line in 2D space (a function that is linear in the parameters). The 

same conceptual picture works for higher dimensional spaces (but unfortunately we lose 

our intuition...), where the straight line becomes a hyperplane in a space of dimension 

one less than the input space dimension.  

Notice also how crisp the decision surface is, since a hard threshold acts upon the output 

of the discriminant function. However, other nonlinearities can be utilized in conjunction 

with the M-P PE. Let us now smooth out the threshold yielding a sigmoid  shape for the 

nonlinearity. The most common nonlinearities are the logistic function and the hyperbolic 

tangent (tanh) functions of Figure 5. 
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Figure 5. Common nonlinearities in neurocomputing 

α is a slope parameter, and normally is set at 1. The major difference between the two 

sigmoid nonlinearities is the range of their output values. The logistic function produces 

values between [0,1], while the hyperbolic tangent produces values between [-1,1]. An 

alternate interpretation of this PE substitution is to think that the discriminant function has 

been generalized to  

( )g x f w x bi i
i

= +
⎛
⎝
⎜

⎞
⎠
⎟

=
∑

1                          Equation 7 

that is sometimes called a ridge function. The ridge function is no longer an hyperplane, 

since it saturates at 0 (or –1) and +1. However the intersection of ridge functions can still 

be approximated in most of the input space by the intersections of their arguments. In 

fact, the argument of the ridge function is still linear in the input variables and as long as 

the function f is monotonically increasing and steep, the decision surface is still 

approximately linear. separation surfaces of the sigmoid PEs  So the previous 

interpretation for threshold PEs still hold approximately for sigmoid PEs. 

NeuroSolutions    3 

3.3 Behavior of the sigmoid PEs 

This breadboard substitutes the Threshold Axon with a Tanh Axon and then a 

Sigmoid Axon. The difference between the Threshold Axon and the Tanh Axon is 

that there is a smooth transition between the values of -1 and 1. We can visualize 

the PE nonlinearity in the component’s corresponding Inspector.  
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The net effect of this modification in the PE input-output function is that the crisp 

separation between the two regions (positive and negative values of g(.)) is 

substituted by a smooth transition region between the values of -1 and +1. Hence 

the name ridge function. However, the orientation of the separation surface is still 

defined by the ratio of w1 and w2, and its vertical placement is still controlled by the 

bias of the axon. A new feature of this nonlinearity is that the absolute values of 

the weights control the width of the gray region. By increasing the values of the 

weights while leaving the ratio of the weights constant, we can make the 

separation surface become crisper—eventually approximating the one of the 

ThresholdAxon. 

The logistic nonlinearity is similar to the tanh, however the range is between 0 and 

1.The tanh is an antisymmetric function (y intercept is zero), while the logistic is 

not (y intercept is 0.5). The Tanh Axon and Logisitic Axon are normally 

interchangeable, with the final selection being determined by the desired range of 

the output (either [-1,1] or [0,1]). 

 NeuroSolutions Example 
The output of the logistic function varies from zero to one. It is interesting to note that 

under some conditions, the logistic function allows a very powerful interpretation of the 

output of the PE as a posteriori probabilities for Gaussian distributed input classes. 

probabilistic interpretation of sigmoid outputs . The tanh is closely related to the logistic 

function by a linear transformation in the input and output spaces, so neural networks that 

use either of these can be made equivalent by changing weights and biases.  

The other big advantage of the TanhAxon (and also of the Sigmoid Axon) is that the 

nonlinearity is smooth, which means that the derivative of the map exists. This point is 

going to be very important later for adaptation. We conclude that both the TanhAxon or 

the SigmoidAxon can substitute the ThresholdAxon with some practical advantages.  

We will refer to the combination of the Synapse and the TanhAxon (or the Sigmoid Axon) 
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as the modified McCulloch-Pitts PE because they all respond to the full input space in 

basically the same functional form (sum of product followed by a nonlinearity). Let us now 

observe the impact of different nonlinearities in the separation surface. 

2.2. Classification implies the control of the discriminant function 
location 

Remember that the ratio of the weights controls the slope (orientation) of the separation 

surface, and the PE bias controls the x2 intersect (Figure 4). So, how can the M-P PE 

system be used to distinguish two classes of patterns?  

The discriminant function placement should be controlled such that the system outputs 

the value 1 for one of the classes, and -1 (or 0) for the other. In order to accomplish this, 

the discriminant function must be moved around in the input space, such that a minimum 

number of errors occurs.  

As external observers, we can do this easily by looking at the data clusters in 2D and 

placing the separation line between them. But in higher order spaces we can not 

visualize the data clusters so one needs to follow some type of step by step procedure. 

As a historical note, Rosenblatt  proposed the following procedure to change the weights 

of the M-P PE:  

Get an example of class I and examine the output. If the output is correct (let us say 1) do 

nothing. If the response is -1, tweak the weights and bias until the response becomes 1. 

Now go to another example and repeat the procedure, until all the patterns are correctly 

classified. This procedure is basically the perceptron learning algorithm. This procedure 

can be automated by the machine itself, without any outside help, if we provide some 

feedback to the machine on how it is doing. The feedback comes in the form of the 

definition of an error criterion or cost function that must be minimized. For each training 

pattern we can define an error (eP) between the desired response (dP) and the actual 

output (yP). Note that when the error is zero, the machine output is equal to the desired 

response.  
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There are many possible definitions of the error (we will treat this subject in Chapter IV), 

but commonly in neurocomputing one uses the error variance (or power), i.e. the sum of 

the square difference between the desired response and the actual output. We already 

found this criterion in Chapter I and called it the mean square error (MSE). For ease of 

explanation we copy it below,  

( )J
N N

d yp p
pp

= = −∑∑1
2

1
2

2
2

ε p

              Equation 8 

where p is the pattern index. The goal of the classifier is to minimize this cost function  

by changing its free parameters. This search for the weights to meet a desired response 

or internal constraint is the essence of any connectionist computation. We already found 

this methodology in linear regression (Chapter I), and we find it here again. Let us 

minimize the MSE using NeuroSolutions.  

NeuroSolutions    4 

3.4 Classification as the control of the decision surface 

The input file placed on the input Axon links NeuroSolutions to the computer file 

system. We created a file with 8 points according to the following Table. The third 

column represents the class membership. Since our network is built with a logisitc 

function, these values can also be interpreted as the desired network response. 

X1 X2 Class
-0.50 .0.35 0
-0.75 0.85 0
-0.60 0.65 0
-0.50 0.75 0

0.50 0.00 1
-0.30 -0.20 1

0.20 0.10 1
0.10 -0.10 1

 We attached the L2Criterion (Mean Squared Error) at the output of the 

LogisiticAxon. This PE computes the square difference between the system output 

and the desired response for each input pattern. The output file works as the 
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desired response, and in this case is built with the values used in the column class 

of the above table. Note that we have a MatrixViewer on top of the L2Criterion that 

provides a numerical indication of the power of the error (MSE), i.e. the difference 

between the machine output and the output file value. We will fire all the eight 

input samples through the network and display the average error over the entire 

data set. 

One other component deserves to be mentioned. The ScatterPlot probe is placed 

at the output of the input Axon and that will show the x, y locations of the input 

data. Since we are interested in displaying all the training patterns, the data buffer 

size is set to 8. The purpose of this example is to relate the position of the decision 

surface and the MSE. So experiment with several weights to obtain perfect 

classification of all the patterns.  

As you adjust the network weights, note that the sign of the response may be 

correct, but the error is still not zero. This is the problem of using a saturating 

nonlinearity. We have to use very large weights to obtain a response close to 1 and 

0. This example shows that acceptable solutions for classification do not require 

the error to be exactly zero. 

Let us modify the data. In the directory ~ NSBook/chapter3/examples/2.5 McPitts3 

there is another file called mcpitts_data1.asc.  Go to the input file component and 

with the Inspector open, select the level of file input.  Click the remove button to 

deselect the present file and click on the add button. This will put you in the win95 

open file panel. Select the file and NeuroSolutions will ask if it is an ASCII column 

training file  (click the close button to finalize the selection). Another panel pops 

up allowing you to select which columns are used in the experiment. Since the file 

has 3 columns, 2 for inputs and one for the desired response, and we are selecting 

the input data, we have to skip the 3rd column. Select the 3rd row, click the skip 

button, and close the panel. We just completed the selection of the new file. You 
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have to do the same thing for the desired signal file, but now you should skip the 

first two columns.  

 NeuroSolutions Example 
The central problem to be solved in the road to machine-based classifiers is how to 

automate this process such that the machine can independently do these weight changes, 

without the need for hidden agents or external observers. 

2.3. The first learning algorithm for a nonlinear machine 
The M-P PE weights can be trained using a very simple rule proposed by Rosenblatt and 

called the perceptron learning algorithm. The perceptron learning algorithm enunciated 

above can be put into the following equation 

w n w n d n y n x n( ) ( ) ( ( ) ( )) (+ = + )−1 η                   Equation 9 

where η is the stepsize, y the M-P PE output and d is the desired response. 

It is important at this stage to compare this equation with the LMS algorithm we used to 

train the adaline in the first example of Chapter II. Note that the functional form is the 

same, i.e. the old weights are incrementally modified proportionally to the product of the 

error and the input, but there is a significant difference. We can not say that this 

corresponds to gradient descent since the system has a discontinuous nonlinearity. In the 

perceptron learning algorithm, y(n) is the output of the nonlinear system. So the algorithm 

is minimizing directly the difference between the response of the M-P PE and the desired 

response, instead of minimizing the difference between the adaline output and the 

desired response.  

This subtle modification has tremendous impact in the performance of the system. For 

one thing, the M-P PE learns only when its output is wrong. In fact, when y(n) = d(n) the 

weights remain the same. The net effect is that the final values of the weights are no 

longer equal to the linear regression result, because the nonlinearity is brought into the 

weight update rule.  
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Another way of phrasing this is to say that the weight update became much more 

selective, effectively gated by the system performance. Notice that the LMS algorithm is 

selective to the error to a certain degree because the error is the difference between the 

desired response and the system output. So larger errors have more effect on the weight 

update then small errors, but all patterns affect the final weights – implementing  a 

“linear gate”. In the perceptron the net effect is that the placement of the discriminant 

function is no longer controlled linearly by all the input samples as in the adaline, but only 

by the ones that are important to place the discriminant function in a way that minimizes 

the output error explicitly. We are now one step closer to actually train nonlinear systems 

for classification. 

NeuroSolutions  5 

3.5 Perceptron learning rule 

In this example, we will use the perceptron learning algorithm to classify the two 

previous data sets – the two class problem from the previous example and the 

healthy/sick patient data. With the perceptron learning algorithm, the system will 

learn automatically from the data without the need for our weight selection as we 

did in this Chapter up to now.  

The two examples are very different because one (the two class problem with 8 

patterns) is linearly separable  while the other is not. The perceptron learning 

algorithm trains only when the system response is incorrect, therefore, the weights 

will converge if all the inputs are classified correctly. Another side effect of training 

only on the errors is that if the problem is not linearly separable, the training will 

never stop.  This can cause abrupt changes in the weights of the system near the 

end of the training which may affect the classification performance. Since the 

perceptron learning algorithm does not search for the best answer, only a 

satisfactory answer, the network may not perform well on data that was not 

included in its training set. Note that there are many final weight values that 

produce an error of zero, i.e. that exactly solve the linearly separable problem. 
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The network is now learning by itself so we will again have to add the backprop 

and gradient descent layers that we used at the end of Chapter 1.  At the end of 

this chapter, we will finally explain the details of these two additional layers. We 

have also to control the learning rate or stepsize to make sure that the system will 

converge to the optimum. You should experiment with other learning rates and 

observe the learning curve as our thermometer for learning.  

 NeuroSolutions Example 
Let us assume that the patterns are linearly separable, i.e. there is a linear discriminant 

function that produces zero classification error. The solution of the perceptron learning 

rule is a weight vector w* such that 
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         Equation 10 

where n is an index that runs over the training set data. This equation can be written in 

simpler form as  . The knowledge of the M-P PE tells us that for 

each input pattern (each n) there is a weight vector that produces the partitioning given 

by the desired response. The optimal weight vector is the vector that simultaneously 

meets all of these desired partitions. The solution in 2D is a line of equation 

∑ >
i

iii nxwd 0))(( *

x wT * = 0   

(i.e. the optimal weight vector w* has to be orthogonal to every data vector x).  The 

weight update equation moves the weights directly towards this solution when it corrects 

w(n) by +/-ηx(n) depending upon the sign of the error. perceptron learning algorithm This 

learning rule takes a finite number of steps to reach the optimal solution for linearly 

separable patterns . There are two major problems with this solution: First, as soon as 

the last sample is correctly classified the discriminant function stalls, producing many 

possible solutions that may not generalize well. Second, this learning rule converges only 

if the classes are linearly separable. Otherwise the solution will oscillate. 
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2.4 The Delta Rule 
We have seen in Chapter I that an individual error was defined as the difference between 

the output measurement and the system output. From this sample by sample error, an 

error criterion was defined (the sum of squares) over the ensemble of samples. The 

minimum of this cost was found by following the opposite direction of the performance 

surface gradient estimated at each point. A systematic step by step procedure based on 

gradient descent (the LMS rule) was able to modify the weights such that the minimum of 

the performance surface was reached. The algorithm (you should have memorized this 

formula by now) is beautifully simple. It adds to the present weight a quantity proportional 

to the product of the error and activation available at the PE (just two multiplications per 

weight), i.e. 

( ) ( ) ( ) ( )nxnnwnw ppηε+=+1                        Equation 11 

We are going to re-examine the LMS algorithm using a different concept that is central to 

learning in neural networks. This concept is an old result from calculus that is called the 

chain rule. Basically the chain rule tells how to compute the partial derivative of a variable 

with respect to another when a functional form links the two. Let us assume that y = f(x), 

and the goal is to compute δy/δx, the sensitivity  of y with respect to x. As long as f is 

differentiable, then 

x
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∂

∂
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=
∂
∂

                         Equation 12 

Note that the value of Eq. 15 computes how much a change in x is reflected in y, i.e. how 

sensitive y is to a change in x. When we work with sensitivities the calculations progress 

from the dependent variable to the independent variable. Keep this in mind. 

One can show that the LMS rule is equivalent to the chain rule in the computation of the 

sensitivity of the cost function J with respect to the unknowns. derivation of LMS with 

chain rule Our goal is to extend the LMS concept to the M-P PE, which is a nonlinear 

system. How can we compute the sensitivity through a nonlinearity?  
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First let us examine the problem. Figure 6 details the modified M-P PE, where we show 

multiple weights connected to its input. Note that the output of the M-P PE is a nonlinear 

function of the weights (Eq.1 ).  
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Figure 6. Illustration of the sensitivity computation through a nonlinear PE 

But we can still compute the partial derivative of the output PE with respect to its weights 

using the chain rule Eq.12 , by first computing the partial derivative of the output with 

respect to the intermediate signal net, and then compute the partial derivative of net with 

respect to the weight wi, i.e.  

( )∂
∂

∂
∂

∂
∂

y
w

y
net w

net f net x
i i

i= = ′
                            Equation 13 

where f′(.) is the partial derivative of the static nonlinearity. derivation of sensitivity 

through nonlinearity  

This is another application of the famous chain rule, but now the chain rule is applied to 

the topology. As long as the PE nonlinearity is smooth (differentiable) we can compute 

how much a change in the weight Δwi affects the output y. Or looking from the point of 

view of the sensitivity, how sensitive the output is (Δy) to a change in a particular weight 

Δwi. Note that we compute this output sensitivity by a product of partial derivatives 
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through intermediate points in the topology. For the nonlinear PE there is only one 

intermediate point, net, but we really do not care how many of these intermediate points 

there are. The chain rule can be applied as many times as necessary. 

In practice we have an error at the output (the difference between the desired response 

and the actual output) and we want to adjust all the PE weights such that the error is 

minimized in a statistical sense. The obvious idea is to distribute the adjustments 

according to the sensitivity of the output to each weight. Why is this obvious? If one 

wants to minimize the output error, one should change more the weights that affect the 

output value the most, which is measured by the sensitivity. This is what the gradient 

descent does, hence the LMS rule.   

So to modify the weight, we actually propagate back the output error to intermediate 

points in the topology, and scale it along the way as prescribed by Eq.13 according to the 

elemental transfer functions that we find, as shown in Figure 6. This methodology is very 

powerful, because we do not need to know explicitly the error at intermediate places, 

such as net. The chain rule derives automatically the error for us. This observation is 

going to be crucial to adapt more complicated topologies, and will result in the 

backpropagation algorithm. 

Let us now complete the formulas to adapt the M-P PE weights. Note that now we have 

two indices, the index i for the weight, and the index p for the pattern, and n for the 

iteration number. The mean square error is rewritten 
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By applying the chain rule twice, one for the output and another for the net, we get 

The application of the gradient descent gives again (compare with Eq.11 ) 

( ) ( ) ( ) ( ) ( )( )w n w n n x n f net ni i p ip+ = + ′1 ηε p                           Equation 16 

This rule is called the delta rule and is a direct extension of the LMS rule to nonlinear 

systems with smooth nonlinearities. Note that the derivative of the nonlinearity is 

computed at the operating point netp(n) for the corresponding input pattern. Note also that 

the delta rule is local to the pattern and to the weight, i.e. it only requires knowledge of 

that specific pattern, the PE error and its input. optimizing linear and nonlinear systems  

Since the smooth nonlinearities discussed so far are saturating, i.e. they approach 

exponentially the values of -1 (or 0) and 1, the multiplication by the derivative will reduce 

appreciably the error in most of the operating range since the derivative is bell shaped 

around netP=0. error attenuation  

The derivative of the logistic function and the tanh are respectively 

( ) ( )′ = −f net x xistic i i ilog 1          

( ) (′ = −f net xitanh .05 1 2 )i                 Equation 17 

Our goal is to visualize the movement of the discriminant function during the adjustment 

of the PE weights using the delta rule. Let us go back to NeuroSolutions and automate 

the placement and display of the discriminant surface for this simple example. 

NeuroSolutions   6 

3.6 Delta rule to adapt the MC-P PE 

We will now use the delta rule to train the breadboard from Example 5.  We will 

use the same two class data set with 8 points and again have the additional layers 

of learning components. When we run the network, we will be able to observe the 

discriminant function move. The output mean square error (MSE) decreases close 

to zero when the discriminant function is placed between the two classes of points. 
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The output of the network towards the end of learning mimics the desired 

response. Notice that at the beginning of the run the discriminant line changes its 

orientation quickly and then at the end there is a period of fine tuning.  These are 

the two basic phases of learning, the discovery phase (what is the direction of the 

minimum?), and the convergence phase (fine tune to get to the minimum).   In our 

case, the convergence phase corresponds to increasing both the weight and bias 

(while keeping the ratio constant) in order to get a sharper cutoff between the two 

classes. 

A small exercise to test your knowledge is to guess the network weights upon 

visualization of the discriminant function. You should at least be able to correctly 

guess the signs of the weights and approximately their ratio. Note that the final 

MSE is much smaller than the value obtained when we entered by hand the 

parameters for the M-P PE. Also note that there is no analytic solution for the 

optimal weights like we had in the linear case (the least square method). So 

iterative solutions are very appealing and practical when dealing with nonlinear 

systems.  

It is instructive to change the learning rates and see how the solution behaves. 

You should be able to do this by now, even if the breadboard is not prepared for it 

(go to the Step icon, right click the mouse button to open the Inspector, and then 

enter other values of stepsize). Try very large stepsizes (300) for both parameters 

and see what happens. In this case the data is linearly separable and it is very 

difficult to make the system weights diverge.  The nonlinearity is always keeping 

the output between 0 and 1 no matter what the value of the weights are, so 

divergence of a single PE nonlinear system is not apparent from the value of the 

output.  

So an interesting challenge is to find out a set of learning rates that will prevent the 

system from finding the correct discriminant line.    
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2.5. Implications of the PE nonlinearity 
Several key aspects changed in the performance surface with the introduction of the 

nonlinearity. The nice parabolic performance surface of the least square problem is lost. 

Why is that? Note that the performance surface describes how the error changes with the 

weights. But the performance depends on the topology of the network through the output 

error. So, when nonlinear processing elements are utilized to solve a given problem the 

relationship “performance - weights” becomes nonlinear and there is no guarantee of a 

single minimum. The performance surface may have several minima. The minimum that 

produces the smallest error in the search space is called the global minimum. The others 

are called local minima. Alternatively, we say that the performance surface is nonconvex. 

This impacts the search scheme, because gradient descent uses local information to 

search the performance surface. In the immediate neighborhood, local minima are 

indistinguishable from the global minimum. So the gradient search algorithm may be 

caught in these sub-optimal performance points “thinking” it has reached the global 

minimum (Figure 7).  

 

Local minimum
flat spot global minimum

  

Figure 7. Nonconvex performance surface, with gradients depicted. 

Other conditions where the gradient is basically zero are called saddle points  (or flat 

spots) and are also more frequent than in the linear PE case. Since the weight update is 
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ultimately produced by the gradient, when the gradient becomes very small the weights 

do not change much and the adaptation may “stall”. Sub-optimal performance may then 

result, since the designer may think that the best performance has been reached.  

Fortunately, the noisy estimate produced by the LMS rule, which we called a nuisance 

before (rattling - see Chapter I), becomes an advantage. In fact the noisy gradient 

increases the chance of escaping both local minima and flat spots. It is obvious that the 

control of the adaptation algorithm becomes much more delicate in non convex 

performance surfaces. If the gradient search becomes less robust a fair question is: Why 

nonlinear PEs?   

Let us go to NeuroSolutions to verify this behavior.  

NeuroSolutions  7 

3.7 Comparing a linear and nonlinear PE for classification 

Let us use the same problem as in the previous example, and simply change the 

PE from a LogisticAxon to a BiasAxon, which simply adds the contributions of the 

weights plus a bias. Running the simulations, we see that in fact the discrimination 

probe shows a separation line passing between the classes of points as in the 

nonlinear case. The minimum error is 0.011276, and can not be decreased further 

since the output must be a linear combination of the inputs, i.e. all the possible 

outputs must exist in a plane. This should be compared with the nonlinear solution 

that is able to decrease the error further by nonlinearly operating on the inputs (a 

zero error is possible). This effectively corresponds to “bending” the regression 

plane to fit better the 0 and 1 responses in the two half planes. 

It is also interesting to verify that the linear system is much more sensitive to the 

learning rates than its nonlinear counterpart. Explore the breadboard by changing 

the learning rates, and observe the different speeds that the regression plane 

moves to its final position.  
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Go to Next Section  

3. The Perceptron 
Rosenblatt’s perceptron is a pattern recognition machine that was invented in the 50’s for 

optical character recognition. The perceptron has multiple inputs fully connected to an 

output layer with multiple McCulloch and Pitts PEs (Figure 8). Each input xj is multiplied 

by an adjustable constant wij (the weight) before being fed to the jth processing element 

in the output layer, yielding 

( )y f net f w x bj j ij i
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⎟∑ j

                      Equation 18 

where bj is the bias for each PE. The number of outputs is normally determined by the 

number of classes in the data. These processing elements (PEs) add the individual 

scaled contributions and respond to the entire input space.  
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Figure 8. The perceptron with d inputs and m outputs (d-m) 

After studying the function of each M-P PE, we are ready to understand the pattern 

recognition power of the perceptron. The M-P PE is restricted to classify only two classes. 

In general the problem is the classification of one of m classes. In order to have this 

power the topology has to be modified to include a layer of m M-P PEs, so that each one 
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of the PEs is able to create its own linear discriminant function in a D dimensional space 

(Figure 9). The advantage of having multiple PEs versus the single M-P PE is the ability 

to tune each PE to respond maximally to a region in the input space.  

One of Rosenblatt’s theoretical achievements was the demonstration that the perceptron 

could be trained to recognize linearly separable patterns  in a finite number of steps. 

This showed that these adaptive devices not only produced useful pattern classification 

by tweaking parameters. There are systematic algorithms to change the weights that 

converge in a finite number of steps. These algorithms are called learning rules. The 

perceptron also had a remarkable property: it was able to generalize . Hence, one can 

say that the perceptron started the field of learning theory. The recent interest in large 

margin classifiers shows that the perceptron and its algorithm is still at the center stage to 

design practical classifiers. 

3.1 Decision boundaries of the perceptron 
An m output perceptron can divide the pattern space into m distinct regions. Suppose 

that the ith and jth regions share a common boundary. The decision surface is a segment 

of a linear surface of equation 
0)()( =− xgxg ji  . There are m(m-1)/2 such 

equations and so the decision surfaces of a perceptron are segments of at most the 

same number of hyperplanes. The hyperplanes that effectively define the decision 

boundary must be contiguous (the others are called redundant). The decision regions of 

the perceptron are always convex regions because we require during training that one 

and only one of the outputs to be positive. The PE that responds maximally to an input 

pattern means that the input is inside the region represented by the PE. Hence each PE 

identifies patterns that belong to a class. The perceptron is therefore a physical 

implementation of the linear pattern recognition machine presented in Figure 12 of 

Chapter II.  

NeuroSolutions  8 

3.8 Decision boundaries of the preceptron 
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This example shows the discriminant function and the decision boundary created 

by the perceptron for a three class problem in 2-D space. The data that created the 

example is shown in the following Fiugre. What we want to stress is the convex 

shape of each decision region. This is a characteristic of a single layer network. 

Notice that there are areas in the space that there is no class assigned to them.  
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3.2. Delta rule applied to the perceptron 
What changed in the delta rule when we went from a single PE to the perceptron? Not 

much, except that now there are several (m) outputs so the cost must be computed not 

only as a sum over the training set but also as a summation of each output PE. So the 

cost J becomes 
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                  Equation 19  

where p is the index over the patterns and i over the output PEs. Rewriting Eq.15 to 

adapt the j weight of the ith PE as  
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Equation 20 

and the update rule for the weights would be the same as Eq.16 . Note that the gradient of 
the cost with respect to the weight wij is computed by multiplying the partial of the cost 
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with respect to the PE state 
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  scaled by the derivative of the nonlinearity of the PE 

and the input activation. Let us define the local error   δi for the ith PE as 
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We can then conclude that the gradient of the performance surface with respect to weight 

wij is computed by  

∂
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                  Equation 22 

which are local quantities available at the weight, i.e. the activation xjp that reaches the 

weight wij, from the input and the local error δip propagated from the cost. So, the 

amazing thing about this algorithm is that it is local to the weight, i.e. only the local error 

δi and the local activation xj are needed to update a particular weight. This means that it 

is immaterial how many PEs the net has, and how complex their interconnection is. The 

training algorithm can concentrate in each PE, and work only with the local error and 

local activation.  
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3.9 The perceptron for character recognition 

This NeuroSolutions breadboard implements Rosenblatt’s perceptron with two 

minor modifications: Instead of using threshold PEs it implements the classifier 

with tanh nonlinearities. The reason is to utilize the delta rule to train the machine, 

instead of the perceptron learning algorithm developed by Rosenblatt.  

The task will be character recognition. We created the 10 digits in 8 pixel by 8 pixel 

black and white images. We have placed an image viewer on the input axon so you 

can view the images. The output layer is made up of 10 PEs, one for each of the 

digits. Since we are going to use the delta rule, we placed an L2Criterion at the 

output and included an output file with the desired response, which is a value of 

one for the corresponding digit and zero for the others. We will place a BarGraph 
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probe over the output file to show the net response for each input pattern. 

Training will be done using on-line learning, i.e. the weights are modified after the 

presentation of each pattern. Learning rates are appropriately set for the task 

(more about this later). We will place a MegaScope at the cost access of the 

L2Criterion to display the change of the MSE with the iterations, i.e. our already 

known learning curve.  

What do you expect to see? In the beginning the weights are random, so any 

combination of outputs can appear at the output, which produces a large error. But 

after a few iterations the weights are modified to track the desired response. In the 

BarChart, the largest response will scroll from top to bottom meaning that only a 

large output is present, and that it matches the digits (presented in sequence 0-9). 

So, when the network is trained the output will follow the desired response.  

It is remarkable that 640 weights (the Synapse Inspector displays the number of 

weights) are trained so quickly. In practice, however, the problem of digit 

recognition is much more difficult because the characters differ from person to 

person, they appear concatenated, and can appear misaligned. 

One interesting aspect is to find out how robust the obtained solution is. This can 

be measured by altering the input with the weights fixed, and finding the network 

response. The network does not classify the noisy inputs very well. The inputs are 

very different from the clean noiseless images used for training. An interesting 

question is: can we improve the robustness of the classification if we include 

noise during the training? This can be easily checked with the set up. The initial 

condition will be the weights obtained without noise. We will train the network 

more with the new noisy data and see if it can improve its performance. 

We will see that the error will decrease further, albeit in an erratic way. This means 

that the network has learned to cope with small amounts of noise to a certain 

extent. The outputs should look cleaner, and we can even increase the noise 
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variance and still obtain reasonable results. This experiment shows how adding 

small amount of noise to clean data sets may improve the performance when noise 

is present. However, the method requires a tight control of the experimentation to 

produce good results.  

During this example, we will ask you to single step (step exemplar) through the 

training to watch the input and output of the system for each data point.  This is 

done by clicking the “step exemplar” button on the NeuroSolutions Control Palette.   

At the end of a run, the network may not allow you to single step the network since 

you have completed the experiment.  You can fix this situation by increasing the 

number of training epochs in the Controller inspector panel. 

  
Remember that this is a “live” breadboard so you can experiment with the 

breadboards at will. We recommend that you change the learning rates, the noise 

source variance, use other probes such as the Hinton probe to display the weight 

values, etc.  
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3.3. Large Margin Perceptrons 
We have seen above that the perceptron algorithm is very efficient, but not very effective 

because the movement of the discriminant function stalls as soon as the last sample is 

classified without error. This normally leaves the separation surface very close to the last 

sample misclassified. Obviously that this solves the problem in the training set, but we 

also feel that it may not produce the best possible classification for data in the test set. 
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This is the reason we would like to modify the perceptron training such that the location of 

the decision surface is placed in the valley between classes and at equal distances from 

the class boundaries. For this we have to introduce and define the concept of margin.  

Suppose we have a set of data and labels )},()...,,{( 11 Nn dxdxS =  , with d = {-1,+1}, 

and we have a linear discriminant function defined by (w,b). We define the margin of the 

hyperplane to the sample set S as 

0,min >+=γ
∈

bwx
Xx   Equation 23 

where <.> means the inner product of x and w. We can show that the margin is related to 

the inverse of the L2 norm of the hyperplane’s weight vector w, i.e. 
2/1 w=γ   

(Vapnik ).  

We define the optimal hyperplane as the hyperplane that maximizes the margin between 

the two classes (Figure 9). As can be seen in this Figure from all the possible 

hyperplanes that separate the data, the optimal one is halfway between the samples that 

are closest to boundary between the classes.  
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Figure 9.  Hyperplane with largest margin.  

Vapnik showed that the optimal hyperplane provides the smallest bound on the VC 

dimension, which is one of the best things we can do to guarantee low error rate in the 

test set. So the issue is how to find this optimal hyperplane. We see from Figure 9 that 
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we first have to find the points that are closest to the boundary (called the support 

vectors), and then place the discriminant function midway.  

3.4. The Adatron Algorithm 
Here we will give a very simple algorithm known as the Adatron algorithm to find the 

parameters of the discriminant function which possesses the largest margin. This 

algorithm is sequential and is guaranteed to find the optimal solution with an 

exponentially fast rate of convergence.  

In order to explain the procedure, we have to write the discriminant function of the 

perceptron in terms of the data dependent representation, i.e.  
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   Equation 

24 

where <.> is the inner product, N is the number of samples, αi are a set of multipliers one 

for each sample, and we consider the input space augmented  by one dimension with a 

constant value of 1 to provide the bias. Let us see how to construct a topology that 

creates this data dependent representation. We just have to read the equation: Notice 

that one can create the inner product by creating a system with N linear PEs where the 

weights from the input layer are exactly the samples from the training set. The α are then 

weights connecting the hidden layer PEs to the output. This system creates an output 

that is the same as the perceptron. Note also that once the training data is given the first 

layer weights are immediately fixed. We even recommend that the weights be stored 

multiplied by the corresponding desired response (see below the algorithm).  
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In this representation, the perceptron learning algorithm of Eq. 9 updates the αi instead of 

the weights when there is an error (i.e. when ii dxgsign ≠))((  ) and it becomes 
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where d(n) is the desired response of the perceptron at iteration n and η is the stepsize. 

In on-line learning we assume that we start from the first pattern and move on in the 

training set until convergence, so we substitute the ith index by n. The Adatron algorithm 

chooses the alphas such that the following quadratic form is optimized 
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  Equation 25 

This in general is a difficult optimization problem that has nevertheless a simple solution 

provided all the inner-products among the input data are calculate beforehand (as 

specified by the Adatron algorithm). The algorithm is as follows: 

Define   
)(min),()(

1
ii

N

j
jijjii xgMandbxxddxg =+α= ∑

=    and choose 

a common starting multiplier (e.g. αi=0.1), learning rate η, and a small threshold (e.g., t = 

 35



0.01). Note that we can compute g(xi) locally at each PE if dj is available at the input 

layer (from the data file), or equivalently, if the weights to the hidden layer are stored 

multiplied by the corresponding desired response. 

Then, while M>t, choose a pattern xi, and calculate an update ))(1( ii xg−η=αΔ  and 

perform the update 

   ⎩
⎨
⎧

≤αΔ+α=+α=+α
>αΔ+ααΔ+=+αΔ+α=+α
0)()()()1(,)()1(
0)()()()()()1(,)()()1(

nnnbnbnn
nnnndnbnbnnn

Notice that for each input and corresponding desired response we can compute Δαi 

locally. So the Adatron algorithm adheres with the local implementation constraint of 

neurocomputation.  

The Adatron algorithm is applied to a perceptron (threshold nonlinearity) with a single 

output, i.e. it is only able to discriminate between two classes. If the problem has multiple 

classes, it must be solved as a sequence of two class decisions. The algorithm 

resembles the perceptron learning algorithm given above, except in the updates. Let us 

see how the Adatron works for the problem we solved in section 2.3. 

It is very useful to compare the Adatron algorithm with the delta rule described above, to 

contrast their differences. In the delta rule, the positioning of the boundary is primarily 

controlled by the samples that produce outputs that differ from the desired values of 1 or 

-1. These samples tend to exist in the boundary between the classes (Figure 10). So the 

MSE is controlled by the samples that are close to the boundary between classes. 

However due to the fact that J (Eq. 19) is a continuous function of the error, all the 

samples contribute somewhat to J. Therefore, the MSE is a function of the full data 

distribution and the location of the boundary will respond to the shape of the data 

clusters.  
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Figure 10.  Differences in the distribution across samples in the Adatron and delta rule 

  
In the Adatron algorithm a very different behavior happens. During the adaptation, most 

of the αs go to zero, and the location of the boundary is solely determined from a few 

samples close to the boundary which are called the support vectors. So the adaptation 

algorithm is insensitive to the overall shape of the data clusters and concentrates on the 

local neighborhood of the boundary to set the location of the hyperplane. Depending on 

the data distributions this may provide different boundaries. In particular it has been 

shown by Vapnik that the large margin classifier generalizes better.  

3.5. Limitations of the perceptron 
The prototype problem that is not linearly separable and thus cannot be solved by 

perceptrons is the exclusive-or function (XOR). The exclusive-or truth table is presented 

in Figure 11.  
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x1

x2

y=1 y=-1

y=1y=-1

     X1     X2       y
     -1        -1       -1
     1          -1       1
     -1         1        1
     1          1       -1

  

Figure 11. The XOR problem in pattern space 

No matter where we place the half plane that includes the “1” responses it will always 

include one of the “0” response. So this is an example of non-linearly separable patterns. 

The parity function extends the XOR to higher dimensions. NeuroSolutions can be used 

to build this example.  

NeuroSolutions   10 

3.10 Perceptron and the XOR problem 

This example will show what happens when the perceptron tries to solve the XOR 

problem. We will start with a modified M-P PE, built with the tanh nonlinearity. The 

network has two inputs and one output. Training will be done with the delta rule in 

batch mode. The Discriminant probe shows the separation surface, the MegaScope 

displays the learning curve to observe how learning progresses. There are two 

important points about the XOR problem and the M-P PE.  First, there is no way 

for the M-P PE to solve the problem.  The XOR is not linearly separable.  Second, 

there are many different local minima in the performance surface.  The least 

interesting of which is the one where all the weights quickly approach zero and the 

network output is thus always zero.  This will produce a discriminant plot which is 

all grey.  The other more interesting minima are when the discriminant line 

separates one of the four points from the other 3 – this is the best the network can 
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do, getting 3 out of four correct.  Notice that both of these minima produce the 

same mean squared error. Why is this so when one network correctly classifies 3 

of four points and the other produces no output at all?  

With batch mode training, the weights are updated after an entire epoch.  This 

produces a smoother weight track, but in this example, the smooth weight track 

tends to very often lead directly to the all zeros (uninteresting) solution. If we 

change the training to on-line you will find other solutions. Why? Because the 

on-line training is much noisier than the batch mode training, thus it has a 

tendency to bounce out of local minima. Imagine doing gradient descent on the 

performance surface in Figure 7, a smooth track will lead to a single minima 

whereas a noisy track will bounce around and end up in various locations. 

This example clearly shows that this problem has multiple minima and depending 

upon the update rule some of the solutions are preferred. But none is able to 

correctly classify all the patterns. Notice that the inclusion of nonlinearity, even in 

a one layer network produced performance functions that are non-convex.  

 NeuroSolutions Example 
Minsky showed that the perceptron was not a general purpose processing device 

because the possible decision regions that the machine can create are convex, formed 

through the intersection of hyperplanes (an extension of a plane to more than two 

dimensions). A lot of problems in practice do not fit this description. The XOR function 

just described is a simple case. 

Go to next section  

4. One hidden layer Multilayer Perceptrons 
Multilayer perceptrons (MLPs) extend the perceptron with hidden layers, i.e. layers of 

processing elements that are not connected directly to the external world. multilayer 

perceptrons  
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Figure 12. A multilayer perceptron with one hidden layer (d-k-m) 

Figure 12 shows a one hidden layer MLP with d inputs, k hidden PEs and m outputs 

(MLP(d-k-m)). Normally the PEs in MLPs are nonlinear sigmoid PEs.  Let us analyze the 

extra processing power that a layer of nonlinear PEs achieves in terms of discriminant 

functions.  

We will extend the perceptron given in Figure 8 by cascading one extra processing 

element. The hidden layer will have two processing elements as shown in Figure 13. We 

will start our study of the MLP with threshold processing elements (to facilitate the 

explanation we will assume that the outputs are between 0,1). The goal here is to find the 

discriminant functions produced by one hidden layer MLPs. 
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Figure 13. A one hidden layer (2-2-1) perceptron 

Conceptually the one hidden layer MLP is a cascade of perceptrons. It is straight forward 
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to see using this interpretation that the two hidden layer PEs create two linear 

discriminant functions in the (x1, x2) space. Let us label the output of each hidden 

processing element as x3 and x4. Each of these variables will be positive above a straight 

line with a slope given by the ratio of the respective local weights.  

In the space (x3, x4), the output PE is also a perceptron. It will also construct a linear 

discriminant function, i.e. it will have a positive response above a straight line with slope 

given by -w6/w5. The problem is that we are interested in finding the overall positive 

response in the input space (x1,x2). This is a straight forward (but messy!) problem in the 

composition of functions, since we know the (nonlinear) parametric relation between x3 

and x1,x2, and between x4 and x1,x2. It is instructive to write the overall input-output map 

as 

( ) ( )[ ]{
( )[ ] } { }

y f w x w x b f w f w x w x b

w f w x w x b b f g g b

= + + = + +

+ + + + = + +

5 3 6 4 3 5 1 1 2 2 1

6 3 1 4 2 2 3 1 2 3                 Equation 26 

4.1 Discriminant functions of the MLP 
The multilayer perceptron constructs input-output maps that are a nested composition of 

nonlinearities, i.e. they are of the form  

( )( )( )y f f= •∑∑                 Equation 27 

where the number of function compositions is given by the number of network layers. The 

resulting map is very flexible and powerful, but it is also hard to analyze. Our goal now is 

to find out what type of discriminant function can be created with the map of Eq.27 ).  

Let us assume that the output layer weights are set to one. Each expression inside the 

brackets creates one linear discriminant function, yielding after the nonlinearity a function 

with a positive value across a half-plane (a step function). The location of the transition  

in the input space is controlled by the discriminant function. So the expression inside the 

curly brackets is the addition of two step functions, g1 and g2, with a bias term b3. In the 
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region on the input space where both functions g1 and g2 are positive the value of y will 

be the largest. The output y will have an intermediate value in a subspace where either 

one of the g functions is positive (but not both); and finally there is an area in the input 

space where y is equal to the bias b3 because each one of the functions g1 and g2 is 

zero.  

The shapes of these areas are controlled by the placement of the original discriminant 

functions (which in turn are controlled by the values of w1,w2,w3,w4). Notice also that the 

bias value b3 is added to the result of the hidden layer partition. So its value will dictate if 

only the peak value of y is positive, or if the peak and one of the plateaus are positive, if 

all are positive or if all are negative. Hence the role of the bias at the output layer is 

substantially different from the simple control of the y intersect as the input PEs’ biases.  

The bias reveals different details of the composition of functions, effectively changing the 

overall assignment of values to the partition created by the hidden layer. The output 

weights w5 and w6 enhance the flexibility (can give different weights to the output of each 

hidden PE) and change further the sign of the hidden PE activations. 

The interplay among all these parameters becomes quite involved, but we have the 

feeling that the discriminant function of the one hidden layer perceptron is much more 

flexible than that of the perceptron. Let us go to NeuroSolutions and create a breadboard 

to help us get familiar with the discriminant function of the one layer MLP. Remember that 

the discriminant probe provides a way to visualize the shape of the overall discriminant 

function by gray coding the input space with the value of the output.  

NeuroSolutions  11 

3.11 One hidden layer MLP in 2-D space 

This breadboard implements the one-hidden-layer perceptron shown in Figure 12, 

with two TresholdAxons in the hidden layer but a TanhAxon at the output. We have 

the discriminant probe attached to the output of the network, thus it will show the 

combination of the discriminant lines created by the hidden layer PEs.  We will 
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see how the MLP separates the input space into multiple areas with different 

values (depending on the values of the weights) – this is often called a tesselation . 

Notice that since the tessellation is made up additively, a change in sign of one of 

the weights changes all the regions, not only the ones that belong to the PE which 

had the weights modified. This tight coupling between the PEs is what makes the 

MLP so powerful, because to obtain a given tessellation, all the PEs have to 

contribute to it. In other words the training procedure for the MLP is not greedy .  

Another interesting aspect of the MLP is that different weight combinations can 

lead to the same tessellation.  

 NeuroSolutions Example 
Figure 14 shows a summary of the tessellation obtained with the two hidden layer MLP. 

The conclusion is that by adding an extra layer to the perceptron we have qualitatively 

changed the shape of its discriminant function. The decision regions are no longer 

restricted to be convex , because the network has a more powerful composition 

mechanism.  

x4<0

-

Figure 7. A”bump” in 2D space constructed by 
the intersection of 3 half-planes. 

x3 >0x4>0

x3,x4 >0

x3,x4<0

  

Figure 14. Tessellation of a one hidden layer MLP (2,1) in 2D space.  
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There are several important conclusions to be drawn from this example.  

• First, the maximum number of distinct regions of the input space is controlled by the 
number of hidden PEs (2k for k>>d). An alternative statement is: each hidden PE creates 
a linear discriminant function. 

• Second, the PEs on the top layer have the ability to combine some of the regions created 
by the hidden PEs either by a multiplicative effect or by an additive effect. This creates 
decision regions that are no longer convex. 

• Third, there is more than one weight combination that achieves a particular arrangement 
of decision regions.  

Can we solve the XOR problem with the MLP (2,2,1)? The answer is YES if the 

discriminant functions are modified according to the goal of creating a slanted (45 

degree) “bright” strip that passes through the origin (see Figure 9). Let us do it first by 

hand.  

NeuroSolutions   12 

3.12 Solving the XOR problem by hand with the one hidden layer MLP 

The Table for the XOR is presented in Figure 11. Note that to solve this problem we 

have to define a “bright” region that includes two of the outputs only. This can be 

accomplished if we place two discriminant functions  at 45 degrees which are 

parallel to each other and are positive towards the center. So we need only two 

discriminant functions, i.e. two hidden PEs. When you have finished the 

demonstration, try to find two other solutions that will implement a solution to the 

XOR problem. Remember that the assignment of 1 or -1 to a given class is arbitrary, 

which gives one more solution if we reverse the assignments. The other solution is 

obtained with lines at 135 degrees.   

The important aspect of this problem is to observe how the single layer MLP 

globally constructs the solution. Changing a single weight changes the overall 

decision surface.  

 NeuroSolutions Example 
So we conclude that classification with the MLP is accomplished by adequately 

controlling the position of the discriminant functions according to the input data and the 
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desired response. This is the same principle utilized for linear regression and for the 

perceptron. The machine will automatically discover the position of the discriminant that 

correctly classifies the training data.  

4.2. Mapping capabilities of the one hidden layer MLP 
An important consequence of the mapping capabilities of the one hidden layer MLP is 

that it can construct a bump in the input space, i.e. a single limited extent region of large 

values, surrounded by a region of low values. Notice that the decision region of the low 

values is no longer convex, so the bump can not be implemented by a perceptron. The 

simplest bump is triangular and it is obtained with 3 hidden PEs.  

NeuroSolutions    13 

3.13 Creating a “bump” with the one hidden layer MLP 

In this example we will create a “bump” in a two dimensional space using a one 

hidden layer perceptron. The goal is to create a bright triangular region around the 

origin of the input space. In this breadboard we will need three tanh PEs in the 

hidden layer, since a triangular region requires the combination of 3 linear 

discriminant functions. When you have successfully solved the problem, 

experiment with moving the discriminant plot by hand.  This experience will come 

in handy in the future. 

 NeuroSolutions Example 
This shows that the one hidden layer perceptron is able to create a limited extent (local) 

bump in the input space. This feature is going to be very important for function 

approximation in general, and for classification in particular. But one hidden layer MLPs 

can also create other types of nonconvex regions, and even disjoint regions. mapping 

capabilities of the 1 hidden layer MLP . 

Another important conclusion is that if the user knows what is the desired placement of 

the discriminant functions, then it is possible to synthesize the solution directly. The 

geometric picture that we developed also applies to higher dimensional spaces but we 
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loose the ability to visualize the solutions. 

4.3. Training the one hidden layer MLP 

As a historical note, the perceptron and the multilayer perceptron are trained with error 

correction learning, which means that the desired response for the system must be 

known. In pattern recognition this is normally the case, since we have our input data 

labeled, i.e. we know which data belong to which class. We already know how to train the 

perceptron (Eq.20 ). If one wants to utilize the delta rule, we must know how to compute 

the error at each PE, which requires the availability of a desired response for each 

network PE. An explicit error is not available in the hidden layer PEs of the MLP. This is 

known as the credit assignment problem and represented the stumbling block that ended 

the first connectionist era around 1970.  

The resurgence of interest in neural networks can be traced to the discovery of a method 

to train MLPs, which is best known as backpropagation.  or generalized delta rule. The 

method was re-invented many times ( inventors of backprop  ) and it was known in 

control theory since the late sixties, but the connectionist version is much more efficient 

and can be considered a contribution of connectionism to the theory of gradient descent 

learning.  

We already covered one of the fundamental concepts required to extend the delta rule to 

MLPs when we discussed and applied the chain rule to the M-P PE. Remember that we 

showed that the chain rule is a systematic procedure to propagate sensitivities across an 

undetermined number of internal (hidden) points of a topology. As long as we have an 

analytic expression that relates the variables along the forward path, we can compute 

sensitivities to the same intermediate points in the path. If we accept that the output error 

should be scaled by the network weights (the second ingredient of backprop), then we 

can propagate the output error to any point along the path, and update the weights with 

the scaled error. In other words, we are effectively substituting the availability of the 

desired signal at the intermediate points in the path by the propagated and scaled output 
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error. This worked for the M-P PE, and works in general. How can this help us train the 

MLP? 

Let us examine Figure 15 that depicts a piece of a one hidden layer MLP. The goal is to 

adapt the weights that are connected to the hidden ith PE. Notice that we do not have a 

desired response at this point since the PE is not connected to the external world (i.e., it 

is hidden). In order to adapt its weights we are going to apply the following methodology: 

• we are going to substitute an explicit desired response at the ith PE by an error. 

• this error is going to be the propagated and scaled output error. 

• this sensitivity is going to be automatically computed by the chain rule.  

ith PE

k thPE 

wki

wij

yi

yk

xj

  

Figure 15.  Detail of an hidden layer network 

backprop derivation   

The weight update using backpropagation is  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )w n w n f net n e n f net n w n x nij ij i k k ki
k

j+ = + ′ ′
⎛
⎝
⎜

⎞
⎠
⎟∑1 η

  
 Equation 28 

Let us re-interpret Eq. 28 using the definition of the local error (Eq.21 ). The summation in 

Eq. 28 is a sum of local errors δk at each network output PE, scaled by the weights 

connecting the output PEs to the ith PE. Thus, the term in parenthesis in Eq. 28 

effectively computes the total error reaching the ith PE from the output layer (which can 

be thought of as the i’th PE’s contribution to the output error). When we pass it through 
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the ith PE nonlinearity we have its local error which can be written as 

( ) ( )( ) ( )δ δi i k
k

n f net n w n= ′ ki∑
  

So there is an unifying link in all the gradient descent algorithms presented so far. ALL 

the weights in gradient descent learning are updated by multiplying the local error (δi(n)) 

by the local activation (xj(n)) according to Widrow’s estimation of the instantaneous 

gradient first shown in the LMS rule  

( ) ( ) ( )Δw n n x nij i j= ηδ                       Equation 29 

What differs is the calculation of the local error, depending upon if the PE is linear or 

nonlinear and if the weight is attached to an output PE or a hidden layer PE.  

Case I: If the PE is linear and at the output, f′(.) is a constant and there is no scaling of 

the output error that arrives at the ith PE. This is the case found in the LMS rule (Eq.11 ).  

Case II: If the PE is nonlinear and it is at the output, then the delta rule (Eq.21 ) used to 

train the perceptron is exactly Eq. 29 with δi substituted by  

( ) ( ) ( )( )δ εi i in n f net= ′ n                 Equation 30 

where εi is the error associated with the ith output. We can update the output weights of 

the MLP with the delta rule since we know the desired response at the output.  

Case III: If the PE is nonlinear and is hidden, then the local error is computed by 

summing all the contributions of the local errors in the output layer, scaled by the 

corresponding weights, which yields 

( ) ( )( ) ( )δ δi i k
k

n f net n w n= ′ ki∑
                 Equation 31 

So, structurally, the weight update equations do not change since learning is still using 

gradient descent. Everyone should remember Eqs. 29, 30 and 31 to apply gradient 

descent learning to MLPs. Let us apply the backpropagation algorithm to train the one 

hidden layer MLP how to solve the XOR problem. multilayer linear networks  
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3.14 Solving the XOR with backpropagation 

In this example we will use the same breadboard from the previous example, set 

the number of hidden PEs to 2, and add the learning layers so that we can 

implement the backpropagation algorithm to train the network to solve the XOR 

problem. When you finish the demonstration, try changing the step size (learning 

rate) by selecting the gradient descent component, opening the inspector, and 

typing new values.  Notice how this changes the dynamics of learning, 

exemplified by the learning curve. Another thing that you might notice is that the 

learning curve has sometimes plateaux where the error is basically the same. This 

corresponds to almost flat regions where the gradient is very small.  One can 

imagine that the performance surface is no longer the simple “bowl” we found in 

linear regression. Sometimes instead of flat regions one gets local minima and the 

search gets stuck there because a local minima and the global minimum are 

indistinguishable with the local gradient. This is one of the added difficulties of 

working with nonlinear systems.  

One other thing to observe is that although the classification is successful, i.e. the 

MSE is very small, the weights of the system have very different values from run to 

run. This is due to the fact that the system is started with random initial conditions 

and there are many possible solutions to solve the XOR. So during adaptation the 

search takes the system’s state along different paths and one of the solutions (we 

do not know which) is reached. But from the point of classification anyone of them 

is OK.  

 NeuroSolutions Example 
Notice that there are many different solutions to the XOR problem. When the network 

weights are seeded randomly different solutions can be found. However, the most 

important conclusion is that the network can automatically find the placement of the 

discriminant functions that are so difficult for us to create by hand.  
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The other example that we will run at this point is the “bump”. The goal is to show that 

backpropagation is able to train a one hidden layer MLP to discover a triangular shape 

decision region. In order to train such an MLP, one needs to construct a training set that 

will tell the network where its response must be 1 and where it should be zero. Here we 

selected 20 points in the plane. Ten points are organized in a triangle and the desired 

response for these samples is 1. The remaining 10 samples are placed around the first 

cluster, and the desired network response is 0. 

NeuroSolutions    15 

3.15 Solving the bump with backpropagation 

In this example we will use the same MLP that we used previously to construct the 

bump by hand (3 hidden layer PEs) and add the learning dynamics. We have 

placed a scatter plot at the net input to help you build the correspondence between 

the samples and the discriminant function found through training. In particular, 

pay attention to the relationship between the discriminant function being created, 

and the evolution of the learning curve. Depending on the initial conditions, the 

bright area can appear in the center, or more frequently will appear in one corner 

and find its way towards the center, until if finally creates a central bright spot. 

Notice that the learning curves are different for each case. Sometimes you will find 

an initial decrease in the error followed by a long period where the error basically 

is constant until finally the final solution appears. You should link the learning 

curve behavior to the positioning of the discriminant function.  

Some other times the discriminant functions form a wedge and stay there for 

ever…. This is a local minimum. It is important to figure out why this behavior 

occurs. It is obvious that this solution misclassifies one sample (see the scatter 

plot).  And it is also obvious that there is one extra discriminant function that 

does not appear in the plot. The reason is that it has parameters very close to one 

of the other discriminants (i.e. they are superimposed on each other). This 
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happens when the initial conditions or the gradient descent path produce weight 

updates that create hidden layer weights that are very similar. In such cases the 

error produced by misclassifying a single sample is not enough to pull the hidden 

weights apart, and the system rests in this solution.  When this happens open the 

matrix viewers and observe the weight values. 

 NeuroSolutions Example 
One of the central issues in neurocomputing is to appropriately set the number of hidden 

PEs. There are two extreme cases: either the network has too many hidden PEs to do 

the job, or it has too few. Each case is important in its own right, because setting the 

number of PEs correctly is more of an art than a science at our present state of 

knowledge. Let us start with an overdimensioned hidden layer.  

NeuroSolutions    16 

3.16 Effect on the number of hidden PEs 

In this example we will experiment with the number of hidden layer PEs and how it 

affects the output and learning dynamics of the network. It is obvious that if the 

problem can be solved with three hidden PEs it can also be solved with 6. What 

happens to the positioning of the other 3 PEs discriminant functions?  

The chances of getting the correct classification in the training set increase, and 

the system normally requires less iterations to reach the solution. However, the 

computational burden is increased, which slows down the training. But the big 

problem is that the redundant PEs may have detrimental effects on the test set 

performance (data that the system never saw before) because they may memorize 

the training data. This may create overfitting or spurious areas that produce 

in-class responses in regions of the input space that do not contain any training 

data (and therefore are “don’t care” regions given the training data). Putting it 

another way the machine may not perform very well in data it was not trained with. 

This does not happen in this case due to the symmetry of the training data, but can 
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happen in practice.  

You should use a MatrixViewer to observe the values of the weights, from the 

output layer to the input. You will find that some of the output weights are small, 

so they are not important for the mapping. This is a benign case. The problem is if 

some of the weights are large and make the system respond to regions of the input 

space void of training samples. This is when the system makes mistakes in the 

test data. The input layer weights appear also duplicated (i.e. several 

superimposed discriminant surfaces).  This is pure waste, but does not affect the 

performance in the test set much.   

 NeuroSolutions Example 
The other important condition to study is when the network does not have enough hidden 

PEs to solve the problem correctly. We saw this when we tried to solve the XOR problem 

with the perceptron. The machine does not know if the problem is linearly separable or 

not, so it will try to do its best, classifying most of the samples correctly.  

The discriminant function first finds placements that correctly classify the majority of 

samples, and slowly moves to classify the areas with lesser samples. The reason for this 

behavior is rooted in the form of the cost function (a sum over all the training patterns) 

that is guiding the automatic placement of the discriminant function. If the learning 

machine does not have enough degrees of freedom, the error will stabilize at a high value, 

and the weights and bias will basically stay unchanged. Sometimes, oscillations can 

occur when the learning rates are large. The oscillations may have high amplitude and 

correspond to sudden change in weights between disjoint sets of values.  

NeuroSolutions 17 

3.17 Fewer hidden PEs than required 

Let us now train the MLP to create a bump, but in this case let us reduce the 

number of hidden PEs to 2. This MLP can not solve the problem exactly since at 

least 3 PEs are required. So what will the training do? The machine does not know 
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if it has enough degrees of freedom or not. It blindly changes the weights to 

decrease the MSE. So the solutions found will always classify correctly the 

majority of samples (unless in pathological cases of symmetry where the error can 

be minimized by other means).  

For some initial conditions we may observe an oscillation, where the error abruptly 

goes up and then down. During these periods the weights change rapidly, and the 

discriminant function oscillates between two positions. This means that the 

weights are driven to values that makes the discriminant suddenly increase the 

number of errors. So the weights have to move back. One nice way to observe this 

effect is to place a MegaScope on top of the weights and see the weights change 

with iteration.  

 NeuroSolutions Example 

Go to next section  

5. MLPs with two hidden layers 
 

5.1. Discriminant functions of the two hidden layer MLP 
What are the discriminant functions of two hidden layer perceptrons? Such a network has 

three levels of function composition (Eq.27 ), i.e.  

   ( )( )( )∑ ∑ ∑ •= )(fffy   
So we can once again study the problem by finding the decision regions created by the 

one hidden layer MLP (the previous topic), and their composition created by the added 

output perceptron. This becomes a lot more complex, but it is important to understand 

which are the basic capabilities of the overall discriminant functions.  

From the previous discussion, the one hidden layer MLP can create local “bumps” in the 

input space (output is positive or negative). Another layer with several PEs can be 
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thought of as combining bumps in disjoint regions of the space. This is a very important 

property, because in the theory of function approximation (we will touch on this subject in 

Chapter V), there are well established theorems (Cybenko , Hornik, Stinchcombe and 

White ) which state that a linear combination of localized bumps can approximate any 

reasonable function. Therefore an MLP with two hidden layers is also a universal 

approximator, i.e. it can realize any input-output map, just like the one-hidden layer MLP.  

A word of caution is in order at this point. These theorems are existence theorems (the 

number of PEs is unconstrained), so they do not address the engineering question of 

“how many PEs and layers do I need to solve my problem?”. This is still an open 

question for which experimentation is necessary. But it is extremely important to know 

that theoretically an MLP is a universal approximator, and that one or two hidden layers 

are all it takes to reach this arbitrary mapping capability.  

One should associate the number of PEs in the first hidden layer with the number of 

linear discriminant functions in the input space. One will need in general 2N hidden PEs 

in the first hidden layer (N is the number of dimensions in the input space) and a modified 

M-P PE in the second hidden layer to form a single “bump”. The number of PEs in the 

second hidden layer creates the number of “bumps” in the input space that are needed 

for the approximation. The output layer simply combines these bumps to produce the 

desired input-output map. So this is a constructive reasoning that two hidden layer MLPs 

can approximate any function.  

This view is valuable to understand the function of MLPs for classification and to 

appreciate the difficulty of selecting an appropriate topology. If we have some a priori 

knowledge of our data clusters we can judiciously set the size of the network. 

Unfortunately, since pattern recognition problems are normally high dimensional and the 

cluster knowledge is scarce, this method does not go very far.... 
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3.18 Creating a Halloween mask by hand with a two hidden layer MLP 
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In this example we will set the weights of a two layer MLP by hand to create a 

halloween mask in the input space as illustrated in the Figure 16. This mask is a 

simple example of a general input output function. It can be thought of as a 

classification problem where one of the classes is scattered (multimodal) in the 

input space (the location of the bright regions), and the other class is in the dark 

region.  

  

Figure 16. Example of input output mapping 

We will design the MLP by hand since we know the placement of the discriminants. 

Observe that we have 4 distinct regions in the input space. Therefore we need 4 

PEs in the second hidden layer, one to build each feature in the input space. 

Looking at the figure we see that we need 13 discriminant functions: 3 for the nose, 

4 for one eye, 2 for the other (we use 2 of the first), and 4 for the mouth. Figure 17 

shows the topology of the MLP.  

Nose

Right Eye

Mouth

Left Eye
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Figure 17. MLP topology (2,13,4,1) 

This is a long example, but you should get a good feel for how each layer’s weight 

and bias affect the final discriminant function or tessellation.  After creating the 

mask, change the weights and see if you can predict how it will affect the output. 

 NeuroSolutions Example 
This example illustrates that when we know the decision regions we can design the 

discriminant functions directly. Unfortunately this is very rarely the case for two main 

reasons: One, the structure of our data sets may be unknown; but even if known we are 

not able to visualize them in higher dimensional spaces so that we can specify the 

placements of the discriminant functions. So we need to resort to training for the 

adjustment of the weights.  

5.2. Training 2 hidden layer MLPs with backpropagation 
The beauty of the training approach using the backpropagation algorithm is that it is a 

systematic, step-by-step procedure that can be applied independent of the topology of 

the network and the input dimensionality.  Backpropagation (BP) may be more time 

consuming to position correctly the discriminants of the two hidden layer MLP, but this is 

a matter of difficulty not of ability to achieve proper training.  

The application of BP to the two hidden layer MLP follows the approach outlined for the 

one hidden layer MLP and will be simply summarized here. First, an input pattern is 

presented to the network and propagated forward as activation until an output is 

computed. The injected error is defined as the difference between the desired response 

and the output. The injected error is then used to compute a local error at every PE in the 

topology by starting at the output layer and going backwards layer by layer until the input. 

At this point an activation and a local error is available to every weight in the network. 

According to gradient descent we just need to change the weights proportionally to the 

product of these two quantities (Eq.38 ). 

We can expect a very similar behavior between the training of the two types of MLPs, i.e. 
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there are solutions that take a long time to reach, if at all, due to the existence of local 

minima and saddle points.  
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3.19 Comparison of the perceptron and MLPs in real data 

In this example we will summarize the network topologies we have discussed so 

far by trying to solve the male/female classification problem using a single 

perceptron, one hidden layer MLP, and two hidden layer MLP.  The male/female 

classification problem was discussed in Section 2 and involves the trying to 

determine if a subject is male or female based upon their height and weight.  

Please refer to Figures 5 and 8 of Chapter II.  As you can tell, there is no way to 

correctly classify all the data points.  Remember that the optimal discriminant is 

quadratic.  How will this affect the best choice of network topologies? 

  
We have added a new probe in this example, the Confusion Probe.  The Confusion 

Probe generates a Confusion matrix which is a simple methodology to display the 

classification results of a network.  The confusion matrix is defined by having the 

desired classifications on one axis and the predicted classifications on the other.  

Thus, for each exemplar, a one is added to the cell entry defined by (desired 

classification, predicted classification).  Since you want the predicted 

classifications to be the same as the desired classifications, the ideal situation is 

to have all the exemplars end up on the diagonals of the matrix.  A few example 

confusion matrices are shown below: 
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Predicted Classification
Male Female

Desired Male 50 0
Classification Female 0 50

  

Example 1 

Predicted Classification
Male Female

Desired Male 45 5
Classification Female 9 41

  

Example 2 

In example 1 we have perfect classification.  Every male subject was classified by 

the network as male and every female subject was classified as female.  There 

were no males classified as females or vice versa.  In example 2 we have 

imperfect classification.  We have 9 females classified incorrectly by the network 

as males and 5 males classified as females. 

One of the interesting things about this example is that the error sometimes 

increases during adaptation. This clearly shows that the weight tracks are not 

moving exactly along the gradient descent direction. This may happen because we 

are using a local estimate of the gradient that may be noisy. The second thing to 

note is the relationship between the number of classification errors and the MSE. 

They are related in a coarse manner, i.e. in the beginning of training both are high 

and they decrease. However, the MSE may be decreasing and the number of 

misclassifications can be stable or even increase. This is due to the fact that MSE 

is sensitive to the differences between the desired responses and the actual output, 

while the number of mistakes is a digital quantity that only looks at the largest 

output (here the largest output is assigned to the class).   

 NeuroSolutions Example 
In the previous example the one hidden layer MLP and the 2 hidden layer performed at 

the same level of accuracy. But sometimes there are problems for which the 2 hidden 
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layer MLP has an advantage. As we mentioned, such machines are able to generate 

arbitrary decision regions which can be disjoint and non-convex. In many problems the 

performance is the same and the only difference is the speed of convergence (two 

hidden layer is slower to converge). But the fact is that the two hidden layer machines 

can form all of the discriminant functions of the one hidden layer MLP and many others, 

so they are more versatile, although we know that asymptotically a very large one hidden 

layer MLP would approximate the same performance. As a rule of thumb, we should 

always start our experiments with the simpler topology, since the two hidden layer MLP 

trains normally slower than the one hidden layer.  
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3.20 Solving the bowtie with MLPs 

This example solves a problem that a one hidden layer MLP can only approximate, 

while it can be exactly solved by a two hidden layer machine. The class 

distribution in 2-D space looks like a bow-tie, so we will call it the bow-tie problem. 

We created the two class problem with the distribution shown in the figure below.  

0

0.5

1

Bow Tie Data Set
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Let us experiment with the three topologies for this case (the perceptron, the one 

hidden and the two hidden layer perceptrons).  Modify the number of hidden layer 

PEs and watch the confusion matrix. You will see that the 2 hidden layer MLP gives 

a lower error for this problem, but if you increase the number of hidden layer PEs 

the one hidden layer MLP the performance differential disappears.   

 NeuroSolutions Exaumple 

 
Go to next section  

6. Training static networks with the 
backpropagation procedure 

We saw that a two hidden layer MLP can be trained with the backpropagation algorithm 

derived initally for the one hidden layer MLP. The backpropagation algorithm can be 

applied without any modification to the two hidden layer MLP, or for that matter to ANY 

feedforward topology. This is due to the fact that the formula Eq.31 applies locally to each 

hidden PE, no matter where it is placed in the topology. The only fact to remember is that 

we have to start computing the local errors from the output of the network towards the 

input.  

There is an intrinsic flow in the backpropagation algorithm. First, one data sample is sent 

through the network to find an output and compute an error (Figure 18). Then we start by 

calculating the injected error at the output layer and reflect it to the input of the output PE 

(the δk in Eq.28 )). Then the errors in the previous layer can be computed by Eq. (31), 

and so on until we reach the input layer. Once all the local errors are found, Eq.19 is 

used to compute the output weight updates and Eq.28 is used to compute the hidden 

layer weight updates. 
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Figure 18. Chaining of operations in the backpropagation algorithm 

Although these general rules for computing the gradients seem pretty reasonable from 

our presentation, we have mostly focused on the local computations of the gradients, and 

we do not have a clear idea of the possible limitations of the technique, if any. In order to 

answer this question a more principled approach to study gradient calculations in 

distributed architectures seems necessary.  

6.1. Gradient computation and ordered networks 
We will study briefly the gradient computations in ordered networks. An ordered network 

is a network where the state variables can be computed one at a time in a specified order. 

A MLP is such a network. Normally each PE (and weight) is numbered starting from the 

input (left) to the output (right) as in Figure 19 

1

2

3

w21 w32

w31 y3

y1

y2

  

Figure 19. Simple 3 PE network 
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Suppose that we want to compute the partial derivative of 

∂
∂
y
y

3

1  . In ordered networks 

there are two contributions to this derivative: an explicit or direct dependence, and an 

implicit or indirect dependence through the network. This total partial is called an ordered 

derivative . The direct dependence will be denoted with a superscript d. In the network of 

Figure 19, we have 
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Equation 32 

The output of a high numbered PE (ith) in an ordered network with N PEs requires the 

computation of the output of ALL lower numbered PEs (jth), i.e.  

y f w y xi ij j
i j

i=
⎛

⎝
⎜

⎞

⎠
⎟ +

>
∑

                          Equation 33 

where f(.) is the static nonlinearity, and xi is the PE input (if the PE is an input PE). Note 

that the summation index enforces i>j, which implies a feedforward topology. This is 

exactly what happens in the MLP. The intrinsic dependence in the computations can be 

captured in an ordered list L 

{ }[ ]L w y yij N= , ,...1                 Equation 34 

where wij are the weights and yi the PE activations (the state variables). What this means 

is that variable yi only depends on the variables j that are located to its left in the ordered 

list, i.e. i>j. Since the activations y are a function of the weights, these have to appear first 

in the list. 

Let us define a performance function J(y1,...yN) for this network. Werbos proved that in 

ordered networks the ordered partial derivatives of J with respect to the states y can be 
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computed by 
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                   Equation 35 

This expression states that the ordered derivatives can be composed from the explicit 

influence (first term) and the implicit effect through the topology (the sum). Note that the 

gradient computation must be ordered from high indices to low indices, i.e. in the reverse 

order of the ordered list. This is a clean mathematical proof that the computation of the 

gradients must be done in the way we described, i.e. from the output layers to the input. 

Hence the name backpropagation for the procedure. 

According to the chain rule the derivative of J with respect to the weights is 
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∂
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wij k

d
k

ijk
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                    Equation 36 

so by substituting Eq. 35 we can compute it easily. Note the similarity with 

backpropagation: Eq. 35 is computing the backpropagated error, while Eq. 36 composes 

it with the local sensitivity of the state with respect to the weight and yields the local 

contribution for the gradient. rederivation of backprop with ordered derivatives What we 

have gained with this analysis is insight on the requirements to apply backpropagation, 

and on the characteristics of the method. We will address two aspects: the computational 

complexity of the method, and efficient implementations. 

6.2. Computation complexity 
The backpropagation algorithm is a contribution of neural network theory to gradient 

descent learning. In order to fully appreciate this point we have to ask the question, how 

were gradients computed traditionally? The fields of control theory and digital signal 

processing have addressed the same problem long ago.  

They used what is called the direct differentiation method to compute gradients. The 

equations are very easy for the MLP. Suppose that we want to minimize the cost given by 
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Eq.22 with the forward structure of Eq.33 with N PEs. Applying the chain rule to Eq. 22 

we get 

∂
∂
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∂
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  Equation 37 

Let us define the gradient variable 

Nkji
w
y

ij

k
ij

k ,...,1,, =
∂
∂

=α
                       Equation 38 

where the superscript k refers to the k th
  state variable. The gradient variable can be 

computed by differentiating the state equation Eq.33 to yield 

( ) ( )[ ]α
∂

∂
∂

∂
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ij
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k
ij

k k iknet
f net

w
net f net y= = ′ j

                    Equation 39 

where f′ denotes the derivative and δik is the kronecker delta that is equal to one only 

when k=I (zero otherwise). This expression applies to feedforward topologies such as the 

MLP. 

This method is straight forward to implement but it is computationally demanding. It 

basically says that one needs to compute the sensitivity α of every state to every weight 

(Eq. 38). Since in an N PE fully connected MLP we have M>N weights, this gives MN 

quantities. Eq. 39 also shows that for each gradient variable we need a constant number 

of multiplications. So, the end result is a computational complexity proportional to MN that 

we will denote by O(MN). The storage for the algorithm is lead by the storage of the 

gradient variables which is O(MN). 

Now let us analyze the backpropagation procedure. The backpropagation procedure is 

O(N²), since for a N PE net we have to compute N errors δ, and for each one needs N 

multiplications (Eq.31 ). This is the same complexity of the forward path (Eq.33 ). So the 

asymptotic complexity of the backpropagation algorithm is O(N²). This should be 

compared with O(MN) for the direct method.  Whenever the network has more weights 
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than PEs (which is normally the case with MLPs) the direct procedure is more expensive 

computationally. In terms of storage, the backpropagation algorithm is also more efficient 

than the direct computation.  

The savings come from the use of the topology to compute the weight updates. However, 

this also brings a shortcoming that connectionism has not fully coped with, i.e. the need 

to re-derive the learning equations for each new topology. We will show how this step can 

be avoided in the simulations if the principles embodied in the ordered derivatives are 

fully exploited.  

6.3. Data flow algorithm for backpropagation 
The local nature of the backpropagation algorithm has very deep and important 

implications for simulation in digital computers. Unfortunately it is not widely used in 

neurocomputing. So, we will discuss here a local implementation that only requires 

knowledge of the topology and of the PE input-output map.  

For convenience, let us rewrite the activation equation and the error equations again 

  forward equation   
y f w y xi ij j

i j
i=
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⎝
⎜

⎞
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⎟ +

>
∑

  backward equation 
e wi i ji

j i
= − +

>
j∑ε δ
  

Analyzing closely these equations, one can conclude that the expression that computes 

the local error in the internal PEs is tightly coupled with the original network topology. In 

the forward pass the network works with the input data x and produces activations y. The 

backward equation works with the injected error ε and produces errors e. Furthermore 

note that the equations become the same if wij is substituted by wji. This indicates that 

once the topology is known both the forward and backward equations can be 

automatically computed. Figure 20 presents this similarity in more detail. In the top part 

we show the original neural network around the ith PE, while in the bottom part of the 

figure we are implementing a network that realizes the backward equation. The network 
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of Figure 20b is called the dual (or transpose network) of the network of Figure 20a. 

At the ith PE, the flow of activations (xi) in the original neural topology is from left to right, 

while in the topology that computes the error (δi) it is from right to left, i.e. inputs become 

outputs and outputs, inputs. Note also that the summing junctions in Figure 20a become 

splitting nodes in Figure 20b, and splitting nodes become summing junctions. The 

weights keep the same values. The incoming error in the dual network is multiplied by 

 . ′f neti( )
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Figure 20. a) and b). Original and dual networks 

The conclusion of this observation, is that one can imagine that the output error εi created 

by the difference between the network output and the desired response flows into the 

dual topology. So, collecting the local error at each PE in the dual network is equivalent 

to deriving and computing the messy Eq.31 . Note also that in the dual topology, the 

value of f′(.) is computed at neti, the activation level of the corresponding PE, i.e. it 

corresponds to a linearization of the forward network at the operating point. This leads to 
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the following alternate description of backpropagation (Figure 21). 

The procedure starts by inputting data to the neural network and obtaining the local 

activation at every PE (step 1). Then the network output is computed and compared to 

the desired response to obtain the output error, using the appropriate error criterion (step 

2). This error is injected through the dual network and a local error is obtained at each PE 

(step 3). Note that the error in the dual network is scaled at each node by the derivative 

of the nonlinearity at the operating point (given by the activation in the original ANN). Now 

that we have the local error and the local activation we can apply again Eq.29 to compute 

each and all weight updates (step 4).  
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Figure 21. The algorithm for backpropagation 

The beauty of this arrangement that we call the dataflow algorithm for backpropagation is 
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two fold: first, the dataflow has been separated from the local computations which brings 

flexibility for the simulations. Later chapters will demonstrate that this gradient descent 

methodology is also valid for training recurrent networks and networks through time, i.e. 

the data flow algorithm is a general implementation of gradient descent learning.  

Second, the local error is available as a signal in the dual topology, which means that we 

do not need to write equations to compute the local error, the biggest problem when 

simulating arbitrary neural networks with backpropagation. Only the topology of the 

network needs to be specified by the user. The flow of errors through the dual network 

topology is doing the backpropagation computations for us, effortlessly. Implementing the 

backpropagation algorithm with the dual is much more versatile than coding directly the 

previous equations, since the dual network can be programmed very simply from the 

user’s specified topology. NeuroSolutions uses the data flow algorithm presented in 

Figure 21. Next we will specify the operations required locally to implement the dataflow 

algorithm. 

6.4. Specification of the local operations 
We saw how the backpropagation algorithm can be implemented as a data flow machine. 

Analyzing Figure 21 we can also see that the PE only enters in the choice of the local 

computation (f(.) and its derivative in the dual). What this means in practice is that the 

flow of signals through the network (i.e. the activations and the errors) can be decoupled 

from the operations of the PEs. This provides a very powerful way to simulate neural 

networks, because different PEs can be interchanged at will in the topology simply by 

specifying new local operations that each building block must execute. So, one does not 

need to derive learning equations for each topology. Only two items need to be specified: 

• the network topology (preferably in a graphical form) by numbering PEs in a left to right 
manner. A computer program does this easily and produces a graph of interconnections. 

• the PE and the dual PE input output relations, which we call the local maps .  

To be part of the dataflow machine the ith PE must be programmed to do basically two 

things when it is activated (fired) by the dataflow algorithm:  
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• propagate an activation forward (forward equation) 

⎟⎟
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⎞
⎜⎜
⎝

⎛
= ∑

j
jiji xwfx

          Equation 40             

• propagate an error backward (backward equation) 

( )∑ δ′=δ
k

kikii wnetf
        Equation 41             

Both Eq 40 and 41 are required because the ith PE is part of a larger network. So it not 

only needs xi, δi to update its weights (with the gradient descent rule), but also to pass xi 

forward to continue the chain, and also pass the δi backwards such that the dual PEs in 

the preceding layer can perform adaptation of their own parameters. Figure 22 shows the 

mechanics of the method.  

Finally, the weight updates are computed from xi, δi with the gradient search method of 

choice, as specified in Chapter IV. Until now we only discussed the straight gradient 

descent, algorithm so this simply means Δwij = xjδι. But in general the update is a function 

h(.) of the activation and error  

( )Δw h xij j i= ,δ
                 Equation 42            

Different PE types (logistic, tanh, linear, quasi-linear, etc) simply require different local 

maps for the PE and its dual. This means that PEs can be effectively organized into 

families of components using an object-oriented programming approach as exploited in 

NeuroSolutions. Moreover, each PE can be associated with an icon that leads to a very 

effective graphical user interface to construct neural networks. Note that the forward PE 

and its dual share the same weight values wij. 
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Figure 22. Communications among PEs in the topology 
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3.21 Dataflow implementation of backpropagation 

This explanation needs to be compared with the iconic representation of the 

breadboard that implements the MLP. Note that the breadboard has three layers: 

the large bubbles’ layer (the forward network also called the forward plane) that is 

computing the forward activation (Eq.37 ); the smaller bubbles’ layer (the dual 

network also called the backplane) that is computing local errors (Eq.41 ); and the 

gradient descent components (the search plane) that use the local activations and 

local sensitivities to compute the weight updates (Eq.42 ).  

  
The data flow is implemented by the controllers that sit normally at the top left of 

the network. To implement backpropagation there are two controllers: the forward 

controller (that sends input data forward through the network), and the back 

controller (that sends sensitivities through the dual network). The alternation 

between these controllers implements the data flow necessary to update the 

weights using backpropagation. These controllers are crucial to decide what type 
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of backpropagation is implemented (static, fixed point learning or backpropagation 

through time) as we will see later.  

The data flow still needs to be further specified (remember that backpropagation 

implicitly imposes a dataflow). One can send one sample at a time through the 

network, compute the corresponding local error and perform the adaptation. This 

is called the on-line or pattern mode learning. When the exemplars per epoch is set 

to 1, on-line is implemented. An alternative is to fire all the samples of the training 

set. Store locally all the PE activations. Compute the network outputs for every 

input. Compare and compute the errors at the network output for each input 

desired response pair, and send in sequence all the output errors through the dual 

network. Now we can compute the weight update for every sample, sum them up 

and only then change the weights. This is called the batch learning mode, where 

the weights are updated always with the information contained in the full training 

set. The static controller Inspector allows this choice if one specifies the number 

of training patterns in the exemplars/epoch field.  

In order to demonstrate how easy it is to construct the dual network, the 

Backcontroller has a switch to automatically construct the backpropagation plane. 

If the “remove” button is pressed the backpropagation plane is gone. The network 

now only has the forward dynamics, so it can not learn. This is the way the 

network should be used for testing. Freeing the backplane is preferable to setting 

the learning rates to zero because it is more efficient (no sensitivities are ever 

calculated). 

 71



  
Now if the “allocate” button is pressed, the backplane and the gradient plane are 

automatically constructed. The network will be able to learn again. Notice that with 

the arrangement of the simulations in planes, the user only has to worry with the 

construction of the forward plane, i.e. the network topology. Once this is done, 

NeuroSolutions has the information to automatically construct the learning 

dynamics. The biggest advantage of this arrangement, is that there is no constraint 

on the topology that the user can build. NeuroSolutions will always be able to 

compute the dual network, and train the weights with backpropagation. No 

equations are ever explicitly written.  

 NeuroSolutions Example 
Go to Next section  

7. Training embedded adaptive systems 
Backpropagation can be used to compute gradients in ordered networks. We applied it 

here to MLPs. However, the algorithm can be applied to any system built from modules 

that are differentiable (not necessarily adaptive) and which can be ordered. This is indeed 

a very large class of systems which include macro-economical, life science, and 

engineering models. The beauty of the procedure is that we can propagate sensitivities 

up-and down the modules with the goal of finding optimal coefficients that meet a given 

external criterion.  

This is to say that we can mix adaptive and fixed parameters sub-systems and seek with 

backpropagation an overall optimal operating point. This is particularly important when 
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we have a priori knowledge about the problem and we want to design sub-systems that 

include that knowledge but have other subsystems that are adaptive. Even if only some 

of the modules are adaptive, we can propagate sensitivities through the ones with fixed 

parameters, to optimally train the overall system. We will use this property later in control 

applications.  

Here we would like to treat the case of Figure 23 where an adaptive sub-module of a 

system needs to be adapted given a desired external response. Notice that the adaptive 

module is internal, i.e. it is not in direct contact with neither the input nor the desired 

signal. Can we optimally set the parameters of this system? The answer is affirmative 

provided the sub-module 2 is differentiable and the overall network is ordered.  

Overall System
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input

desired
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∑

  

Figure 23. Adapting an embedded adaptive system. 

Using our known tools of the chain rule and ordered derivatives, we can see that this 

adaptation problem can be easily solved taking into consideration that  

⎯→←⎯→←
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   Equation 43 
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The first term is the injected error, while the last is the term that backpropagation 

computes for us. So if we know the functional form of the input-output relation for module 

2, we can calculate the effect of passing the injected error through module 2. We still 

have a little problem in computing the weight update using gradient descent since we 

have to know the input to the MLP, but this is no big problem if we known the input-output 

relation of module 1. Of course if the modules are themselves nonlinear they may 

complicate the training because they attenuate errors and activations, but this does not 

affect the applicability of the method.  

This analysis shows that we can adapt easily the parameters of an embedded adaptive 

system in larger systems built from fixed coefficients and differentiable input-output 

relationships. We can design the subsystem to optimize the overall system performance. 

This is a very important aspect of backpropagation that is still today largely unexplored.  

NeuroSolutions 22 

3.22 Training embedded neural networks with backpropagation 

In this example we are going to adapt an embedded adaptive systems (MLP) in a 

larger system built from a frontend fuzzy module and with an output that goes 

through a nonlinear subsystem before it is compared to the desired response.  

We made up the example. Suppose that you are in a fair and you are testing your 

strength in one of those machines where you pound a lever with a sledgehammer 

and project a pellet up a column in the hope that it will ring a bell up in the column. 

We would like to train a system to predict the chances of a contestant ringing the 

bell, given their height and weight. But since we do not have a scale nor a 

measuring device,  we simply would like to use the quantifiers of “light”, 

“medium”, “heavy” for the weight, and “short”, “medium”, “tall” for the height.  

We also think that the machine is totally unfair due to the disparity in strength of 

the general population. A much “fairer” system is one in which the bell height is 

positioned according to the past performance of people with the same height and 
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weight. This will be codified as a nonlinear function in the following way: first the 

output of the MLP is cubed. If this value is below 0.3 this becomes the output of 

our system. However, if the value is above 0.3 we take the square root and add 0.16. 

The desired response is obtained my modifying mathematically the height and 

weight data directly. These operations are shown in the diagram. Can we still train 

the MLP? 

MLP (.)3
>0.3height

weight

light
medium
heavy
short
medium
tall

  

Figure 24. System block diagram 

We will create the linguistic variables “light”, “medium” etc. from the height and 

weight using fuzzifiers. The fuzzy module is built from sigmoid nonlinearities. The 

advantage of a fuzzy layer is that it includes in a very effective way the a priori 

knowledge that we may have about the task. Fuzzy sets are described by a 

membership function (MF), so the first problem is to devise a way to create 

membership functions in NeuroSolutions. This is not difficult because we can very 

easily create a MF by a cascade of one sigmoid layer with a linear layer with preset 

parameters (which may later be fine tuned through adaptation). Let us look at 

Figure 24. 
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Figure 25. Creation of a fuzzy layer with sigmoids 

Pairs of sigmoids combined with +1 and -1 will create a “Gaussian” like 

membership function (Fig. 24). The maximum is located at the average value of the 

bias.  Several of these paired PEs with different biases will create a span of the 

input space with the linguistic variables. The knowledge from the tasks will set the 

bias and the slope of each sigmoid such that the required membership functions 

are constructed. Notice that there are no adaptable parameters in this layer.  Open 

the MatrixEditors in the breadboard to see how we have created this layer. As 

usual you are free to modify any parameter.  

The next submodule will be our one hidden layer MLP which will be followed by a 

second module which adjusts the height of the bell. Module 2 is here a function 

such as 
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where z is the output of the MLP.  This function is coded in the DLL at the output 

of the MLP. Notice that the dual component has to implement the dual of the 

function. NeuroSolutions and its dataflow implementation of backpropagation is 

capable of training the MLP with the activations and sensitivities being passed 

 76 



through the fuzzy layer and the output function. Run the system and verify that the 

MLP can still optimize the overall system. 

 NeuroSolutions Example 
Feedforward neural networks are an example of ordered networks. But notice that the list 

of dependencies in Eq.34 is static in the sense that it does not depend upon time. When 

time dependencies are brought into the picture as will be done in later chapters during 

the study of recurrent networks, the ordered list of dependencies must be revisited to 

apply backpropagation. Another requirement to apply this methodology is to choose 

smooth nonlinearities for the PEs as was mentioned in several occasions. One aspect 

that should be stressed again is that backpropagation is much more computationally 

efficient procedure than direct differentiation to compute gradients in feedforward 

networks. 

Go to next section  

8. MLPs as optimal classifiers 
Before concluding this chapter, let us go back to the framework of statistical pattern 

recognition, and ask the question: can the MLP in fact implement optimal classifiers? An 

optimal classifier must have the potential to create arbitrary discriminant functions that 

separate data clusters according to the a posteriori probability. Since we know that the 

MLP has known universal mapping capabilities, we can suspect that the MLP meets this 

requirement. An optimal classifier using the Bayes framework should produces outputs 

that are the a posteriori probability of the class given the data.  

Does the MLP produce outputs that can be interpreted as probabilities? The answer to 

this question is yes if the training is done under certain conditions (Bishop). Moreover, we 

can also show that the MLP is directly producing estimates of a posteriori probabilities, 

unlike any of the classical methods of pattern recognition. Remember that in statistical 

pattern recognition we needed to use Bayes theorem to practically evaluate the a 
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posteriori probabilities. With the MLP we obtain their estimates directly as outputs, 

provided the training and the topology are appropriately specified. This is a departure 

from the well established statistical reasoning that applies Bayes rule to estimate a 

posteriori probabilities. Let us briefly cover the basic concepts of this theory. 

Assume the learning machine is being trained to minimize the MSE.  

learning 
machine

MSE
criterion

xk
yk

ek

  

Figure 26. A learning machine whose outputs are estimates of a posteriori probabilities 

We have to assume that the MLP has sufficient number of PEs to produce the required 

map from input space to targets. We also have to assume that the training data is 

sufficient, and that the training does indeed take the learning system to the global 

minimum. The final requirement is that the outputs are between 0 and 1 and that they all 

sum to one for every input pattern (so that each output can represent the probability that 

the input is in the specified class). In order to guarantee that the outputs sum to one, we 

can not utilize the logistic function PE. We must utilize a new output axon with the 

softmax activation function 

( )
( )y

net

net
k

k

j

=
∑

exp

exp
                    Equation 44 

The softmax function is similar to the tanh and logisitc functions except that the outputs 

are scaled by the total of the activations in the output layer (so that the sum of the outputs 

sums to one). For the two class case the single output PE can be a logistic function since 

the probability requirements are still met.  
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Notice that we did not specify that the learning machine must be a MLP. The MLP is just 

an example of a viable and efficient implementation that produces this result since it is an 

universal mapper. The important aspect for this behavior is the minimization of the MSE.  

The output yk of such a MLP can be shown to be an estimator for the average conditional 

probability of the target data given the inputs, i.e.  

( ) ( )∑=
i

kikik xtptwxy ,,*,
                     Equation 45 

where w* is the optimal weight value and we are using t for the desired response 

Derivation of the conditional average . For a classification problem where the desired 

response is 1 and 0 and we assume c outputs (one output per class), it is easy to show 

that we have 

( ) ( )y x P c xk = k                            Equation 46 

What this equation says is that the output of the MLP is providing the a posteriori 

probability of the class given the data. If we recall from the pattern recognition section, 

the a posteriori probabilities minimize the classification error and are therefore the best 

one can hope for to build optimal classifiers. So one can conclude that if the learning 

machine is powerful enough and has been trained appropriately, its outputs (with the 

restrictions mentioned above) can be interpreted as a posteriori probabilities of the 

classes given the data. We now have a methodology to estimate a posteriori probabilities 

directly from the data, unlike when we use statistical pattern recognition, where Bayes 

rule is conventionally applied. 

This is a very important result because it allows us to work with the numerical outputs of 

the network as a posteriori probabilities for a variety of applications in both pattern 

recognition and signal processing. Some of these applications are: 

• Apply rejection thresholds for decision making. 

• Implement minimum risk decisions in detection and diagnostic.  

• Estimate observation probabilities in a variety of applications (Hidden Markov Models, 
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statistical signal processing). 

We will address these aspects further in later chapters.  

NeuroSolutions   23 

3.23 Softmax and a posteriori probabilities 

This example uses the probability considerations above to show how a MLP can 

be used to estimate the a posteriori probabilities for the healthy/sick example 

discussed previously.  We will train a one-hidden layer MLP with two soft-max 

output axons.  The soft-max output axons are similar to sigmoid axons except 

they are normalized so that the sum of the outputs is always one.  The soft-max 

allows the outputs of the MLP to be considered as a posteriori estimates of the 

probability that the input exemplar belongs to each class.  For example, if the 

output from PE 1 is 0.90 and the output from PE 2 is 0.10, then the probability that 

the subject is healthy is 90% and the probability that the subject is sick is 10%. 

  
In order to check how well this really works we have to have quantitative data 

regarding the class distributions. So we created a two class problem where each 

class is composed by two Gaussians. The a posteriori  probability is shown in the 

figure below.  
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Red is the a posteriori probability of one class while black is the a posteriori 

probability of the other class.  We trained our MLP with a sofmax output in data 

created by each class. Run the network and observe how similar the discriminant 

functions of the MLP come to this plot. This is a more specify example of the 

important optimally property of MLPs. Change the number of PEs to test what the 

net does when it does not have enough degrees of freedom. Let it train for a long 

time and compare the final separation surface with the picture above. Overtraining 

will make the separation surface go to +-1, and will destroy the optimally in terms 

of statistical interpretation.  

 NeuroSolutions Example 
Go to next section  

9. Conclusions 
 

In this chapter we covered one of the most important applications of neural networks - 
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pattern recognition. ANNs are semi-parametric classifiers since the discriminant functions 

are functions that belong to a given class. But we do not know a priori what is going to be 

the actual discriminants that will be employed by the ANN.  

In this chapter we studied multilayer perceptrons (MLPs) which are feedforward 

topologies. The topology is what defines the functions that can be used for discriminants. 

The perceptron can only construct linear discriminant, but the two hidden layer MLP is an 

universal approximator, i.e. it can construct arbitrarily complex input-output mappings. 

MLPs are very efficient approximators in high dimensional spaces, so they can perform 

better than other classifiers.  

MLPs were trained with a gradient descent procedure called backpropagation. 

Backpropagation is a very powerful and computational efficient algorithm. It is in fact a 

contribution of the field of neural networks for optimization theory. We have shown how 

the algorithm is derived using the chain rule, and we also covered the ordered derivative 

method that is more principled. In fact it tells us a lot about the types of topologies that 

can be trained with backpropagation. It also lead us to the data flow implementation 

which is the best possible way to implement backpropagation with a computer algorithm. 

Its great advantage is that it can be applied to arbitrary topologies as long as the 

computer can construct the dual (or transpose) network. This is trivial to do in ordered 

networks. Much of the power of NeuroSolutions is based on this innovation (which was 

first coded in 1991).  

This chapter concentrated on the MLP principles, but little was said how to apply them to 

real world data. This is the purpose of the next chapter.   

NeuroSolutions Examples 
3.1 McCulloch and Pitts PE for classification  

3.2 Discriminant probe to visualize the decision surface  

3.3 Behavior of the sigmoid PEs  

3.4 Classification as the control of the decision surface  
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3.5 Perceptron learning rule  

3.6 Delta rule to adapt the MC-P PE  

3.7 Comparing a linear and nonlinear PE for classification  

3.8 Decision boundaries of the perceptron  

3.9 The perceptron for character recognition  

3.10 Perceptron and the XOR problem  

3.11 One hidden layer MLP in 2-D space  

3.12 Solving the XOR problem by hand with the one hidden layer MLP  

3.13 Creating a “bump” with the one hidden layer MLP  

3.14 Solving the XOR with backpropagation  

3.15 Solving the bump with backpropagation  

3.16 Effect on the number of hidden PEs  

3.17 Fewer hidden PEs than required  

3.18 Creating a Halloween mask by hand with a two hidden layer MLP  

3.19 Comparison of the perceptron and MLPs in real data  

3.20 Solving the bowtie with MLPs  

3.21 Dataflow implementation of backpropagation  

3.22 Training embedded neural networks with backpropagation  

3.23 Softmax and a posteriori probabilities  

Concept Maps for Chapter III 
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Go to Next Chapter  

Go to Table of Contents  

 
 

separation surfaces of the sigmoid PEs 
Thinking of the separation surfaces built by ANNs made of sigmoidal PEs as intersection 

of hyperplanes is sometimes a crude approximation. Sigmoidal PEs create ridge 

functions which are functions limited between 0 and 1 (or -1 and 1). However, the weights 

and the bias still control the location and orientation of the ridge. Around the ridge region, 

the function is approximately linear. So when the separation surface is built from the 

intersections of ridge functions very complex curves may result, which may be far from 

the piecewise linear decision surfaces of the perceptron built from threshold PEs. Since 

the network can control the separation surface by the size of the weights, if the problem 

requires curved separation surfaces instead of piecewise linear, the ANN can built them. 

Return to Text   

 
 

probabilistic interpretation of sigmoid outputs 
According to Bayes rule, the posteriori probability can be written as eq2 . Note that the 

denominator can be written as P x p x C P C p x C P C( ) ( | ) ( ) ( | ) ( )= +1 1 2 2   where C1 

and C2 are the two classes C1 and C2. Now if the conditionals are Gaussians of equal 

variance it is not difficult to show that  

P C x
a

( | )
exp( )1

1
1

=
+ −     

where  
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a
p x C P C
p x C P C

= ln
( | ) ( )
( | ) ( )

1 1

2 2   
 

Note that this is exactly the definition of the activation function of the sigmoid PE. 

Return to text  

 

vector interpretation of the separation surface 
A vector interpretation of this result is very useful. Let us consider (1, 1) as the end point 

of a vector v drawn from the origin. The points of coordinates (x1, x2 ) in the equation can 

also be interpreted as the end points of another vector g (drawn from the origin) that 

exists on the line. In order to satisfy Eq.4  (assume that b=0 for simplicity) v and g have 

to be perpendicular since their dot product is zero. Hence, the linear decision surface 

g(x1,x2) has to be perpendicular to the vector v which is called the normal.  

Remember that the PE weights are the coefficients of the discriminant function. Therefore, 

the weights of the PE indicate in the input space the normal direction to the separation 

surface. 

x1

x2 (1,1)

g(x1,x2)=0 v

  

FIGURE 8. Decision surface and its normal 

Return to text 
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perceptron learning algorithm 
Let us study in more detail the perceptron learning algorithm. Notice that Eq.9  corrects 

the weights only under the condition that y is different from d. There are two cases to 

consider: either d=1 (class 1) and y=-1 in which case  

   w n w n x n( ) ( ) (+ = )+1 2η   
or d=-1 (class 2) and y=1 in which case 

   w n w n x n( ) ( ) (+ = )−1 2η   
Now let us see how these cases arise in practice. Let us consider the 1D case, i.e. just 

one weight as in the figure. In the first case (case A) xA(n) belongs to class 1 but the 

output is -1, so the present weight wA(n) must be in the left part of the figure (otherwise 

the output would be positive and would be no correction). In this case the update will add 

a value to the weight, moving it in the correct direction. 

   

class 1
output positiveclass 2

output negative

w
wA(n)

wB(n)

weights for
perfect classification

Δw(n) Δw(n)

  
In the second case (case B), the input pattern xB(n) belongs to class 2, so if the 

perceptron is outputing a positive value, it is because the weight wB(n) is in the right part 

of the figure. In this case the weight is decreased according to the equation. So in both 

 87



cases, we see that the weight is moved to the shaded region that produces the correct 

classification. One can show mathematically that for linearly separable patterns this 

algorithm converges in a finite number of steps. Haykin  

Return to text  

error attenuation 
Let us look at the Figure to understand what is happening. The top part of the figure 

shows the tanh nonlinearity and the bottom part its derivative. When the input variable 

net is in the linear region (point A), the derivative is close to 1 so the sensitivity Eq.13  is 

close to xi, the equivalent sensitivity of the linear PE. However, when the nonlinearity is 

operating close to saturation (case B or C), the derivative of the tanh at those points is 

close to zero. This corresponds effectively to an attenuation of the sensitivity when 

compared to the linear PE. What this means is that y became much less sensitive to a 

change in xi when the operating point is B or C.  

    

net

f(net)

net

f’(net)

A B

C

   
So we see that nonlinear PEs have a dual role of saturating the activations for large 

values of the input and attenuating the sensitivities. These two factors bring stability to 

the learning process because learning becomes much less dependent upon outliers, i.e. 

points that deviate a lot from the mean. Moreover, the nonlinearity allows each PE in the 
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network to specialize in a portion of the input space (the weights associated with a given 

PE learn more when that PE is in the linear region).  

Return to text  

optimizing linear and nonlinear systems 
You may know that our mathematical knowledge is very limited in computing solutions for 

nonlinear differential equations, so it may seem hopeless to attack the problem of 

optimizing a nonlinear system. Although it is true that we loose the ability to analytically 

solve for the minimum, one can still use iterative procedures to find it. This is one of the 

advantages of optimization techniques.  

For the linear problem treated in Chapter I, the analytical solution can be applied and will 

always produce the best possible results. However, the same method can not be used for 

the M-P PE. Optimization (in the form of the gradient descent procedure) can be applied 

to problems that are beyond analytical solutions. As we are going to see, we can apply 

gradient descent as long as the function is smooth, which include many nonlinearities. 

Return to text  

 
 

derivation of LMS with the chain rule 
Let us then re-derive the LMS algorithm for a linear PE using the chain rule. We want to 

compute the partial of the cost J with respect to w and equate it to zero to find the 

minimum. Now, J is a function of the weights through the network output yP, i.e. 

( )J d yp p
p

= −∑1
2

2

  

and                            
y wxp = p

so using the chain rule Eq.12 we get 
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Using the gradient descent idea to update the weights as we did before,  

Δw
J
w

xP P= − =η
∂
∂

ηε
                      

which is exactly the same result as obtained in the LMS algorithm.  

Interpreting this equation with respect to the sensitivity concept, we see that the gradient 

measures the sensitivity. So LMS is updating the weights proportional to how much they 

affect the performance, i.e. proportional to their sensitivity. This makes perfect sense, 

since if the goal is to decrease the error, we should be modifying more the weights that 

impact the error the most.  

Return to Text  

 

 

derivation of sensitivity through nonlinearity 
Let us write  

    

∂
∂

∂
∂

∂
∂

y
w

y
net

net
wi i

=
  

and note that from Eq.1  

    
∂

∂
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net
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and  
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∂
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x
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i i
i

i i

i
i= = + + + +∑( ) ... ...0 0 =
  

so finally we have the result in the text Eq.13  
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Return to text  

 

Why nonlinear PEs? 
The answer to this question is related to better performance and new computing power. 

Nonlinear systems may provide for instance a better fit to data than linear regression. In 

terms of the performance surface, this means that the global minimum achieved by the 

nonlinear network is lower than the minimum of the linear network. More importantly, they 

may effect new types of computation such as classification, which can not be done well 

with linear systems. So there is a real need for nonlinear processing, in spite of the added 

difficulty of working with nonlinear structures.  

It is instructive to use the last example and train a linear system and a nonlinear system 

with the same data to understand the difference between them. The M-P PE separates 

the two data clusters. What do you think is going to happen if we use a linear system to 

provide a desired response of ones and zeros?  

Let us think in terms of least squares. If a set of points in 2D space is given and a desired 

response of ones and zeros is provided, what the linear system will do is regression 

between the input and the desired response. It will provide the best regression plane (this 

is a 2D input) between the 0 and 1 responses given the values of the input samples. 

Return to Text  

 

mapping capabilities of the 1 hidden layer MLP 
The 1 hidden layer MLP with sigmoid PEs is an universal mapper, i.e. it can approximate 

arbitrary well any continuous decision region, provided the number of hidden layer PEs is 

large enough.  

There has been many proofs of this statement by Cybenko , Gallant and White , Hornik et 

 91



al, many of them based on the Stone Weierstrass theorem . These proofs are difficult to 

follow and will be omitted here. They only tell about the mapping capabilities (existence 

proofs), they do not say how to get a MLP with those characteristics (constructive proofs), 

so they are useful to describe the power of the technology.  

An interesting thing is that the activation function does not seem to be that important for 

the mapping capabilities, since the proofs use several of them (even discontinuous 

nonlinearities). The key aspect is the form of the approximation function which is an 

embedding of functions, i.e. the results of one function become the argument for the next, 

i.e.    y f f= ( (.))

Return to text  

backpropagation derivation 
In this derivation we will drop the dependence on the pattern for clarity. First assume that 

the kth PE is the only output PE in the net. With the machinery of the chain rule, let us 

write the gradient of the cost with respect to the weight as the product of the output error 

propagated to the PE (the gradient with respect to the PE state) times the sensitivity of 

the PE output with respect to the weight, i.e.  

∂
∂

∂
∂

∂
∂

∂
∂
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w
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y

y
net w

net x
ij i

i

i ij
i i= = j−

                 Equation 47          

where we substituted the definition of the local error given by Eq.21 . Notice that the 

sensitivity of the cost with respect to the weights is decomposed into the sensitivity of the 

cost with respect to the state yi times the sensitivity of the state with respect to the local 

weights. The state sensitivity δJ/δy can be computed by the chain rule, which yields from 

the figure 
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             Equation 48 

Remember that the index k denotes a single PE on top (i.e. in the layer closer to the 
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output) of the ith PE. Now let us substitute these partial derivatives with network 

quantities.  

( ) ( )∂
∂

J
w

e f net w f net x
ij

k k ki i= − ′ ′ j

                        Equation 49        

This expression computes the gradient of the cost with respect to the weight wij. We 

assumed a single output PE in this derivation. For completeness the case of multiple 

output PEs is treated next.  

The idea is basically the same, the only difference is that now there are many output PEs 

(denoted by k) connected to the ith PE, each contributing additively to the gradient of the 

cost with respect to the PE state, i.e. 
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    Equation 50            

Substituting back Eq. 47 in the original equation Eq.44 we get finally 

( ) ( )∂
∂
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x f net e f net w
ij

j i k k
k

= − ′ ′∑ ki

       Equation 51 

According to the rules of gradient descent learning, one just changes the weights 

proportional to the negative of Eq. 48 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )w n w n f net n e n f net n w n x nij ij i k k ki
k

j+ = + ′ ′
⎛
⎝
⎜

⎞
⎠
⎟∑1 η

      Equation 52 

The algorithm just presented is the backpropagation algorithm. The expression that we 

arrived at seems pretty daunting, with a summation and lots of indices. But in fact can be 

easily interpreted. 

Computer algorithm 
Let us assume a sample by sample presentation of data, i.e. {x(n), d(n)}. We also 

assume that the network weights have been initalized with small random values such that 
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the PEs work in their linear region.  

Step 1: Present an input –desired response pair {x1,d1} 

Step 2: Compute the outputs of every PE starting from the input layer (l=1) up to the output layer 
(l=L). We can formally write this step as 

))(()( nnetfny l
i

l
i =       and          

∑
=

−=
p

j

l
j

l
ij

l
i nywnnet

1

1 )()(

where f(.) is the nonlinearity, the superscript means layer l=1,…L, n is the iteration 

number, and wij is the weight that links th ith PE to jth PE. In the first layer  . If 

the PEs have biases,  . If the PE is the top layer (output PE) make  .  

jj xy =0

10 −=ly j
L
j yy =

Step 3: Compute the injected error as )()()( nyndne iii −=   

Step 4: Compute the local errors starting from the top layer until the first layer. In the top layer the 
error is (delta rule) 

))(()()( nnetfnen L
ii

L
i ′=δ   

In all the other layers 

∑ ++δ′=δ
k

l
ki

l
k

l
i

l
i nwnnnetfn )()())(()( 11

  
Once we have these local errors and the activations of step 2, every weight in the 

network can be updated according to Eq. 49. Note also that the weights to compute the 

errors and the activations are the “old weights”.  

Step 5: Repeat this procedure for every input pattern, and for the number of iterations 

required for convergence. For best results the patterns should be randomized from 

presentation to presentation.  

This summarizes the computer algorithm to implement backproapgation.  

Return to Text  
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multilayer linear networks 
 

Why did we not discuss multilayer networks with linear PEs? It turns out that from a point 

of view of input-output mappings, a multilayer network with linear PEs is equivalent to a 

no hidden layer network. So there is little interest of studying such networks. However, if 

we want to train one with gradient descent we will need to use the backpropagation 

algorithm. 

Return to text  

rederivation of backprop with ordered derivatives 
With this theory we can re-derive the backpropagation procedure for any ordered 

topology in half a page. We will assume a network (with smooth nonlinearities) given by 

Eq.30 . No dependence on the iteration will be included for simplicity. The direct effect in 

Eq. 30 is computed as  
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                   Equation 53      

where εi is the external injected error. So we can re-write them as 
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        Equation 54 

Note that the partial of J with respect to the state is equal to the injected error εi for an 

output PE, and zero for the other cases. To compute the gradients with respect to the 

weights, we get again 
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          Equation 55                

Note that the sum extended to all PEs reduces to one term k=i because we are 

computing the local contribution to the weight wij. With the assignments that we used 
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before, 
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              Equation 56 

we can finally write 
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            Equation 57 

So the sensitivity of the cost can be written 
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            Equation 58      

We can recognize these two equations as the equations necessary to implement the 

backpropagation procedure (Eq.29 Eq.31 ) that we derived PE by PE in the text. But here 

they were derived in a much more compact form. The weight update using the gradient 

descent procedure is 

    )(
)()()1(
nw
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ijij ∂
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η+=+
  

 

 
Return to Text  

 

artificial neural networks  
ANNs for short, are adaptive, most often nonlinear distributed systems. 

 

topology 
defines the way the PEs are connected together 
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feedforward 
are topologies with no recurrent connections 

 

sigmoid 
any smooth nonlinear function that is  monotonically increasing and has an S shape. 

 

F. Rosenblatt 
invented the perceptron in 1962 considered by many as the first learning machine  

 

sensitivity 
is the partial derivative of a function with respect to one of its independent variables. It 

measures how much a small change of the variable will affect the functional value.  

 

global minimum 
is the minimum that achieves the smallest MSE. 

 

nonconvex 
a performance surface is nonconvex when it displays more than one minimum.  

 

saddle point 
is a point of zero curvature along at least one direction.  

 

linearly separable patterns 
patterns that can be perfectly classified by linear machines. 
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generalize 
a machine generalizes when it produces the correct output for inputs that belong to the 

same class but that were not used for training.  

 

local error 
is the product of the error that reaches the PE times the derivative of the nonlinearity at 

the operating point. It is really the “effective error” that is used to correct the weights.  

 

Minsky 
Marvin Minsky is one of the fathers of artificial intelligence who is credited with the down 

fall of neural networks in the late 60’s. This may be exaggerated. In a very influential 

book called Perceptrons he poised the theory of perceptrons for predicate calculus where 

he showed their limitation versus the Turing machine.    

 

multilayer perceptrons 
are feedforward neural networks with one or more hidden layers, i.e. layers with nonlinear 

PEs that are not directly connected to the outside world.  

 

bump 
this is a loose terminology that indicates well the nature of the region being created. A 

bump is a function that has large values over a limited space extent, i.e. it is basically a 

local function. A multidimensional Gaussian is an example of a “bump”. Important 

theorems about function approximation with local functions exist. 
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backpropagation 
is a training algorithm for multilayer perceptrons that extends the delta rule to hidden 

layer networks. It uses the methodology of gradient descent learning and solves the 

credit assignment problem by using the weight values in the topology.  

 

inventors of backpropagation 
Many researchers worked in the computation of sensitivity across a network. Werbos with 

the ordered derivative was probably the first. In the connectionist arena, the paper that 

really attracted general attention was the paper by Rumelhart, Hinton and Williams. Le 

Cun in France presented the same method at basically the same time.  

 

ordered derivative 
is the partial sensitivity in an ordered network, which is made up of the explicit and 

implicit (through the network) dependencies. 

 

local maps 
are the definitions of the PE function ad of its dual which specify how the activations are 

modified when they go through the topology, as well as the errors when they flow across 

the dual topology. 

 

dataflow 
the dataflow machine is the chaining of algorithmic operations that are necessary to 

implement the neural network function as well as its training. Since a neural network is 

distributed, data is sent into its input and transformed when it goes through the machine. 

Likewise for the errors that are used during training.    
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topology 
is the particular interconnection of PEs in the neural network. 

 

a posteriori probability 
is the probability of an event after some measurements are made. 

 

likelihood 
is the probability density function of each event. 

 

probability density function 
intuitively, is the function that specifies the probability of a given event in an experiment. It 

is the limit of the histogram for arbitrary large number of trials. See the Appendix for a 

definition.  

 

eq2 

( ) ( ) ( )
( )P c x

p x c P c
P xi

i i
=

   
 
 
 

adaline 
stands for ADAptive LInear Element, and is the processing element proposed by Widrow 

that implements a weighted sum of inputs.  
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Eq.1 

x belongs to   if     ci
( ) ( )P c x P c xi > j   for all j ≠  i 

 

Eq.6 
xk belongs to ci if   gi(xk)>gj(xk)   for all j≠i 

 

Eq.8 
g x x x d P ci i

T
i i i( ) / ( ) ( ) / log( ) / log log ( )= − − − − − +−1 2 2 2 1 21μ μ πΣ Σ i

i i

   
 
 

Eq.10 
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convex 
a surface is convex when any point in a line joining two points in the surface belongs to 

the surface.  

 

Eq.9 
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Eq.12 
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Eq.13 
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Eq.14 
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LMS 
w(n+1) = w(n) + ηx(n)ε(n) 

 

Eq.7 
 
 

Eq.21 
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Eq.11 
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Eq.23 
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Eq.33 
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Eq.30 
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Eq.38 
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Eq.26 
 

( ) ( ) ( ) ( ) ( )( )w n w n n x n f net ni i p ip p+ = + ′1 ηε
  

 

Eq.36 
 

( ) ( ) ( )Δw n n x nij i j= ηδ   
 

Werbos 
Paul Werbos proposed this method in his Ph.D. dissertation entitled “Beyond regression: 

new tools for prediction and analysis in the behavioral sciences”, Harvard, 1974. 

 

Eq.29 
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Eq.41 
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Eq.47 
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Eq.48 
( )Δw s xij j i= ,δ

   
 
 

Widrow 
Widrow also utilized the adaline for classification by including a nonlinearity after the 

linear PE. See Widrow and Hoff, “Adaptive switching circuits”, IRE WESCON Convention 

Record, 96-104, 1960. 
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Eq.34 
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Eq.19 

   
w n w n d n y n x n( ) ( ) ( ( ) ( )) (+ = + −1 η )

 
 

McCulloch and Pitts 
were a very influential duo of researchers (Warren McCulloch was a neurobiologist and 

Walter Pitts an engineer) who proposed in the 40’s a model of the neuron as a system for 

logic computation. See Brain Theory Vol 1, Ed.. Shaw and Palm, World Scientific, 1988. 

 

perceptron 
is a multiple input multiple output pattern recognition machine made from one layer of 

McCulloch - Pitts PEs. See Rosenblatt F., Principles of NeuroDynamics,  Spartan Books, 

1962.  
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greedy 
a greedy method in this setting is one that uses resources proportional to the size of the 

input. 

 

tesselation 
is a division of the space in convex regions that  totally fill the space. 
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Eq.35 
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ordered list 
is the list that summarizes the dependencies of the network topology. Each variable in 

the order list only depends on the variables to its left in the list. The weights appear first in 

the list. 

 

Cybenko 
Approximation by superposition of a sigmoid function, Mathematics for Control, Signals, 

and Systems, 2(4):303-314, 1989. 

 

Gallant 
On learning derivatives of an unknown function with MLPs, Neural Networks 5 (1), 

129-138, 1992. 

 

Hornik, Stinchcombe and White 
MLPs are universal approximators, Neural Networks, 2:359-366, 1989. 
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Haykin 
Neural Networks: a comprehensive foundation. MacMillan, 1994. pp108. 

 

Bishop 
Neural Networks for Pattern Recognition, Oxford, 1995. 

 

connectionist 
is normally taken as a synonym of neural networks. The name comes from the fact that 

neural networks are highly distributed systems where the computation is done in the links 

(connections among PEs) 

 

state variables 
A state variable represents an internal quantity in the system that changes during 

operation. It may either be the output of the PE or the weight. Here we will be using it to 

represent the output of the PE.  

Derivation of the conditional average 
This result can be demonstrated (see Bishop for a full treatment) if we write the MSE for 

the case of large number of patterns as an integral 

  
[ ]∑∫∫ −=

k
kkkk dxdtxtptwxyJ ),(),(

2
1 2

  
For clarity we denote the desired response by t. Note that the index k sums over the 

targets, and the sum over the data exemplars was transformed in the integral, which has 

to be written as a function of the joint probability of the desired response and the input. 

This joint probability can be factored in the product of the input pdf p(x) and the 

conditional of the target data given the input p(tk|x).  
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The square can be written 

   ( ) ( 22 ||),(),( kkkkkk txtxtwxytwxy −>><<+>><<−=− )

where <<tk|x>> is the conditional average given by ∫>>=<< kkk dtxtptxt )|(|
 . We 

can write further 

( ) ( ) 222 )|()|)(|),((2|),(),( kkkkkkkkkk txdtxtxtwxyxtwxytwxy −><+−><><−+><−=−
  

Now if we substitute back into the MSE equation we obtain 
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2
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2
1 222

  
The second term of this expression is independent of the network, so will not change 

during training. The minimum of the first term is obtained when the weights produce  

   >>=<< xtwxy kk |*),(    
since the integrand is always positive. This is the result presented in the text. 

Return to Text  

 
 

Vladimir Vapnik 
The nature of statistical Learning theory, Springer Verlag, 1995. 

pp 128 

 
 

Adatron 
Anlauf J., and Biehl M., The adatron: an adaptive perceptron algorithm, Europhysics 

Letters, 10(7), 687-692, 1989.  
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