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The goal of this chapter is to provide the basic understanding of: 

• Statistical pattern recognition 

• Training of classifiers 

• 1.The pattern recognition problem  

• 2. Optimal Parametric classifiers  

• 3. Conclusions  
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1. The Pattern Recognition Problem 
The human ability to find patterns in the external world is ubiquitous. It is at the core of 

our ability to respond in a more systematic and reliable manner to external stimuli. 

Humans do it effortlessly, but the mathematical principles underlying the analysis and 

design of pattern recognition machines is still in its infancy. In the 30’s R.A. Fisher  laid 

out the mathematical principles of statistical Pattern Recognition which is one of the most 

principled ways to cope with the problem.  

A real world example will elucidate the principles of statistical pattern recognition at work: 

Assume that the body temperature is utilized as an indicator of the health of a patient. 

Experience shows that in the healthy state the body regulates the body temperature near 
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37° degrees Celsius (98.6° F) (the low end of normality will not be considered for the 

sake of simplicity). With viral or bacterial infections the body temperature rises. Any 

measurement can be thought of as a point in a space called the pattern space  or the 

input space (one dimensional in our example). So if one plots temperature of individuals 

on a line (Figure 1), we will see that the region close to 37°C is assigned to healthy 

individuals, and the higher temperature region is assigned to sick individuals. This natural 

distribution of points leads to the definition of category regions (classes  ) in pattern 

space. The goal of pattern recognition is to build machines, called classifiers  , that will 

automatically assign measurements to classes.  

35 36 37 38 39 40 41 42

-0.2

0

0.2
x - Healthy o - Sick

  Temperature (Centigrade)

Figure 1. The sick/healthy problem in pattern space.  

A natural way to make the class assignment is to define the boundary temperature 

between sick and healthy individuals. This boundary is called the decision surface  . The 

decision surface is not trivially determined for many real world problems. If one gets a 

thermometer and starts measuring the temperature of healthy subjects, we will soon find 

out that individual temperatures vary from subject to subject, and change for the same 

subject depending upon the hour of the day, the subject state (i.e. rest or after exercise), 

etc. The same variability occurs in sick individuals (aggravated by the seriousness and 

type of illness), and there may be overlap between the temperature of sick and healthy 
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individuals. So, we immediately see that the central problem in pattern recognition is to 

define the shape and placement of the boundary so that the class assignment errors are 

minimized. 

1.1. Can regression be used for pattern recognition? 

We just presented in Chapter I a methodology that builds adaptive machines with the 

goal of fiting hyperplanes to data points. A legitimate question is to ask if regression can 

be used to solve the problem of separating data into classes. The answer is negative 

because the goals are very different.  

• In regression both the input data and desired response were experimental variables (normally 
real numbers) created by a single unknown underlying mechanism.  

• The goal was to find the parameters of the best linear approximation to the input and the 
desired response pairs.  

So the regression problem is one of representing the relationship between the input and 

the desired response.  

In classification the issue is very different. We accept a priori that the input data was 

generated by different mechanisms and the goal is to separate the data as well as 

possible into classes. The desired response is a set of arbitrary labels (a different integer 

is normally assigned to each one of the classes), so every element of a class will share 

the same label. Class assignments are mutually exclusive so a classifier needs a 

nonlinear mechanism such as an all or nothing switch. At a very high level of abstraction, 

both the classification and the regression problems seek systems that transform inputs 

into desired responses. But the details of this mapping are rather different in the two 

cases.  

We can nevertheless use the machinery utilized in linear regression, i.e. the adaptive 

system called the adaline and the LMS rule as pieces to build pattern classifiers. Let us 

see how we can do this in NeuroSolutions and what the results are.  

NeuroSolutions 1 

2.1 Comparing regression and classification 
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Suppose we are given the healthy and sick data, and we arbitrarily assign the value 

one as the desired system response to the healthy class, and the desired response 

of -1 to the sick class. With these assignments we can train the adaline of Chapter I 

to fit the input/desired response pairs.  

The important question is to find out what the solution means. Notice that for equal 

number of sick and healthy cases, the regression line intersects the temperature 

line at the mean temperature of the overall data set (healthy and sick cases), which 

is the centroid of the observations. The regression line is not directly useful for 

classification. However, one can place a threshold function at the output of the 

adaline such that when its output is positive the response will be one (healthy), 

and when it is negative the response is -1.  

Now we have a classifier, but this does not change the fact that the placement of 

the regression line was dictated by the linear fit of the data, and not by the 

requirement to separate the two classes as well as possible to minimize the 

classification errors.  So with the arrangement of an adaline followed by a 

threshold we created our first classifier. But how can we improve upon its 

performance, estimate the optimal error rate, and extend it to multiple classes? 

 NeuroSolutions Example 
The machinery used to adapt the adaline can be applied for classification when the 

system topology is extended with a threshold as a decision device. However there is no 

guarantee of good performance because the coefficients are being adapted to fit in the 

least square sense the temperature data to the labels 1,-1, and not to minimize the 

classification error. This is a specially simple example with only two classes. For the 

multiple class case the results become even more fragile. So the conclusion is that we 

need a new methodology to study and  design accurate classifiers. The machinery and 

algorithms we developed in chapter one, however, will be the basis for much of our future 

work.  All of the concepts of learning curves, rattling, step sizes, etc. will all be 
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applicable. 

Go to next section  

2. Statistical Formulation of Classifiers 
 

2.1. Optimal decision boundary based on statistical models of data 
The healthy/sick classification problem can be modeled in the following way: Assume that 

temperature is a random variable (i.e. a quantity governed by probabilistic laws) 

generated by two different phenomena, health and sickness, and further assume a 

probability density function (pdf) for each phenomenon (usually a Gaussian distribution). 

From the temperature measurements one can obtain the statistical parameters needed to 

fit the assumed pdf to the data (for Gaussians, only the mean and variance need to be 

estimated - see the Appendix ). Statistical decision theory proposes very general 

principles to construct the optimal classifier  . Fisher showed that the optimal classifier 

chooses the class ci that maximizes the a posteriori probability P(ci|x) that the given 

sample x belongs to the class, i.e.  

x belongs to   if     ci
( ) ( )P c x P c xi > j   for all j ≠  i                Equation 1 

The problem is that the a posteriori probability can not be measured directly. But using 

Bayes’ rule  

( ) ( ) ( )
( )P c x

p x c P c
P xi

i i
=

                     Equation 2 

one can compute the a posteriori probability from P(ci) the prior probability of the classes, 

multiplied by p(x|ci), the likelihood that the data x was produced by class ci  and 

normalized by the probability of P(x). Both P(ci) and the likelihood can be estimated from 

the collected data and the assumption of the pdf. P(x) is a normalizing factor that can be 
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left out in most classification cases. Understanding Bayes rule   

For our example, i =1,2 (healthy, and sick), P(ci) can be estimated from the 

demographics, season, etc. Figure 1 shows data collected from 100 cases.  The 

likelihoods p(x|ci) can be estimated assuming a Gaussian distribution  

( )

p x e
x

( ) =
−

−⎛

⎝
⎜
⎜
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⎟
⎟1

2

1
2

2

2

πσ
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σ

          Equation 3 

and estimating the means μi and standard deviations σi of the distributions for sick and 

healthy individuals from the data.  Using the sample mean and variance 

μ σ= =
=
∑ ∑1 1

1

2 2

1N
x

N
xi

i

N

i

N

( )μ−
=        Equation 4 

for this data set gives (N is the number of measurements) 

Temperature 1,000 Measurements 100 Measurements
Health Mean = 36.50

Standard Deviation = 0.15
Mean = 36.49

Standard Deviation = 0.14
Sick Mean = 39.00

Standard Deviation = 1
Mean = 38.83

Standard Deviation = 1.05
  

Table 1. Statistical measures for Figure 1 data. 
The separation boundary, i.e. the temperature x=T for which the two a posteriori 

probabilities are identical, can be computed for the one dimensional case with simple 

algebra. In this case the optimal threshold is T=37 C (Figure 2).  Bayesian threshold . 
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Figure 2 . a) Sampled data distributions, b) Bayes threshold 

It is rather easy to classify optimally healthy/sick cases using this methodology. Given a 

temperature x from an individual, one computes Eq 2 for both classes and assigns the 

label healthy or sick according to the one that produces the largest value (see Eq.1 ). 

Alternatively, one can compare the measurement to T and decide immediately healthy if 

x<T , or sick if x>T. Notice that to the left of T, the scaled likelihood of class healthy is 
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larger than for the class sick, so measurements that fall in this area are more likely 

produced by healthy subjects, so should be assigned to the healthy class. Similarly, the 

measurements that fall towards the right, have a higher likelihood of being produced by 

sick cases.  

Notice also that the class assignment is not error free. In fact, the tail of the healthy 

likelihood extends to the right of the intersect point, and the tail of the sick likelihood 

extends to the left of T. The error in the classification is exactly given by the sum of the 

areas under these tails. So the smaller the overlap the better the classification accuracy. 

The maximum posteriori probability assignment (Eq.1 ) minimizes this probability of error 

(minimum error rate ), and is therefore optimum.     

2.1.1 Metric for Classification 
There are important conclusions to be taken from this example. For a problem with given 

class variances, if we increase the distance between the class means the overlap will 

decrease, i.e. the classes are more separable and the classification becomes more 

accurate. This is reminiscent of the distance in Euclidean space when we think of the 

class centers as two points in space. However, we can not just look at the class mean 

distance to estimate the classification error, since the error depends upon the overlap 

between the class likelihoods. The tails of the Gaussians are controlled by the class 

variance, so we can have cases where the means are very far apart but the variances 

are so large that the overlap between likelihoods is still high. Inversely, the class means 

can be close to each other but if the class variances are very small the classification can 

still be done with small error.  

Hence separability between Gaussian distributed classes is a function of both the mean 

and the variance of each class. As we saw in the Bayesian threhold what counts for 

placement of the decision surface is the class distance normalized by the class variances. 

We can encapsulate this idea by saying that the metric for classification is not Euclidean, 

but involves also the dispersion (variance) of each class.  If we analyze closely the 
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exponent for the Gaussian distribution (Eq. 3 ) we can immediately see that the value of 

the function depends not only on μ but also on σ. The value of p(x) depends on the 

ditance of x from the mean normalized by the variance. This distance is called 

Mahalanobis distance.  

Following this simple principle of estimating a posteriori probabilities, an optimal classifier 

can be built that is able to use temperature to discriminate between healthy and sick 

subjects. Once again, optimum does not mean that the process will be error-free, only 

that the system will minimize the number of mistakes when the variable temperature is 

utilized.  

2.2. Discriminant functions 
Assume we have N measurements x1, x2, xN, where each measurement xk is a vector 

(vectors will be denoted in bold font) with D components 

[ ]kDkkk xxx ,...,, 21=x           Equation 5                            

and can be imagined as a point in the D-dimensional Pattern Space . Following Eq.1 , the 

class assignment by Bayes’ rule is based on a comparison of likelihoods scaled by the 

corresponding a priori probability. Alternatively, the measurement xk will be assigned to 

class i if  

xk belongs to ci if   gi(xk)>gj(xk)   for all j≠ i           Equation 6   

Each scaled likelihood can be thought of as a discriminant function  g(x), i.e. a function 

that assigns a “score” to every point in the input space. Each class has its individual 

scoring function, yielding higher values for the points that belong to the class. 

Discriminant functions will intersect in the input space defining a decision surface , where 

the scores are equal (Figure 3). So decision surfaces partition the input space into 

regions where one of the discriminants is larger than the others. Each region is then 

assigned to the class associated with the largest discriminant. 
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Figure 3. Discriminant functions and the decision surface.   

In this view, the optimum classifier just compares discriminant functions (one per class) 

and chooses the class according to the discriminant gi(x) which provides the largest value 

for the measurement xk (Eq.6 ). A block diagram for the general case of C classes is 

presented in Figure 4.  

Xk1

Xk2

Xk3

Xkd

g1(x)

gc(x)

g2(x)

M
axim

um

i

Xk ∈  class i

  

Figure 4 General parametric classifier for c classes 

The blocks labelled gi(x) compute the discriminants from the input data, and the block 

labelled maximum selects the largest value according to Eq.1 or Eq.6 . So, studying how 

the optimal classifier works, one arrives at the conclusion that the classifier system 

creates decision regions bounded by the intersection of discriminant functions.   
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After this brief introduction, we realize that machines that implement discriminant 

functions can be used as pattern classifiers. parametric and nonparametric classifiers  

 

 

2.3. A two dimensional pattern recognition example 
The temperature example is too simple (the input is 1-D) to illustrate the full method of 

deriving decision boundaries based on statistical models of the data, the variety of 

separation surfaces, and the details/difficulty of the design. We will treat here the two 

dimensional case, because we can still use “pictures” to help guide our reasoning, and 

the method can be generalized to any number of dimensions. 

Let us consider the following problem: Suppose that one wishes to classify males and 

females in a population by using the measurements of height and weight. Since we 

selected two variables, this is a two dimensional problem. We are going to assume for 

simplicity that the distributions of height and weight are multivariate Gaussians and that 

the probability of occurrence of each gender is ½. Figure 5 shows the scatter plot of 

measurements for the two classes.   
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Figure 5. Scatter plot of the weight and height data with the optimal decision surface. 

The goal is to determine the placement of the decision surface for optimal classification. 

According to our previous discussion of the one dimensional case (see the Bayesian 

threshold ), this is achieved by estimating the means an standard deviations of the 

likelihoods from measurements performed in the population.  Then the decision 

boundary is found by  solving for gi(x)=gj(x), where i,j are the classes male and female. 

The difference from our previous example is that here we have a two dimensional input 

space. 

One can show Duda and Hart that for our 2-D, two class case (normal distributed) with 

equal a priori probabilities, the classification  will be a function of a normalized distance 

between the class centers, called mahalanobis distance  

r T2 1= − −−( ) (x xμ μΣ )              Equation 7 

where μ is the class center vector and Σ is the covariance matrix of the input data in 2-D 

space. Notice that instead of the class variances we have to compute the covariance 

matrix that is built from the class variances along each input space dimension. For this 
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case the discriminant function is given by (derivation of quadratic discriminant ) 

g di i
T

i i i( ) / ( ) ( ) / log( ) / log log ( )x x x= − − − − − +−1 2 2 2 1 21μ μ πΣ Σ P ci    

Equation 8 

Here the classes are equiprobable, so the last term will be the same for each discriminant 

and can be dropped. Since this is a 2-D problem, d=2, and i=1, 2 because we have two 

classes. When the discriminants are equated together to find the decision surface, we 

see that in fact its placement is going to be a function of the Mahalonobis distance. So for 

classification what matters is the distance among the cluster means normalized by the 

respective covariance. This is the metric for classification, and it is beautifully 

encapsulated in the Mahalanobis distance.  

Table 2 shows the estimates for the class covariances and means considering 1,000 and 

100 samples per class. We will solve the problem with 1,000 samples first, by computing 

the discriminants for each class.  

 1,000 Measurements 100 Measurements
Women Weight Mean = 64.86

Height Mean = 1.62

Cov =
⎡

⎣
⎢

⎤

⎦
⎥

90 4401 0
0 0 0036

.
.

Weight Mean = 63.7385
Height Mean = 1.6084

Cov =
⎡

⎣
⎢

⎤

⎦
⎥

771877 0 0139
0 0139 0 0047

. .
. .

Men Weight Mean = 78.02
Height Mean = 1.75

Cov =
⎡

⎣
⎢

⎤

⎦
⎥

3101121 0
0 0 0081
.

.

Weight Mean = 82.5278
Height Mean = 1.7647

Cov =
⎡

⎣
⎢

⎤

⎦
⎥

3663206 0 4877
0 4877 0 0084

. .
. .

  

Table 2. Data Measures 

In this case the decision surface is given by  Bayes classifier  

   7716 23395 0 0039 0 4656 129 40 02
2

2 1
2

1. . . . .x x x x− + − + =

which is an equation for a quadratic curve in the input space (Figure 5).  

2.4. Decision Surfaces of Optimal Classifiers 
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One can show Fukunaga that the optimal classifier for Gaussian distributed classes is 

quadratic. There are three cases of interest:  

• covariance matrices are diagonal and equal 

• covariance matrices for each class are equal,  

• and the general case.  

For the two first cases both the discriminants and the decision surface default to linear 

(Figure 6). In the figure we show not only the pdf but also its contour plots. These plots 

tell us how the density of samples decreases away from the center of the cluster (the 

mean of the Gaussian). The optimal discriminant function depends on each cluster shape 

and it is in principle a quadratic. When the cluster shapes are circularly symmetric with 

the same variance, there is no difference to be explored in the radial direction for optimal 

classification, so the discriminant defaults to a linear function (an hyperplane). The 

decision surface is also linear and is perpendicular to the line that joins the two cluster 

centers. For the same a priori probability the decision surface is the perpendicular 

bisector of the line joining the class means. 

Even when the shapes of the clusters are skewed equally (the contour plots of each 

cluster are ellipses with equal axes) there is no information to be explored in the radial 

direction, so the optimal discriminants are still linear. But now the decision surface is a 

line that is slanted with respect to the line joining the two cluster means. 
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Figure 6. Contour plots for the data clusters that lead to linear discriminant functions.  

Figure 7 shows the contours of each data cluster and the discriminant for the arbitrary 

covariance matrix case. Notice the large repertoire of decision surfaces for the two class 

case when we assume Gaussian distributions. The important point is that the shape of 

the discriminants is highly dependent upon the covariance matrix of each class.  

Knowing what is the shape of one data cluster is not enough to predict the shape of the 

optimal discriminant. One needs knowledge of BOTH data clusters to find the optimal 

discriminant.  shapes of 2D discriminants  
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Figure 7. The general case of arbitrary covariance matrices.  

Eq.8 shows that the optimal discriminant for Gaussian distributed classes is a quadratic 

function. This points out that the relation between cluster distributions and discriminants 

for optimal classification is not unique, i.e. there are many possible functional forms for 

the optimal discriminant (Gaussians and quadratics for this case). Observe that the 

parameters of the discriminant functions are a direct function of the parameters of the 

class likelihoods, so once the parameters of Eq.8 are estimated, we can immediately 

determine the optimal classifier. For the present example, Figure 8 shows how the two 

classes modeled distribution looks like. 
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Figure 8. Modeled distribution of figure 5 data. 

2.4.1 Discriminant sensitivity to the size of the data  
We have developed a strategy that is able to construct optimal decision surfaces from the 

data under the assumptions that the pdf of each class is Gaussian. This is a powerful 

procedure but it is based on assumptions about the pdf of the input, and also requires 

enough data to estimate the parameters of the discriminant functions with little error. The  

ultimate quality of the results will depend upon how valid are these assumptions for our 

problem. We will illustrate here the effect of the training data size on the estimation of the 

discriminant function parameters.  

To demonstrate this point let us assume that we only had 100 samples for the 

height/weight example (50 males and 50 females). We extracted randomly these 

samples from the larger data file, and computed the means and covariances for each 

class as shown in Table II. Just by inspection you can see that the parameters changed 

quite a bit. For instance, the covariances are no longer diagonal matrices, and the 

elements also have different values. Note also that the quality of the mean estimates is 
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higher than the covariance. When we build the optimal discriminant function from these 

parameters (Eq.8 ) the shape and position in the input space is going to be different when 

compared to the “ideal” case of 1,000 samples.  

Figure 9 shows the differences in shape and placement of the optimal decision surface 

for the two data sets. In this case the differences are significant producing different 

classification accuracy, but the decision surfaces still have the same overall shape. But 

remember that this is a simple problem in 2-D (7 parameters to be estimated with 50 

samples per class). In higher dimensional spaces the number of parameters to be 

estimated may be of the same order of magnitude of the data samples, and in this case 

catastrophic differences may occur. So what can we do to design classifiers that are less 

sensitive to the a priori assumptions and the estimation of parameters? 

The answer is not clear cut, but it is related to the simplicity of the functional form of the 

discriminant. One should use discriminant functions that have fewer parameters, and that 

can be robustely estimated from the amount of data that we have for training. These 

simpler discriminants may be sub-optimal for the problem, but experience shows that 

many times they perform better than the optimal discriminant. This seems a paradox, but 

it is not. The reason can be found in the brittleness of the parameter estimation. Even if 

we use the quadratic discriminant (which is optimal for Gaussian distributed classes) the 

classifier may give many errors if its discriminant functions are not shaped and positioned 

accurately in the input space.   
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Figure 9- Comparisons of Decision Surfaces 

2.5. The Linear Machines 
We have so far encountered three types of discriminant functions: the linear, the 

quadratic and the Gaussian. Let us compare them in terms of number of free parameters 

for D dimensional data. The linear discriminant function given by  

g w x w x w x b w x bx D D
i

= + + + + = +
=

i i∑1 1 2 2
1

...
                  Equation 9 

has a number of parameters that increases linearly with the dimension D of the space. 

The discriminant function with the next higher degree polynomial, the quadratic, has a 

square dependence on the dimensionality of the space (i.e. it has D² parameters) as we 

can see in Eq.8 . The Gaussian gave rise to a quadratic discriminant by taking the 

logarithm. Although quadratics are the optimal discriminants for Gaussian distributed 

clusters, it may be unfeasible to properly estimate all of these parameters in large 

dimensional spaces unless we have a tremendous amount of data.  

Notice that Eq.9 is a parametric equation for a hyperplane in D-dimensions which we 
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already encountered in linear regression (although there it had the function of modeling 

the input/output relationship). The hyperplane can be rotated and translated (an affine 

transformation) by changing the values of the free parameters wi and b respectively.  

The system that implements the discriminant of Eq.9 is depicted in Figure 10 and is 

called a linear machine . Notice that the pattern recognizer block is simpler (versus 

Figure 4) with the assumption that the unspecified functions g(x) are simply 

sum-of-products. We have seen that the linear machine is even optimal for Gaussian 

distributed classes with equal variances, which is a case of practical relevance (data 

transmission in stationary noisy channels). 
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Figure 10. Linear classifier for c classes 

It is ironic that in our classifier design methodology we are considering again linear 

discriminant functions. It seems that we are back at the point where we started this 

chapter, the construction of a classifier based on the linear regression followed by a 

threshold. But notice that now we have a much better idea of what we are seeking. The 

pattern recognition theory tells us that we may use linear discriminants, but we use one 

per class, not a regression line linking all the input data with the class labels. We also 

now know that the linear discriminant may not be optimal, but may be the best we can do 

because of the practical limitations of insufficient data to properly estimate the 
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parameters of optimal discriminant functions. So the pattern recognition theory gave us 

the insight to seek better solutions. 

It is important to stress that the linear discriminant is less powerful than the quadratic 

discriminant. A linear discriminant utilizes primarily differences in means for classification. 

If two classes have the same mean the linear classifier will always produce bad results. 

Examine Figure 11. A linear separation surface will always misclassify approximately  ½ 

of the other class. However, the quadratic discriminant does a much better job because it 

can utilize the differences in covariance.  
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Figure 11. Comparison of the discriminant power of the linear and quadratic classifiers. 

2.6 Kernel Based Machines 
A more sophisticated learning machine architecture is obtained by implementing a 

nonlinear mapping from the input to another space, followed by a linear discriminant 

function (Figure 12). See Nilsson . The rational of this architecture is motivated by  

Cover’s theorem . Cover basically states that any pattern recognition problem is linearly 

separable in a sufficiently high dimensionality space. So the goal is to map the input 

space to another space called the feature space Φ by using nonlinear transformations. 

Let us assume that the mapping from the input space ],[ 1 Dxx K=x  to the higher 
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dimensional Φ space is a one-to-one mapping operated by a kernel function family  

     )}(,),({)( 1 xxx MkkK K=

applied to the input. For instance, we can construct a quadratic mapping in this way, by 

equating the first D components of K to  , the next D(D-1)/2 components to all pairs 

 , and the last D components to xi . The feature space Φ in this case is of 

size M=[D(D+3)]/2.  
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Figure 12 . A kernel Based classifier 

There is a large flexibility in choosing the family of functions K(x). They need to be 

nonlinear such as Gaussians, polynomials, trigonometric polynomials, etc. Then in Φ 

space we can construct a linear discriminant function as 

   bkwkwg MM +++= )()()( 11 xxx K   
As before the problem is to select the set of weight vector W in Φ space that classifies 

the problem with minimum error. So the general architecture for the kernel classifier is to 

build a kernel processor (which computes Κ(x)) followed by a linear machine. In the 

example given above, we actually constructed a quadratic discriminator. The major 
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advantage of the kernel based machine is that it decouples the capacity of the machine 

(the number of free parameters) from the size of the input space.  size of feature space  

Recently Vapnik has shown that if K(x) are symmetric functions that obey the Mercer 

condition (i.e. that K(x) represents an inner product in the feature space), the solution for 

the discriminant function problem is greatly simplified. The Mercer condition basically 

states that the weights can be computed without ever solving the problem in the higher 

dimensional space Φ, which gives rise to a new classifier called the Support Vector 

Machine. We will study it later.  

2.7. Classifiers for the two class case 
The general classifier can be simplified for the two-class case since only two 

discriminants are necessary. It is sufficient to subtract the two discriminant functions and 

assign the classes based on the sign of a single, new discriminant function. For instance 

for the sick/healthy classification 

( ) ( ) ( )g x g x g xnew healthy sick= −      Equation 10  

which leads to the following block diagram for implementation 

ghe al th(x)- gsick(x)
> 0, healthy

< 0, sick

threshold
x

  

Figure 13. Classifier for a two-class problem 

Note that gnew(x) divides the space into two regions that are assigned to each class. For 

this reason, this surface obeys the definition of a decision surface and its dimension is 

one less than the original data space dimension. For the 1-D case it is a threshold (a 

point) at 37°C. But will be a line (1-D surface) in 2-D space, etc.  

It is important at this point to go back to our NeuroSolutions example 1 where we built a 
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classifier from an adaline followed by a threshold function and compare that solution with 

Figure 13. One can conclude that the adaline is effectively implementing the discriminant 

function gnew(x). Due to the particular way that we defined the labels (1,-1) the regression 

line will be positive in the region of the temperatures for healthy individuals and negative 

towards the temperatures of sick individuals. So the sign of the regression effectively 

implements gnew(x). There are several problems with this solution:  

• First, there is no principled way to choose the values of the desired response, and they affect 
tremendously the placement of the regression line (try 0.9 and -0.1 and see how the 
threshold changes).  

• Second, it is not easy to generalize the scheme for multiple classes (the sign information can 
only be used for the two class case). As we saw, classification requires a discriminant 
function per class.  

• Thirdly, the way that the adaline was adapted has little to do with minimizing the classification 
error. The error for training comes from the difference between the adaline output (before the 
threshold) and the class labels (Figure 14 ). We are using a nonlinear system but the 
information to adapt it is still derived from the linear part.  

Only under very restricted conditions will this scheme yield the optimum classifier.  In the 

following Chapter we will learn to implement a classifier where the classification error (the 

error after the threshold) is used to train the network. 

ADALINE

> 0, healthy

< 0, sick

threshold
x

LMS

Desired 1,-1

_

  

Figure 14. Schematic training of the adaline with threshold.  

Nevertheless, the adaline followed by a threshold as shown in example 1 can implement 

a classifier.  It was applied in the 1960’s by Widrow and Hoff for classification purposes. 
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2.8. Methods of training parametric classifiers   
The methods that we present in this book assume that there is little information available 

to help us make principled decisions regarding the parameter values of the discriminant 

functions. Therefore, the parameters must be estimated from the available data. One 

must first collect sufficient data that covers all the possible cases of interest. Then this 

data is utilized to select the parameters that produce the smallest possible error. This is 

called training the classifier and we found a very similar methodology in Chapter I.  

The accuracy of a classifier is dictated by the location and shape of the decision 

boundary in pattern space. Since the decision boundary is obtained by the intersection of 

discriminant functions, there are two fundamental issues in designing accurate 

parametric classifiers (i.e. classifiers that accept a functional form for their discriminant 

functions):  

• the placement of the discriminant function in pattern space, and  

• the functional form of the discriminant function. 

There are two different ways to utilize the data for training parametric classifiers (Figure 

15): they are called parametric and nonparametric training  (do not confuse parametric 

classifiers with parametric training). 
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Figure 15. Parametric and nonparametric training of a classifier 

In parametric training each pattern category is described by some known functional form 

for which its parameters are unknown. The decision surface can then be analytically 

defined as a function of these unknown parameters. The method of designing classifiers 

based on statistical models of the data belongs to parametric training. We describe the 

data clusters by class likelihoods, and the discriminants and decision surfaces can be 

determined when these parameters are estimated from the data. For instance, for 

Gaussian distributed pattern categories, one needs to estimate the mean vector, the 

covariance (normally using the sample mean and the sample covariance) and the class 

probabilities to apply Eq.1 . Unfortunately, due to the analytic way in which discriminants 

are related to the likelihoods only a handful of distributions have been studied, and the 

Gaussian is almost always utilized. 

In nonparametric training the free parameters of the classifier’s discriminant functions are 

directly estimated from the input data. Assumptions about the data distribution are never 

needed in non-parametric training. Very frequently nonparametric training utilizes iterative 

algorithms to find the best position of the discriminant functions. However, the designer 
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has to address directly the two fundamental issues of parametric classifier design, i.e. the 

functional form of discriminant functions and their placement in pattern space.  

2.8.1. Parametric versus nonparametric training 
Let us raise an important issue. Is there any advantage in using nonparametric training? 

The optimal discriminant function  depends upon the distribution of the data in pattern 

space. When the boundary is defined by statistical data modeling (parametric training), 

optimal classification is achieved by the choice of good data models and appropriate 

estimation of their parameters. This looks like a perfectly fine methodology to design 

classifiers. So, in principle, there seems to be no advantage in nonparametric training, 

which starts the classifier design process by selecting the discriminant functional form 

“out of the blue”. In reality, there are some problems with parametric training for the 

following reasons: 

• Poor choice of likelihood models – when we select a data model (e.g. the Gaussian 
distribution), we may be mistaken, so the classifier may not be the optimum classifier after all. 
Conversely, estimating the form of the pdf from finite training sets is an ill-posed problem , so 
this selection is always problematic. 

• Too many parameters for the optimal discriminant. We saw above that the performance of 
the quadratic classifier depends upon the quality of the parameter estimation. When we have 
few data points we may not get a sufficiently good estimation of the parameters and 
classification accuracy suffers. As a rule of thumb we should have “10 data samples for each 
free parameter” in the classifier. If this is not the case we should avoid using the quadratic 
discriminator. One can say that most real world problems are data bound, i.e. for the number 
of free parameters in the optimal classifier there is not enough data to properly estimate its 
discriminant function parameters.   trade-offs of parametric training   

Very often we are forced to trade optimality for robustness in the estimation of 

parameters. In spite of the fact that the quadratic classifier is optimal, sometimes the data 

can be classified with enough accuracy by simpler discriminants (like the linear) as we 

showed in shapes of 2D discriminants . These discriminants have fewer parameters and 

are less sensitive to estimation errors (take a look at Table II and compare the 

estimations for the means and variances) so they should be used instead of the quadratic 

when the data is not enough to estimate the parameters accurately. 

This raises the question of utilizing the data to directly estimate the parameters of the 
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discriminant functions, i.e. use a nonparametric training approach. What we gain is 

classifiers that are insensitive to the assumption on the pdf of the data clusters. We can 

also control in a more direct way the number of free parameters of the classifier. The 

difficulties that are brought by nonparametric training are twofold:  

• deciding the shape of the discriminant function for each class, and 

• ways to adapt the classifier parameters. 

We can use the ideas of iterated training algorithms to adapt the classifier parameters.  

In Chapter I we trained the adaline parameters directly from the data, so effectively the 

linear regressor was nonparametrically trained. We can also foresee the use of the 

gradient descent method explained in Chapter I to adjust the parameters of the 

discriminant functions such that a measure of the misclassifications (output error) is 

minimized. Hence we have a methodology to place the discriminant function and are left 

with the choice of the functional form of the discriminant function, which unfortunately 

does not have a clear cut methodology.  

2.8.2. Issues in nonparametric training 
The central problem in nonparametric training of parametric classifiers can be 

re-enunciated as the selection of an appropriate functional form for the discriminant 

function which: 

• produces small classification error, and 

• have as few parameters as possible to enable robust estimation from the available data.  

The linear machine decision boundaries are always convex because they are built from 

the superposition of linear discriminant functions. So solving realistic problems may 

require more versatile machines. These more versatile machines are called 

semi-parametric classifiers because they still work with parametric discriminant functions, 

but they are able to implement a larger class of discriminant shapes (eventually any 

shape which makes them universal approximators). Semi-parametric classifiers are very 

promising because they are an excellent compromise between versatility and number of 
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trainable parameters. Artificial neural networks are one of the most exciting type of 

semi-parametric classifiers and will be the main subject of our study.  

The other issue is to find fast and efficient algorithms that are able to adapt the 

parameters of the discriminant functions.We now know of training methods based on 

gradient descent learning that are pretty robust as we have demontrated in Chapter I. 

They will be extended in the next chapter for classifiers.  

Go to next section  

3. Conclusions 
 

In this short chapter we covered the fundamentals of pattern recognition. We started by 

reviewing briefly the problem of pattern recognition from a statistical perspective. We 

provided the concepts and definitions to understand the role of a pattern recognizer. We 

covered the Bayes classifier and showed that the optimal classifier is quadratic. 

Sometimes sub-optimal classifiers perform better when the data is scarce and the input 

space is large. In particular when the input is projected into a large feature space as done 

in kernel classifiers.  

The linear classifier was also reviewed and a possible implementation is provided. These 

concepts are going to be very important when we discuss artificial neural networks in the 

next chapter.  

NeuroSolutions Examples 
2.1 Comparing regression and classification  
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Understanding Bayes rule 
There are two types of probabilities associated with an event: the a priori and the a 

posteriori probabilities. Suppose that the event is “ x belongs to class c1”. The a priori 

probability is evaluated prior to any measurements, so it is called a priori. If there is no 

measurement, then the a priori probability has to be defined by the relative frequency of 

the classes, which is P(c1). However, we can also estimate the probability of the event 

after making some measurements. For a given x we can ask what is the probability that x 

belongs to class c1, and we denote it by P(c1|x). This is the a posteriori probability. 

According to statistical pattern recognition, for classification what matters are the a 

posteriori probabilities P(ci|x). But they are generally unknown. Bayes rule provides a way 

to estimate the a posteriori probabilities. In fact, eq2  tells that we can compute the 

posterior probability by multiplying the prior for the class (P(ci)) with the likelihood that the 

data was produced by class i. The likelihood p(x|ci) is the conditional of the data given the 

class, i.e. if the class is ci what is the likelihood that the sample x is produced by the 

class? The likelihood can be estimated from the data by assuming a probability density 

function (pdf). Normally the pdf is the Gaussian distribution. So, using Bayes rule one has 

a way to estimate a posteriori probabilities from data. 

Return to text  
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Bayesian threshold 
The general methodology is to equate the two a posteriori probabilities, substitute the 

likelihoods and obtain the value of x (temperature). For Gaussian distributions (eq. 3), 

notice that x appears in the exponent, which complicates the mathematics a little bit. 

However, if we take the natural logarithm of each side of the equation we do not change 

the solution since the logarithm is a monotonically increasing function. This simplifies the 

solution a lot. Let us do this for the two-class case. We get 
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It is clear that the solution involves the solution of a quadratic equation in x. With simple 

algebra the solution can be found, which corresponds to the threshold T, 
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The solution is rather easy to find when σ1=σ2, since in this case the second order term 

vanishes and the solution is  

  
x k=

+
+

μ μ1 2

2   
where k is dependent upon the ratio of a priori probabilities. This solution has a clear 

interpretation. When the variances are the same and the classes are equally probable, 

the threshold is placed halfway between the cluster means. If in our problem the two 

variances were the same the value for x=T= 37.75 C . 
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The a priori probabilities shift the threshold left or right. If the a priori probability of class 2 

is smaller than the a priori probability of class 1 the threshold should be shifted towards 

the class with smaller probability. This also makes sense because if the a priori 

probability of one class is larger, we should increase the region that corresponds to this 

class to make fewer mistakes.  

For the general case of σ1 different from σ2 one has to solve the quadratic equation.  The 

distributions intersect in two points (two roots), but only one is the threshold (it has to be 

within the means). In our case for 1,000 measurements, the solutions are x1=34.35 and 

x2=37.07, so the threshold should be set at 37.07 C to optimally classify sick from healthy. 

Notice that this result was obtained with the assumptions of Gaussianity, the a priori 

probabilities chosen, and the given population (our measurements). 

Note that the different variance of the classes effectively moved the threshold to the left, 

i.e. in the direction of the smallest variance. This makes sense because a smaller 

variance means that the data is more concentrated around the mean, so the threshold 

should also be moved closer to the class mean. Therefore we conclude that the threshold 

selection is dependent upon the variances of each cluster. What matters for classification 

is a new distance which is not only a function of the distance between cluster means but 

also the variances of the clusters. 

Return to Text  

 

minimum error rate 
The probability of error is computed by adding the area under the likelihood of class 1 in 

the decision region of class 2 with the area under the likelihood of class 2 in the decision 

region of class 1. Since the decision region is a function of the threshold chosen, the 

errors depend upon the threshold. As we can see from the figure, the error is associated 

with the tails of the distributions. In order to estimate this error one needs to integrate the 

likelihoods in certain areas of the input space, which becomes very difficult in high 
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dimensional space. The probability of error is 

    
P error p x c P c dx p x c P c dx

R R
( ) ( | ) ( ) ( | ) ( )= +∫ ∫

2 1
1 1 2 2

where R1 and R2 are the regions assigned to class 1 and class 2 respectively, so it is a 

function of the threshold. One can show Fukunaga that the minimum error rate is 

achieved with the Bayes rule, i.e. by selecting the threshold such that the a posteriori 

probability is maximized. This result also makes sense intuitively (see the figure below). 
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μ1 μ2

σ1

σ2

Probability of error
  

The classification error is dependent upon the overlap of the classes. Intuitively, the 

larger the difference between the cluster centers (for a given variance), the smaller will be 

the overlap, so the smaller is the overall classification error.  Likewise, for the same 

difference between the cluster means, the error is smaller if the variance of each cluster 

distribution is smaller. So we can conclude that what affects the error is a combination of 

cluster mean difference and their variance.  

Return to text  

 

parametric and nonparametric classifiers  
The classifier we just discussed is called a parametric classifier because the discriminant 
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functions have a well defined mathematical functional form (Gaussian) that depends on a 

set of parameters (mean and variance). For completeness, one should mention 

nonparametric classifiers, where there is no assumed functional form for the 

discriminants. Classification is solely driven by the data (as in K nearest neighbors – see 

Fukunaga). These methods require lots of data for acceptable performance, but they are 

free from assumptions about shape of discriminant functions (or data distributions) that 

may be erroneous.  
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mahalanobis distance 
The Mahalanobis distance is the exponent of the multivariate Gaussian distribution which 

is given by 
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where T means the transpose, |Σ| means the determinant of Σ, and    means the 

inverse of Σ. Note that in the equation μ is a vector containing the data means in each 

dimension, i.e. the vector has dimension equal to d.  
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Normally we estimate μ by the sample mean Eq.4 . The covariance is a matrix of 

dimension d x d where d is the dimension of the input space. The matrix Σ is  
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and its elements are the product of dispersions among pairs of dimensions 

( )( )σ μij i i j j
jiN

x x=
−

− −∑∑1
1

μ
  

The covariance measures the variance among pairs of dimensions. Notice the difference 

in number of elements between the column vector μ (d components) and the matrix Σ (d² 

components). See the Appendix  

The Mahalanobis distance formalizes what we have said for the 1-D classification 

example. Notice that this distance is a normalized distance from the cluster center. In fact, 

if we assume that Σ= I (identity matrix), we have exactly the Euclidean distance betweeen 

the cluster centers. But for classification the dispersion of the samples around the cluster 

mean also affects the placement of thresholds for optimal classification. So it is 

reasonable to normalize the Euclidean distance by the sample dispersion around the 

mean what is measured by the covariance matrix.  
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covariance 
The covariance matrix was defined in the Mahalanobis distance explanation. The 

covariance matrix for each class is formed by the sample variance along pairs of 

directions in the input space. The covariance matrix measures the density of samples of 

the data cluster in the radial direction from the cluster center in each dimension of the 

input space. So it quantifies the shape of the data cluster.  

The covariance matrix is always symmetric and positive semi-definite. We will assume 

that it is positive definite, i.e. the determinant is always greater than zero. The diagonal 

elements are the variance of the input data along each dimension. The off-diagonal terms 

are the covariance along pairs of dimensions. If the data in each dimension are 

statistically independent, then the off-diagonal terms of Σ are all zero and the matrix 
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becomes a diagonal matrix. 

The structure of the covariance matrix is critical for the placement and shape of the 

discriminant functions in pattern space. In fact, the distance metric important for 

classification is normalized by the covariance, so if the class means stay the same but 

the covariance changes, the placement and shape of the discriminant function will 

change.  

We will show this below with figures. 
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derivation of quadratic discriminant 
We saw that Bayes rule chooses classes based on a posteriori probabilities. We can 

think that P(ci|x) is a discriminant  

g x P c x p x c P ci i i( ) ( | ) ( | ) ( )= = i

i

   
where p(x|ci) is the likelihood associated with the class ci. In this expression we omitted  

P(w) (see eq2 ) because it is a common factor on all discriminants so will not affect the 

overall shape nor placement of the boundary. It can therefore be dropped for the 

definition of the discriminant function.  

Now let us take the natural logarithm of this equation and obtain 

g x p x c P ci i( ) ln ( | ) ln ( )= +   
This is the general form for the discriminant, which depends on the functional form of the 

likelihood. If the density p(x|ci) is a multivariate normal distribution we get the equation in 

the text. 

g x x x d P ci i
T

i i i( ) / ( ) ( ) / log( ) / log log ( )= − − − − − +−1 2 2 2 1 21μ μ πΣ Σ i   
Estimating all the elements of the Σ matrix in high dimensional spaces with adequate 
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precision becomes a nontrivial problem.  Very often the matrix becomes ill-conditioned 

due to lack of data, resulting in discriminants that have the wrong shape, and so will 

perform sub-optimally. 
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Bayes classifier 
The optimal classifier (also called the Bayes classifier) is obtained in the same form as for 

the 1D case. We substitute the means and covariances estimated from the data for each 

class in Eq.8 . The inverse of the covariance for the women is 
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For the man class the discriminant is 
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The separation surface is obtained by equating gx(x)= gf(x) which yields 

7716 23395 0 0039 0 4656 129 40 02
2

2 1
2

1. . . . .x x x x− + − + =   
This is a quadratic in 2D space as shown in Figure 5. This surface yields the smallest 

classification error for this problem. But just by inspection of the figure one can see that 

many errors are going to be made. So one has to get used to the idea that optimal does 
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not necessarily means good performance. It simply means the best possible performance 

with the data we have.  
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shapes of 2D discriminants 
 

Diagonal Covariance matrix 
If the two variables are uncorrelated and of the same variance, then the covariance 

matrix is diagonal  

Σ = σ 2 I   

In this case the Mahalanobis distance defaults to the Euclidean distance 

x x xi i
T

i− = − −μ μ
2

( ) ( μ )   
and the classifier is called a minimum distance classifier. The interesting thing is that the 

discriminant function for this case defaults to a linear function  

g x w x bi i
T( ) = +   

where 
wi i=

1
2σ

μ
  and 

b i
T

i= −
1

2 2σ
μ μ

  since the quadratic term is common to 

both classes and does not affect the shape of the discriminant. For this case the samples 

define circular clusters (hyperspherical in multidimensions).  

Equal Covariance Matrix 

The case of equal covariance matrices for each class ( Σ Σi =  ) is still pretty simple. In 

fact the discriminant is still linear but now the weights and bias of gi(x) in the previous 

equation  are given by    and wi i= −Σ 1μ b i
T

i= − −1
2

1μ μΣ
 ,which means that each 
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class is a ellipsoidal cluster of equal size an shape. Figure 6 shows both cases where we 

would like to point out that the decision regions are both linear functions. 

Arbitrary Covariances
This is the most general case, and in this case the general form of the discriminant 

function of Eq.8 must be used. We can see that this discriminant function is quadratic in x  

g x x W x w x bi
T

i i
T( ) = + +   

where   ,   and W i= − −1 2 1/ Σ wi i= −Σ 1μ b i
T

i i= − −−1
2

1
2

1μ μΣ Σlog
 . The 

decision region is either a line, circle, ellipse and parabola, depending upon the shape of 

the individual clusters and their relative position (Figure 8). 

These three cases illustrate our previous statement that the covariance matrix is 

exceptionally important in the definition of the shape (and placement) of the discriminant 

function. Note that the discriminant function changed from an hyperplane to a quadratic 

surface depending upon the shape of the covariance matrix of each class.  

A classifier built from linear discriminant functions (called a linear classifier) only exploits 

differences in means among different classes, while the quadratic classifier not only 

exploit the mean difference but also the difference in “shape” of the data clusters. Hence, 

if we have two classes with the same mean, the linear classifier will always give very poor 

results. However, a quadratic classifier may perform better as long as the shape of the 

two data clusters are different.  In fact notice that for Gaussian distributed classes the 

optimal classifier is a quadratic classifier given by Eq.8 . So there is no need to find more 

sophisticated (higher order) discriminant functions. 

The improvement in performance between the linear and the quadratic discriminant 

comes at a computational cost. In fact, the number of parameters estimated for the 

arbitrary covariance case is 7 per class for the quadratic (increases as the square of the 

dimension due to W), while it is simply 3 for each of the linear cases. So quadratic 
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discriminants require more data samples to estimate reliably their parameters. 

Return to text  

 

parametric and nonparametric training 
Parametric training uses the data to estimate the parameters of the data models, which 

are then utilized to specify the discriminant functions. This was the method utilized in the 

statistical modeling of the data. 

Alternatively, the parameters of the discriminant function can be estimated in a way which 

relaxes the assumptions necessary for parametric training. Instead of using the data to 

estimate the parameters of the assumed data distributions to compute the likelihoods, we 

can pre-select a functional form for the discriminant function (e.g. a linear discriminant or 

a quadratic discriminant) and adjust its parameters directly from the data. Most oftern we 

use iterated learning rules to accomplish this adaptation. This alternate procedure is 

commonly called non-parametric training. 

Return to text  

 

trade-offs of parametric training 
In parametric training one needs to estimate the probability density function of the input 

data, which is an ill-posed problem from finite number of observations. So to solve the 

classification problem we are forced to solve a much harder problem of estimating the pdf. 

This is not done in practice. What we do is to hypothesize a pdf and then find its 

parameters from the available data. 

We saw before (Eq.6 ) that the essence of the classification test can be maintained, even 

when the discriminant functions are not derived from the assumed statistical properties of 

the data. There is quite a bit of freedom in the selection of the shape of the discriminant 
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function. Just remember that the Gaussian discriminant is effectively equivalent to a 

quadratic discriminant. Different discriminant functions can provide the same 

classification accuracy (i.e. the same decision surface), which leads naturally to the 

search for simpler functional forms for the discriminant functions. 

Moreover, one may have to trade optimality for robustness. For instance, the optimal 

discriminant function of Eq.1 for the Gaussian model requires the estimation of class 

means and covariances. In high dimensional spaces the estimation of covariances 

requires large data sets, otherwise the estimated values may be far from the true ones. 

Poor parameter estimation will lead to misplaced/mishaped discriminant functions, which 

will then produce higher classification errors.  

For instance, we saw that the quadratic discriminant is optimal for Gaussian distributed 

clusters. But if we want to classify hand written digits from a 20x20 image (a 400 

dimensional input), the quadratic discriminant requires more than 160,000 parameters 

(400x400 covariance matrix). In order to reliably estimate all the entries of this matrix one 

would need 1,600,000 data samples (using the rule of thumb that one needs 10 times 

more samples than parameters). So, it is impractical sometimes to utilize the optimal 

discriminant function, which points to alternate ways of designing and training classifiers. 

Return to text   

R. A. Fisher 
Was a British statistician who proposed in the late 20’s the use of the Maximum 

Likelihood principle to solve the discriminant analysis problem (i.e. a rule to distinguish 

between two sets of data). 

 

Pattern Recognition 
is the creation of categories from input data using implicit or explicit data relationships. 

What is similar among some data exemplars is further contrasted with dissimilarities 
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across the data ensemble, and the concept of data class emerges. Due to the imprecise 

nature of the process, it is no surprise that statistics has played a major role in the basic 

principles of pattern recognition. 

 

Pattern Space 
is the space of the input data. Each multivariate (N variables) data sample can be thought 

as a point in a multidimensional (N dimensional) space.  

 

classes 
are the natural divisions of the input data produced by the phenomenon under study (i.e. 

sick and healthy in this case). 

 

classifier 
is a machine that automatically divides input data into classes. 

 

decision surface 
is the boundary (eventually multidimensional) between the input data classes. 

 

discriminant functions 
is a function g(x) that evaluates every position in pattern space and produces a large 

value for one class and low values for all the others. 

 

training the classifier 
involves defining the parameters of the discriminant function parameters from the input 

data (the training set) 
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optimal classifier 
the classifier that minimizes the classification error given the observations. 

 

optimal discriminant function 
the discriminant that produces the best possible classification. 

 

linear machine 
is a parametric classifier where the discriminant functions are hyperplanes. 

 

a posteriori probability 
is the probability of an event after some measurements are made. 

 

likelihood 
is the probability density function of each event. 

 

probability density function 
intuitively, is the function that specifies the probability of a given event in an experiment. It 

is the limit of the histogram for arbitrary large number of trials. See the Appendix for a 

definition.  

 

eq2 

( ) ( ) ( )
( )P c x

p x c P c
P xi

i i
=
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adaline 
stands for ADAptive LInear Element, and is the processing element proposed by Widrow 

that implements a weighted sum of inputs.  

 

Eq.1 

x belongs to   if     ci
( ) ( )P c x P c xi > j   for all j ≠  i 

 

Eq.6 
xk belongs to ci if   gi(xk)>gj(xk)   for all j≠ i   

 

Eq.8 
g x x x d P ci i

T
i i i( ) / ( ) ( ) / log( ) / log log ( )= − − − − − +−1 2 2 2 1 21μ μ πΣ Σ i

i i

   
 
 

Eq.10 

  
g w x w x w x b w x bx D D

i
= + + + + = +

=
∑1 1 2 2

1
...

  
 
 

convex 
a surface is convex when any point in a line joining two points in the surface belongs to 

the surface.  
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Eq.9 
( ) ( ) ( )g x g x g xnew healthy sick= −   

  
 
 

LMS 
w(n+1) = w(n) + ηx(n)ε(n) 

 

Eq.7 

   r T2 1= − −−( ) (x xμ μΣ )
 
 
 

Widrow 
Widrow also utilized the adaline for classification by including a nonlinearity after the 

linear PE. 

Widrow and Hoff, “Adaptive switching circuits”, IRE WESCON Convention Record, 

96-104, 1960. 

 

Eq.4 

μ σ= =
= =
∑ ∑1 1

1

2 2

1N
x

N
xi

i

N

i

N

( )μ−
   

 
 

Eq.3 
( )

p x e
x

( ) =
−

−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟1

2

1
2

2

2

πσ

μ

σ
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Duda 
Duda R. and Hart P., Pattern Classification and Scene Analysis, Wiley, 1973.  

 

Fukunaga 
Fukunaga K., Statistical Pattern Recognition, Academic Press, 1990. 

 

ill-posed 
a problem is ill-posed when a small modifications on the input produces large change in 

the outcome.  

 

size of feature space 
The conventional way of thinking about features in pattern recognition has been as a 

dimensionality reduction operation. A feature is a characteristic of the input data that 

preserves discriminability. For instance, color, or edges in an image. Features are 

traditionally obtained with projections to a sub-space, that is, features have smaller 

dimensionality than the input. For 50 years, the quest in pattern recognition has been to 

find small dimensional projections that preserve the most information about the input. 

One realizes that a projection to a sub-space will reduce the discriminability somewhat, 

but experience has shown that for many problems a handful of small dimensional 

projections produce workable classifiers.  

The motivation to perform subspace projections is related to the “curse of dimensionality” 

we already mentioned. If we want to build the optimal Bayes classifier in a high 

dimensional space we have to estimate too many parameters with the available data.  

One way to conquer this difficulty is to project the data to a smaller dimensionality space 

(feature extraction) and there develop the optimal classifier. Since the feature space is 

smaller there will be less parameters to estimate. The difficulty has been in choosing the 
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features and their number. Moreover, if the data is hard to classify in the original space, 

very likely it will also be difficult to classify in the smaller dimensional feature space.  

Nevertheless this has been the traditional way to think about feature spaces.  

The view we just expressed of using Cover’s theorem to go to a higher dimensional 

feature space has been a curiosity in pattern recognition until the recent work of Vapnik 

with the Support Vector Machines. High dimensional spaces produce sparse data 

clusters, i.e. no matter how many data samples we might have, if the size of the space is 

sufficient large, there will always lots of room among the data clusters. This means that 

the classification problem is potentially linearly separable. So a very simple classifier can 

do the job. The interesting thing is that the generalization can still be controlled by 

enforcing a large margin. We will discuss this later.  

Return to Text  

 

cover’s theorem 
Cover’s theorem draws from a very interesting (and non-intuitive) result. Let us assume 

that we a have a kernel based machine with M+1 weights. We want to classify N patterns. 

There are 2N possible divisions of these patterns into two categories (called dichotomies). 

The question is what is the probability that a given dichotomy chosen at random is 

implementable by our kernel based machine? 

Cover showed that the probability is  

⎪⎩

⎪
⎨
⎧

≤

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= ∑

=

−

MN

MN
i

N
P

M

i

N

MN

1

1
2

0

1

,

   
This means that for spaces of size M larger than the number of samples N the probability 

is actually one, that is, we can always divide any data into two classes with probability 1. 

This probability has a sharp knee (the probability approaches one rapidly) at N=2(M+1), 
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and this value is normally defined as the capacity C of the learning machine. So if we set 

the number of free parameters (weights) of our learning machine above its capacity we 

are almost certain to classify the input patterns correctly.  For a linear classifier in D 

space the capacity is C=2D+1. However, kernel based classifiers allow us to go to a 

higher dimensional space and set their capacity independent of the input space 

dimension. This decoupling between the input space dimension and the machine 

capacity is the great advantage of the kernel based machine. 

Return to Text  

 
 

Vapnik 
The nature of statistical Learning Theory, Springer Verlag, 1995, pp 136. 

 

Nilsson 
Mathematical Foundation of Learning Machines, 1990 Morgan Kaufmann. 

 

Affine 
An affine transformation specifies any linear transformation between the space 

coordinates. We can think of them as a rotation and a translation of the space.  

 50 



 

Index 

1 

1. The Pattern Recognition Problem............................................................................................ 2 

2 

2. Parametric classifiers ............................................................................................................... 4 

9 

9. Conclusions ............................................................................................................................. 21 

B 

Bayes classifier............................................................................................................................ 28 
Bayesian threhold........................................................................................................................ 23 

C 

Chapter II-Multilayer Perceptrons ................................................................................................ 2 
covariance ............................................................................................................................... 26, 27 

D 

derivation of quadratic discriminant ......................................................................................... 27 

M 

mahalanobis distance.................................................................................................................... 26 
minimum error rate ........................................................................................................................ 25 

P 

parametric and nonparametric classifiers ................................................................................ 25 
parametric and nonparametric training .................................................................................... 30 

S 

shapes of 2D discriminants........................................................................................................ 28 

T 

trade-offs of parametric classifiers............................................................................................ 30 

U 

Understanding Bayes rule .......................................................................................................... 23 
 

 51


	 Chapter II - Pattern Recognition
	1. The Pattern Recognition Problem
	2. Statistical Formulation of Classifiers
	3. Conclusions
	Understanding Bayes rule
	Bayesian threshold
	minimum error rate
	parametric and nonparametric classifiers 
	mahalanobis distance
	covariance
	derivation of quadratic discriminant
	Bayes classifier
	shapes of 2D discriminants
	parametric and nonparametric training
	trade-offs of parametric training
	R. A. Fisher
	Pattern Recognition
	Pattern Space
	classes
	classifier
	decision surface
	discriminant functions
	training the classifier
	optimal classifier
	optimal discriminant function
	linear machine
	a posteriori probability
	likelihood
	probability density function
	eq2
	adaline
	Eq.1
	Eq.6
	Eq.8
	Eq.10
	convex
	Eq.9
	LMS
	Eq.7
	Widrow
	Eq.4
	Eq.3
	Duda
	Fukunaga
	ill-posed
	size of feature space
	cover’s theorem
	Vapnik
	Nilsson
	Affine

