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The goal of this chapter is to introduce the following concepts: 

• Why backpropagation can not train recurrent systems. 

• Develop the backpropagation through time algorithm. 

• Introduce and train distributed TLFNs. 

• Provide the basic theory to study the gamma model 

• Introduce and train fully recurrent networks. 

• Explain fixed point learning. 

• Explain Hopfield’s computational energy. 

• Present Grossberg additive neural model.  

• Show applications of recurrent neural networks. 

• 1. Introduction  

• 2. Simple recurrent topologies   

• 3. Adapting the feedback parameter  

• 4. Unfolding recurrent networks in time.  

• 5. The distributed TLFN topology  

• 6. Dynamical Systems  

• 7. Recurrent systems  

• 8. Learning Rules for Recurrent Systems  
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• 9. Applications of recurrent networks to system identification and control  

• 10. Hopfield networks  

• 11. Grossberg’s additive model  

• 12. Beyond first order PEs: Freeman’s model  

• 13. Conclusions  

 

Go to next section  
 

1. Introduction 
In the previous chapter, we were able to create TLFN networks that processed 

information over time and were easy to train. Basically, they could only implement static 

(but arbitrary) mappings from the present input and its memory traces to the desired 

response. There is often a need to extend the network capabilities to time dependent 

mappings. This means that short-term memory mechanisms have to be brought inside 

the feedforward network topologies (TLFNs), or the networks have to be made spatially 

recurrent , i.e. recurrent connections are created among some or all PEs. We will call 

these spatially recurrent networks simply recurrent networks. 

The complexity of these two solutions is very different. The TLFNs have locally recurrent 

connections and can be made stable just by enforcing the stability of the short-term 

memory mechanisms, while it is much more difficult to guarantee stability of recurrent 

networks. Moreover, TLFNs are  easier to train than recurrent systems, so they are 

more practical. Lastly, one can still interpret how a TLFN is processing the information by 

combining our knowledge of MLPs with adaptive filters, while the massive 

interconnectivity of the recurrent system defeats in most cases our ability to study the 

system.  

You should have noticed how carefully we picked the focused TLFN topology to still be 

able to use the static backpropagation algorithm. But this is no longer possible for 

 4 



distributed TLFNs nor for recurrent networks. One of the central issues that we have to 

address in this chapter is how to train recurrent networks. We will start by extending static 

backpropagation to adapt systems with delays, i.e. systems where the ordered list does 

not only depend upon the topology as in Chapter III, but also depends on a time order. 

This concept will give rise to the back propagation through time (BPTT) algorithm which 

trains recurrent networks with a segment of a time series. Learning a segment of a time 

series is called trajectory learning . This is the most general case for learning in time. 

BPTT will be applied to train the gamma network, distributed TLFNs, and fully recurrent 

networks. We will also study how recurrent systems are trained to memorize static 

patterns by extending static backpropagation to what has been called fixed point 

learning .  

We will also superficially study dynamical systems in terms of main definitions and 

topologies. A paradigmatic example of the insight gained with dynamics is Hopfield ‘s 

interpretation of the “computational energy” of a recurrent neural system. We will cover 

this view and see how it can be used to interpret a recurrent system with attractors as a 

pattern associator. We will end the Chapter (and the book) with a description of the 

Freeman’s model which is a new class of information processing system which is locally 

stable but globally chaotic.  

Throughout the Chapter we will provide applications of time lagged feedforward networks 

ranging from nonlinear system identification, nonlinear prediction, temporal pattern 

recognition, sequence recognition and controls. 

Go to next section  

2. Simple recurrent  topologies 
All the focused TLFNs studied in Chapter X implement static nonlinear mappings. 

Although focused TLFNs have been shown universal mappers, there are cases where 

the desired function is beyond the power of a reasonably sized focused TLFN. The 

easiest case to imagine is a string that gives rise to two different outputs depending upon 
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the context. Either we have enough memory to span the full context, or the network will 

be unable to discover the mapping. Jordan and Elman proposed simple networks based 

on context PEs and network recurrency that are still easy to train (because the feedback 

parameters are fixed) and accomplish the mapping goal with small topologies (Figure 1). 

context

1

Input

context

1

Input

μ

Jordan Elman   

Figure 1.  Jordan (left) and Elman networks. 

Note that both the Jordan and Elman nets have fixed feedback parameters and there is 

no recurrency in the input-output path. They can be approximately trained with straight 

backpropagation. Elman’s context layer is formed from nonlinear PEs and receives input 

from the hidden layer, while Jordan’s context layer receives input from the output, and the 

context layer is built from context PEs. 

These systems are in principle more efficient than the focused architectures for encoding 

temporal information since the “memory” is created by recurrent connections that span 

several layers, i.e. memory is inside the network, so the input-output nonlinear mapping 

is no longer static. However, the Jordan and Elman networks are still very special 

architectures that were derived with the goal of easy training. Notice that the outputs of 

the context layer can be thought of as external inputs (which are controlled by the 

network instead of by world events) such that there is no recurrency in the input-output 

path. Both systems have been utilized for sequence recognition and are sometimes 

called sequential networks. Jordan networks can even associate the same (fixed) input 

with several output sequences depending upon the context.  
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NeuroSolutions 1 
11.1 Jordan’s network 
 

We are going to create a data set with time dependencies as first proposed by 

Elman. Suppose that we have 9 items coded as amplitude levels  0.1, 0.2, …. 0.9 

which appear randomly in a sequence. However, when each item appears, we 

know that it will appear for a predetermined number of time steps. For instance,  

0.1 appears for 1 time step, 0.2 for 2 time steps, and 0.9 for 9 time steps.  Elman 

associated the random values with consonants that are followed by a 

pre-determined number of vowel sounds.  

Can a network learn the time series? If you think a bit the answer must be no, 

because the items appear randomly. So the error must be large. However, the error 

should not be uniformly high over time, since there is a predictable part in the time 

series structure, namely, the length associated with each level. So a network that 

can capture the time structure should yield a low error once a given level appears 

at the network input. 

Our first architecture is the Jordan network which feeds back the output of the 

system to a layer of context PEs. The network has a single input, and a single 

output. The desired response is the same as the input but advanced of one time 

step (i.e. the network is trained as a predictor). We will beusing backpropagation to 

train the system, although this is an aproximation as we will see shortly. We start 

with 5 hidden PEs and 5 context PEs with fixed feedback. But you can experiment 

with these parameters. Running the network we can observe the expected 

behavior in the error. The error tends to be high at the transitions between levels.  

Since we worked in Chapter X with a time series built from two sinewaves of 

different frequencies (which is also a problem of time structure) let us also see if 

the Jordan network can learn it. The answer is negative, since the feedback is from 

the output, so if the output is always wrong, the feedback does not provide 

valuable information.  

 7



 NeuroSolutions Example 
 
NeuroSolutions 2 

11.2 Elman’s network 

We will repeat here the previous problem but now with an architecture that feeds 

back the state to the context PEs, i.e. the hidden layer activations are providing the 

input to the context PEs.  

The Elman network works as well as the Jordan network for the multi-level data set, 

and is able to solve the two sinewave problem of Chapter X. Working with the past 

system state seems  more appealing than working with the past output. Notice 

also that we are using static backpropagation to train the weights of the system. 

 NeuroSolutions Example 
We saw that one of the difficult problems in the processing of time signals is to decide the 

length of the time window. Normally we do not know which is the length of the time 

neighborhood where the information relevant to process the current signal sample 

resides. If the window is too short then only part of the information is available, and the 

learning system is only working with partial information. If we increase the window too 

much, we may bring in information that is not relevant (i.e. the signal properties may 

change over time) which will negatively impact learning. We saw in Chapter X that the 

value of the feedback parameter controls the memory depth in the context PE, so in 

principle its adaptation from the data may solve our problem.  

In this chapter we are going to lift the restriction of working with constant feedback 

coefficients and special architectures, so we have to first understand the problem created 

by feedback when training neural networks. 

Go to next section  

3. Adapting the feedback parameter 
Let us consider the simple context PE. A very appealing idea for time processing is to let 
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the system find the memory depth that it needs in order to represent the past of the input 

signal. If we utilize the information of the output error to adapt the feedback parameter  

1-μ (which we will call μ1), then the system will be working with the memory depth that 

provides the smallest MSE. This is in principle possible since the feedback parameter μ1 

is related in a continuous way (a decaying exponential) to the PE output.  For this we 

need to compute the sensitivity of the output to a change of the feedback parameter μ1.  

Can static backpropagation be utilized to adapt μ1? The answer is a resounding NO. The 

reason can be found in the time delay operator (  ) and in the recurrent topology. The 

time delay operator creates an intrinsic ordering in the computations since the output at 

time n+1 becomes dependent upon the output value at time n (Figure 2). When we 

derived the backpropagation algorithm in Chapter III we mentioned that the algorithm 

would compute gradients on any ordered topology, i.e. topologies that obeyed a 

dependency list (see Eq. 31 of Chapter III). This dependency list was static, i.e. only 

addressed the dependencies created by the network topology. However, the delay 

imposes also a time dependency on the variables, so it will interfere with the dependency 

list created by the topology which does not consider time. Moreover, the recurrent 

connection makes a tremendous difference as we will see now. Let us compute the 

sensitivity of the output with respect to the weights μ1 and μ2 for the network depicted in 

Figure 2. 

z−1

∑ z-1

μ1

x(n)
y(n)μ2

  

Figure 2.  A first order recurrent system 

The input-output relation is 

( ) ( ) ( )y n y n x n= − +μ μ1 21    Equation 1 
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The partial derivative of y(n) with respect to μ2 is simply  

( ) ( )∂
∂μ2

y n x n=
   Equation 2 

However, let us take the derivative of y(n) with respect to  the feedback parameter μ1 

( ) ( )( )∂
∂μ

∂
μ

μ μ
∂
∂μ1 1

1 1
1

1 1y n y n y n= − + −( )
   Equation 3 

The first term in Eq. 3 is equivalent to Eq. 2, but notice that y(n) also depends on y(n-1) 

because of the recursive nature of Eq. 1. This is a major difference between the static 

case and the recurrent system. Notice that it basically says that the effect of any change 

in the parameter μ1 (the recurrent parameter) lasts forever!, while the effect of a change 

in the feedforward parameter μ2 only matters in the current sample.  

As you may recall the backpropagation algorithm covered in Chapter III did not include 

this effect since there was no feedback connections. The algorithm in Chapter III was 

called static backpropagation exactly for this reason. This also means that for recurrent 

topologies the equations need to be re-derived to cope with time dependencies.  

3.1. Error criteria to train dynamic networks 
The fundamental difference between the adaptation of the weights in static and recurrent 

networks is that in the latter, the local gradients depend upon the time index. Moreover, 

the type of optimization problems are also different because we are generally interested 

in quantifying the performance of adaptation within a time interval, instead of 

instantaneously as in the static case.  

The most common error criterion for dynamic neural networks is trajectory learning where 

the cost is summed over time from an initial time n=0 until the final time n=T, i.e. 

J Jn m
mnn

T

= = ∑∑∑
=

ε2

0
( )n

  Equation 4 

where Jn is the instantaneous error, and m is the index over the output PEs (we omitted 

the summation on the patterns for simplicity). The time T is the length of the trajectory 
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and is related to the length of the time pattern or of the interval of interest. So, the cost 

function is obtained over a time interval, and the goal is to adapt the adaptive system 

weights to minimize Jn over the time interval. Eq. 4 resembles the batch mode cost 

function if one relates the index n with the batch index. But here n is a time index, i.e. we 

are using different samples of the time series to compute the cost.  

The static error criterion utilized for the MLPs, i.e.  

J e m
m

= ∑ 2

  Equation 5 

can still be utilized for dynamic systems and will be called fixed point learning. This cost 

is measuring the performance assuming that the output and desired signals do not vary 

over time (after the system relaxes to a steady state). Since in a dynamic network the 

states y(n) are normally time dependent, the sensitivity of the cost with respect to the 

states becomes also time dependent. So, the only way to implement fixed point learning 

is to let the system response stabilize (arrive at a steady state), and then apply the 

criterion.  

Go to next section  

4. Unfolding recurrent networks in time. 
In order to apply the backpropagation procedure for recurrent networks, we need to adapt 

the ordered list of dependencies for recurrent topologies. As we saw in Eq. 1 the present 

value of the activation y(n) (also called the state) depends on the previous value y(n-1). 

Likewise for the sensitivity of the state with respect to the feedback weight in Eq. 3 . 

There is a procedure called unfolding in time that produces a time to space mapping, i.e. 

it replaces a recurrent net by a much larger feedforward net with repeated coefficients. As 

long as the net is feedfoward we can apply the ordered list. As an example, let us take 

the case of the network of Figure 3, which shows a linear dynamic PE (PE#1) followed by 

a static nonlinear PE (PE#2). The goal is to adapt μ and w1. 
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∑

μ

x(n)

z-1

∑
w1

y1(n) y2(n)

+ + + +
0

μ μ μ

w1
w1 w1

w1

x(0) x(1) x(T)

y2(0) y2(1) y2(T)

•••••

Time
zero

μ

PE#2

PE#1

y1(0) y1(1)
y1(T)

  
Figure 3.  Unfolding in time of a simple recurrent network 

The forward equation for this system is, 

( ) ( ) ( )[ ]y n w f y n x n2 1 1 1= − +μ   Equation 6 

Each time tick n produces an output y2(n) that is a function of the previous value of 

y1(n-1) combined with the present input x(n). Notice the dependence on the initial 

condition y1(n-1). Normally we set it to zero (y1(0)=0). Each time tick creates a stage of 

the unfolded network. Each additional time tick will be a similar network cascaded on the 

previous (Figure 3). Provided the recurrent network is in operation for a finite time, we 

can replace it with a static, feedforward net with T+2 inputs and T+1 outputs. This 

operation is called unfolding the network in time. From this unfolded network, we can 

generate a dependency list for the recurrent network as we did in Chapter III 

   L w y y T= +{{ , }, ,..., }μ 1 0 2 1    Equation 7 

since the unfolded network has 2T+2 state variables. However, in this particular case we 

know that the state variables are only two, at different time steps. So we can rename the 

state variables invoking the implicit time order  
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( ) ( ) ( ) ( ) ( ) ( ){ }L w y y y y y T y T= μ, , , , , ,..., ,1 1 2 1 2 1 20 0 1 1   Equation 8 

Note that the weights appear first in the list since all the state variables depend upon 

them. Next the states are ordered by their index on the topology (as we did for the MLP), 

but repeating the same state variables indexed by time, from time zero to T. For the 

unfolded network of Figure 3 the even states correspond to the values that y1(n) takes 

over time.  

A procedure to establish the dependency list is to first label, from left to right, all the state 

variables (output of adders in the topology) along with the output to create the 

dependency list at n = 0. Feedback loops are simply not considered. Next, we replicate 

the variables in the same order for the following time ticks until n=T. Therefore, in simple 

cases just by looking at the network structure the dependency list can be inferred quite 

easily, i.e. we can skip the network unfolding, once we understand the procedure. 

Systematic procedures by numbering the PEs exist (as done in NeuroSolutions) and will 

always unfold the network. Now we just need to apply the backpropagation algorithm to 

the dependency list of Eq. 8. 

4.1. Extending static backpropagation to time - BPTT 
We can apply the order derivative procedure explained in Chapter III to the dependency 

list of Eq. 7 which yields Eq. 32 . Instead we can also apply the order derivative 

procedure to Eq. 8 which is equivalent because we just counted the states differently. In 

this case we will have a double sum going over the original network state variables (in 

our case y1 and y2), and also the variables created by the time unfolding (indexed by time 

n=0, …,T), i.e. 

( ) ( ) ( ) ( ) ( )∂
∂

∂
∂

∂
∂ τ

∂
∂

τ
τ

J
y n

J
y n

J
y y n

y
i

d

i j

d

i
j

j in
= +

>>
∑∑

   Equation 9   

Note that time τ > n to keep with the rule that we can only compute dependencies of 

variables that are to the right of the present variable in the list. With this new labeling of 

variables time as well as topology information appears in the order derivative equation. 
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We could still use the numbering of states in the unfolded network, but we would loose 

the power of interpreting the solution.  

Likewise the sensitivity with respect to all the weights (μ and w are treated equally) can 

be written 

( ) ( )∂
∂

∂
∂

∂
∂

J
w

J
y n w

y n
ij k

d

ij
k

kn
= ∑∑

  Equation 10 

where we use the fact that the cost is computed over time as in Eq. 4 .  

The first important observation is that the time index τ in Eq. 9 is greater than the present 

time n, so the gradient computation in recurrent networks using the backpropagation 

procedure is anticipatory. We saw that there are no physically realizable systems that are 

anticipatory (i.e. that respond before the input is applied). However, in digital 

implementations we can implement anticipatory systems during finite periods by using 

memory. We simply wait until the last sample of the interval of interest, and then clock the 

samples backwards in time starting from the final time n=T.  

The second observation relates to the number of terms necessary to compute gradients 

over time. It is known that a recurrent system propagates to all future time any change of 

one of its state variable done at the present time (due to the recurrency). This indicates 

that in principle the sensitivity of one of the state variables at the present time needs also 

all its future time sensitivities to be computed accurately. However, notice that in Eq. 9 

the summation term blends only the explicit or direct dependence of yj(τ) on yi(n) in time 

and on the topology. So we are computing indirect time dependencies by explicit 

dependencies on the topology. For example, if we examine closely the feedforward 

equation Eq. 6 (or Figure 3) the present value of y1(n) only depends explicitly on the 

previous value y1(n-1). However the topology produces a link to y2(n). So in the ordered 

list (Eq. 8 ) only y1(n+1) and y2(n) will depend explicitly on y1(n). This shows the 

advantage of the ordered list in computing sensitivity information.  
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With this prologue, we are ready to apply Eq. 9 to the two state variables y2(n) and y1(n) 

and to the weights μ and w1. For y2(n) we see that all the terms in the sums are zero 

since PE #2 is a non-recurrent output PE. So 

( ) ( )∂
∂

ε
J

y n
n

2
= −

   Equation 11 

where ε(n) is the injected error at time n. For y1(n) we get 

( ) ( ) ( )( ) ( )
∂

∂
μ

∂
∂

∂
∂

J
y n

J
y n

w f net n
J

y n1 1
1 2

2
0

1
= +

+
+ ′

  Equation 12 

Let us analyze Eq. 12. We have no injected error since the PE #1 is internal. The double 

sum of Eq. 9 has two terms different from zero, since y1(n) has two direct dependencies, 

one from the time variable y1(n+1) and the other from the topology (PE #2), i.e. y2(n). The 

direct dependence over time gives the first nonzero term, while the dependence over the 

topology gives the second term.  

Now for the weight gradients we get immediately,  

( ) ( )( ) ( ) ( ) ( )∂
∂

∂
∂

δ
J
w

J
y n

f net n y n n y n
nn1 2

2 1 2 1= ′ = ∑∑
   Equation 13 

and for the feedback parameter 

∂
∂μ

∂
∂

δ
J J

y n
y n n y n

n n
= − =∑ ∑

1
1 1 11 1

( )
( ) ( ) ( )−

   Equation 14 

There are many implications of this derivation. Probably the most important is that by 

unfolding the network in time we are still able to apply the backpropagation procedure to 

train the recurrent network. This new form of backpropagation is called backpropagation 

through time (BPTT) simply because now the ordered list is not only reversed in the 

topology (from the output to the input), but also in time (from the terminal time n=T to 

n=0).  

The second important observation is that BPTT is NOT local in time. This may come as a 

surprise, but the beautiful locality of the backpropagation algorithm on the topology does 

not extend to time. We can see this easily by noting that both the state gradient (Eq. 12 ) 
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and the weight gradient (Eq.14 ) are a function of more than one time index.  

The third implication is the interpretation of the sensitivity equations as activities flowing 

in the dual network. Let us see what is the form of the dual PE for the linear context PE of 

Eq. 1. We re-write Eq.12 with our previous convention of error signals, e(n) and δ(n) 

(since the PE is an internal PE in the topology, the error that reaches it is internal),  

( ) ( ) ( )e n e n n= + +μ δ1 1   Equation 15 

If we interpret the error that is backpropagated from the output as the input to the dual 

network, the dual of the linear recurrent PE is as Figure 4.  

z+1 μ1

∑
δ(n)e(n)

μ2

  

Figure 4.  Dual of the linear recurrent PE 

Notice that the dual network is constructed from the original network with the same rules 

presented in Chapter III, with the addition that the delay has been substituted by an 

advance of one sample, i.e. the dual of the delay is the advance in time. If we start by 

running the dual system from n=T this causes no problem. In fact running the dual 

system backwards reverses again the sign of the delay operator, so the transfer function 

of the original and dual systems become the same. 

In Chapter III we showed how to implement static backpropagation as a data flow 

machine, i.e. without deriving explicitly the equations for adaptation but simply 

constructing the dual network and specifying the forward and the backward maps of each 

component. Now we can extend the data flow procedure to dynamic neural networks 

since we found out the dual of the delay operator, the only operator we have not 

encountered before.  For instance, the equations to include the linear context PE in our 

data flow machine are therefore  
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( ) ( ) ( )
( ) ( ) ( )

forward map y n y n x n
backward map e n e n n

= − +
= + +
μ
μ ε

1
1   Equation 16 

and the weight update is given by Eq. 14 .  

The data flow algorithm of static backpropagation must be adapted to cope with the time varying 
gradients. But the modifications are minor.  

• First, the data for the full trajectory (T samples) is sent through the network (one sample 
at a time) and the activations stored locally at each PE.  

• Then the set of outputs are compared to the desired trajectory using our criterion of 
choice to built the error sequence.  

• This error sequence is reversed in time according to the BPTT procedure.  

• The re-ordered error sequence is sent through the dual network and the local errors 
stored locally. NeuroSolutions implements this procedure using the dynamic controller.  

• Once the sequence of local errors and local activations exist at each PE the weight 
update can take place using any of the first order search methods described in Chapter 
IV.  

Due to the fact that BPTT is not local in time, we have to compute the gradients of all the 

weights and states in a time interval, even if only part of the system is recurrent as in the 

TLFN topologies found in Chapter X. We have to pre-specify what is the initial time and 

the final time. This impacts the storage and computational requirements of the algorithm. 

Even for the case of the focused TLFN topology that has a single recurrent connection at 

the input, if BPTT is selected to adapt μ, ALL gradients need to be computed over time. 

backpropagation versus BPTT  

NeuroSolutions 3 
11.3 Train the feedback parameter of Elman’s network 
 

This is going to be our first example using BPTT. The first thing is to notice that 

the controller is different, now it has 3 dials.  

  
Its functionality is also different since now it has to orchestrate the firing of the 

data through a trajectory and command the PEs (and the duals) to store their 

activities (and errors). The errors have also to be reversed in time (starting from 
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the error at the last time step towards the beginning).  

The user has one extra level of variables for BPTT which is related to the size of 

the trajectory and the initial conditions. Open the dynamic controller inspector and 

observe the dynamic level of the inspector. Notice that you have 3 choices: static 

(the same as the static controller), fixed point and trajectory. We will be interested 

in trajectory for this example. The size of the trajectory is called the number of 

exemplars. So when we set the number of samples per exemplars we are 

specifying the length of the trajectory.  In the same panel we can further specify 

the initial conditions. If we click the box “zero states between exemplars”, this 

means that for each new trajectory the state of the network (i.e. the values of 

activations and errors) will be reset . Normally we would NOT like to do that since it 

creates discontinuities between adjacent trajectories. Once we specify the 

variables in this panel the simulations work in exactly the same way as before.  

 

  
 

We are ready now to use BPTT to train the feedback parameters of the Elman 

network for the example 2. We choose the size of trajectory as 15 samples. This 

means the controller will fire 15 samples at a time from the input file, each PE will 

store 15 activations, the network output will be compared to 15 samples of the 

desired response, and a 15 long error vector will be created. This error vector will 

be reversed in time, and fired through the dual network, one at a time. At the end of 
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the trajectory each PE and its dual will have a 15 sample long activation and error 

vector, and momentum learning can then be used to update the weights. Notice 

that the weights are updated with the cumulative error along the trajectory. The 

process is then repeated for the next 15 samples of the input file, etc. 

Running the network we see that the it learns very fast. The initial values of the 

feedback parameters are set to 1 (no memory), and they slowly change to the 

appropriate value which minimizes the output MSE. This is the beauty of the 

context PE. It configures its memory automatically to minimize the output MSE. 

Notice that the time constants spread out when learning progresses to cover well 

all the time scales. The error is normally smaller than before.   

  

 NeuroSolutions Example 
 

4.2. Computing directly the gradient 
As we saw in Chapter III for the MLP the gradients can be alternatively computed by 

applying the chain rule directly to the cost (Eq. 4 ) to obtain 
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  Equation 17 

We denote the gradient variables (sensitivity of the states) with respect to the weights as  

( ) ( )α
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∂
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ij
ij

mn
w

y n=
   Equation 18 

In order to compute the state sensitivities we use directly the forward equation for the 

neural network to yield 
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  Equation 19 

where f’ is the derivative of the nonlinearity, and δi,m is the Kronecker delta function that is 

1 only when m=i. It is important to compare this equation with the one given in Chapter III 
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(Eq. 35 ) to see the differences brought in by the recurrency (the sum in the parenthesis).  

Now if the weights change slowly compared with the forward dynamics we can compute 

these equations for every time sample instead of waiting for the end of the trajectory, i.e. 
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   Equation 20 

This is the reason why this procedure is called real time recurrent learning (RTRL). 

It is interesting that the RTRL algorithm is local in time, but not local in space so in some 

sense it is the dual of BPTT. In fact, Eq. 17 shows that we are computing all the gradients 

with respect to every weight wij, so the computation is not local on the topology (in space), 

but it also clearly shows that the method is local in time. The time locality makes it 

appealing for on-line applications and VLSI implementations. The direct method was 

computationally unattractive for static networks when compared with backpropagation. It 

is even more so for dynamic networks and small trajectories as we will discuss later.  

Let us apply RTRL to the topology of Figure 3. Since there are only two weights, it is easy 

to see that the procedure gives directly 
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  Equation 21 

and  
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1 2

2 1= ′
  Equation 22 

Notice that the formulas to compute μ and w with RTRL are different from the ones 

obtained for BPTT ( Eq. 13 and Eq. 14 ). However, one can show that for the same initial 

conditions at the end of the interval the two sets of equations provide the same updates, 

so they are equivalent. For small networks RTRL provides very compact equations, 

which may be beneficial to understand learning.  

For instance, it is clear from Equations 21 and 22 that the gradients are a function of f’(.) 

 20 



so in order to ensure stability the largest slope of the recurrent PE nonlinearity should be 

less than one, otherwise we may be amplifiying the errors. So if we use an α of 1 in the 

nonlinearity as is normally the case, we are in the marginally stable case. This is often 

forgotten, and will produce instability in training over time.  Training the gamma filter  

NeuroSolutions 4 
11.4 The effect of slope of nonlinearity in recurrent networks 
 

Let us go back to the Elman network and modify the slope of the hidden PEs to a 

large value. The training will become very difficult producing most of the time 

unusable results. Try a large value and decrease the stepsize to see if you can 

control the learning. You will see it is very difficult.  

Another important thing is to notice that the system output seems quite normal 

(just flat), but the internal PEs are all pegged, i.e. they are simply unusable for 

processing information. You may think that the system is not learning fast enough 

and try to bump up the learning rates which is the wrong move. Here the system is 

unstable, but it behaves differently than an unstable linear system (output will go 

to infinity) due to the nonlinearity. Recurrent systems behave in a very different 

way than static systems, so you have to be much more careful than before in the 

training.  

We recommend that the slope of the nonlinearity be set at .8. We also recommend 

that you place a scope over the hidden PEs to see if they are pegged all the time. If 

they do then the PE is simply not responding and effectively the system has fewer 

degrees of freedom. 

 

 NeuroSolutions Example 

4.3. Comparing RTRL and BPTT 
Computational Complexity of RTRL: 

RTRL computes the sensitivity of every system state with respect to all the weights. 

However, for trajectory learning it has the important characteristic of being local in time. 
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When the weights change slowly with respect to the forward dynamics, the quantities in 

Eq. 17 can be computed on-line, i.e. for every new time sample. This means that the 

state gradients 

∂
∂w

y n
ij

m ( )
  are computed forward in time with every sample. If the 

desired signal is available for every sample of the trajectory, the errors εm(n) are obtained 

and the weight gradients 

∂
∂wij   can also be computed for every new sample. Otherwise, 

the state gradients have to be stored for the length of the trajectory, and then at final time 

the weight gradients computed.  

With this explanation we can compute the number of required multiplications (which take 

longer to execute in the computer processing unit) and storage requirements of the 

algorithm. For a N PE system there are N² weights, N³ gradients and O( N 4
 ) 

multiplications required for the gradient computation per sample. If the length of the 

trajectory is T this means O( N T4
 ) overall computations. However, the number of items 

that need to be stored (assuming that the desired signal is available) is independent of 

time and is O( N 3
 ), as many as the instantaneous state gradients.  

The disproportionately large number of computations means that the method is realistic 

only for small networks. An interesting aspect is that RTRL can be applied in conjunction 

with static backpropagation, in networks where the feedforward path is static, but the 

input is recurrent (as in the focused architectures). The only component that requires 

redesign is the back-component of the recursive memory. When implemented, this 

combination is the most efficient way to train focused TLFNs since all the computations 

are local in time.  training focused TLFNs  

NeuroSolutions does not implement RTRL so, in order to train fully recurrent systems 

BPTT must be utilized.  

Computational Complexity of BPTT. 
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The basic observation to apply the backpropagation formalism in the training of recurrent 

networks is to modify the activations of a network evolving through time into activations of 

an equivalent static network where each time step corresponds to a new layer (unfolding 

the network in time). Static backpropagation can then be applied to this unfolded network 

as we have seen (Eq. 9 ). These equations can be put in a one to one correspondence 

with the data flow algorithm. As in the static case, there is also an intrinsic order in the 

computations: 

1- An input is presented, and an output computed. The process is repeated for the trajectory 
length T, and the local activations stored locally.  

2- Once the network output is known for the full trajectory, a sample by sample difference with 
the desired signal is computed for the full trajectory such that the error signal ε(n) is 
generated. This error must be backpropagated from the end of the trajectory (n=N) to its 
beginning (n=0) through the dual topology. Local errors are also stored.  

3- Once the local errors and local activations for each time sample are available, the weight 
update for the trajectory can be computed using the specified search methodology.  

4- The process is repeated for the next trajectory. Normally trajectories are stacked to better 
teach the time relationships.  

As we can see the computational complexity of BPTT (number of operations and storage) 

is much larger than static backpropagation. The number of operations to compute one 

time step of BPTT in a N PE fully connected network is O( N 2
 ), so for the trajectory of 

size T it becomes O( N T2
 ). This is much better than for RTRL. The problem is the 

storage requirements. As we can see the activations need to be saved forward which 

gives O(NT). This means that for long trajectories compared with the size of the net, the 

BPTT algorithm uses more storage than RTRL. Table 1 shows a comparison of the two 

algorithms  

 RTRL BPTT 
space complexity O( N 3) O(NT) 
time complexity O( N T4 ) O( N T2 ) 
space locality no yes 
time locality yes no 

 
It is interesting that BPTT is local in space but not over time, while RTRL is local in time 
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but not local across the net. NeuroSolutions implements the BPTT to train recurrent 

neural networks for trajectory learning. The interesting aspect is that the data flow 

algorithm explained in Chapter III for static backpropagation can also implement BPTT 

and fixed point learning with appropriate control of the data flow. The local maps for the 

neural components are associated with the PE and are independent of the type of 

training strategy. This attests the importance of the data-flow implementation of 

backpropagation as mentioned as far back as Chapter III.  

Go to next section  

5. The distributed TLFN topology 
The learning machines created as a feedforward connection of memory PEs and 

nonlinear sigmoidal PEs were called time lagged feedforward networks (TLFN). Figure 5 

shows the general topology of TLFNs.  

∑∑∑∑
∑

∑

∑

  

Figure 5.  A time lagged feedforward network 

The focused architectures can only produce a static nonlinear mapping of the projected 

representation. But there is no need to restrict ourselves to this simple case. As shown in 

Figure 5 one can also populate the hidden layers with memory structures and then 

produce time varying nonlinear maps from the projected space to the output. Each 

memory PE in the TLFN is effectively processing information over time, by working with 

the projections of the PE activations of the previous layer on its local linear memory 

space. The size of each memory space (i.e. the number of bases) is determined by the 
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number of memory taps.  

TLFNs utilize memory PEs that are ideal delays or locally recurrent, such as the tap delay 

line PE, the gamma memory PE or the Laguerre memory PE. When the bases are 

created by locally IIR filters the span of the memory space (i.e. the amount of past 

information that is retained in the memory space bases) is not uniquely determined by K, 

but becomes also a function of the feedback parameters that the learning system can 

control through adaptation. 

When the memory filters have feedback, TLFNs are recurrent networks. However, the 

global signal flow is feedforward, i.e. the networks are always stable provided the locally 

recurrent memory PEs are stable, and train better than fully recurrent networks. The 

leading characteristics of TLFN topologies is that when they are recurrent, the feedback 

is restricted to be local. Moreover, the recursive part is linear so we can utilize the well 

developed linear adaptive filter theory to partially study these networks. vector space 

interpretation of TLFNs  

NeuroSolutions 5 
11.5 The issue of memory depth in the bus driver problem 
 

This will be a benchmark problem to find the memory depth of TLFNs. The problem 

is very easy to enunciate and focus on the memory depth information. It is called 

the bus driver problem, because it can be enunciated as the decision made by a 

bus driver. Suppose that a bus driver is going down a route line with many bus 

stops. He will stop at the next bus stop if the bell rings before the stop. However, 

he does not have control of how far in advance the passenger rings the bell.   

A simple flip-flop in the bell line will solve this problem using an AND function (if 

there is a bus stop and the bell flip-flop is high, then stop the bus).  However here 

we would like to use a TLFN so the issue is one of memory. The network has two 

inputs, one for the bus stops along the way and the other for the bell. The system 

will be trained with a signal that contains the information where the bus should  

stop.   
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From the point of view of complexity this is a trivial problem as long as the TLFN 

has sufficient memory (the AND can solve it). But learning the relation in time is 

not easy since the TLFN will be bombarded with time signals and it has to find the 

relation between the two inputs that makes the output follow the desired response.  

The input file is constructed from ones and zeros (1 means a possible stop or a 

ring) asynchronously spread in time. The system will be trained with static 

backpropagation to clearly show the effect of the memory depth. 

The purpose of the example is to show that a TLFN with memory in the hidden 

layer can complement the memory at the input layer, saving eventually weights 

(the number of weights in the first layer tends to be always the largest).  

We will use a gamma memory in the first layer and a tap delay line in the second 

layer. First we will set the hidden layer memory to 1 (just the current sample, i.e. no 

memory), and the number of taps in the gamma at 1.  The largest time distance 

between a ring and a stop is 10 and occurs in the 2nd and the 5th stops.  Run the 

network and see that it does not learn these two stops.  

Now change  μ=0.5. As shown in the memory depth formula, this should provide 

enough depth to learn all the stops. This is indeed the case.  

Now an alternative is to increase the memory in the hidden layer. Let us divide the 

number of taps between the input an the hidden layer (5 at the input and 7 at the 

hidden) and set the μ=1 for the gamma. This solves the problem. We can even put 

2 taps and 10 taps and still get a good solution. So this means that putting memory 

in the hidden layer “adds” to the memory in the input layer ( in fact in a nonlinear 

way due to the nonlinearity of the PE).   

 

 NeuroSolutions Example 

5.1. How to train TLFNs 
The supervised training of TLFNs will follow the gradient descent procedure on a cost 
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function defined by the output mean square error (MSE) over time (Eq. 4 ) . Since TLFNs 

are systems with memory, and normally the task of interest is approximating time signals, 

either real time recurrent learning RTRL or backpropagation though time BPTT must be 

utilized.  

As we discussed extensively in Chapter III, in order to train neural networks using the 

data flow framework, two pieces of information are required:  

• the implementation of the data flow algorithm  

• the local maps for the PEs.  

We saw how the dataflow algorithm is extended to BPTT and how it is implemented in 

the dynamic controller. With respect to the local maps, they depend exclusively on the 

form of the PE. The local maps for the sigmoid PEs, the softmax, the linear PE and the 

Synapse will be exactly the same as covered in Chapter I and III. The maps for the 

context PE are given in Eq. 16 . So we just need to address now the maps for the new 

memory PEs (gamma, Laguerre, gamma II). So BPTT is a general way to train TLFNs 

composed of arbitrary components. 

5.2. Training gamma TLFNs with BPTT.  
The data flow implementation is intrinsic to BPTT and it is implemented by the dynamic 

controller, but the local maps depend upon the PEs chosen. For the gamma PE these 

maps are 
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The second equation in Eq. 23 is just the application of Eq. 9 to the gamma memory. In 

fact, the gamma memory is a cascade of first order recursive elements where the stage is 

indexed by k. The extra term δ(n) comes from the fact that the gamma memory dual also 

receives inputs from the topology. The forward map is utilized by the gamma memory 

component, the error map is utilized by the dual gamma memory PE. Note that in Eq. 23 
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the activation is equivalent to Eq. 46 , but the error in Eq. 23 is different from the formula 

obtained in Eq. 48 since they have been developed under two different methods (RTRL 

for Eq. 48 versus BPTT for Eq. 23). However, as was said previously, the gradient 

obtained over the same interval will be identical. The issue is that when using Eq. 23 

even for the gamma filter, BPTT must be utilized. In order to update the feedback 

parameter using straight gradient descent, the weight update is  
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n k
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,

−1
   Equation 

24 

These equations is all that is necessary to update the recursive coefficient in systems 

using the gamma memory, immaterial of the topology. training alternate memories  

We will present below examples of two different topologies that use the gamma memory. 

The simplest is the gamma filter that is still a linear system that extends the linear 

combiner. The second topology is a TLFN with gamma memory.  

NeuroSolutions 6 
11.6 Output MSE and the gamma memory depth 
 

This example illustrates the importance of the memory depth in the output MSE for 

system identification purposes. We will use the nonlinear system first presented in 

Chapter X. The topology will be a gamma filter with 5 taps. There are two parts to 

this example. First, we would like to show that the MSE changes with the value of μ. 

So we sill step by hand the values of μ from 1 to 0.1 and record the final MSE. As 

you will see the curve is bowl shaped, i.e. there is an intermediate value of μ that 

produces the smallest output MSE (in fact if we had enough resolution the curve is 

NOT convex, i.e. it has many minima). Notice that the Wiener filter will provide the 

MSE of μ=1, which is not the smallest for this example (and hardly ever is….). 

The second step is to find out if we can train the μ parameter with BPTT to reach 

the minimum of the performance curve. A good rule of thumb is to use a stepsize 
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at least 10 times smaller for the feedback parameter when compared to the 

feedforward weights. Notice that in fact the system quickly found the best value of 

the μ parameter in this case.  

 

 NeuroSolutions Example 
 
NeuroSolutions 7 

11.7 Frequency doubling with a focused TLFN 

To get a better intuition on how different a recurrent memory is from a tap delay 

line, we present the following problem. We wish to construct a dynamic neural 

network that will double the frequency of an input sinusoid. Anyone familiar with 

digital signal processing knows that a nonlinear system is required for this task.  

First let us build a one hidden layer focused gamma net with tanh nonlinearity with 

two PEs, a linear output node, and an input layer built from a gamma memory with 

5 taps. The period of the input sinewave is set at 40 samples/period and the output 

at 20 samples/period. Backpropagation through time over 80 samples is utilized to 

adapt all the weights, including the recursive parameter m of the gamma memory.  

Notice that the μ parameter starts at 1 (the default value that corresponds to the 

tap delay line). The value decreases to 0.6 in 150 iterations, yielding a memory 

depth of 8.3 samples . This means that with 5 taps the system is actually 

processing information corresponding to 8 samples which is beyond the 5 tap limit. 

This memory depth was found through adaptation, so it should be the best value 

to solve this problem.  

Now let us reduce the size of the gamma memory from 5 taps to 3 taps, keeping 

the MLP architecture and the task the same. This time the μ would converge to 0.3, 

giving an equivalent depth of 10 samples (K/μ). This makes sense since the 

memory depth to solve the problem is determined by the input output map 

(frequency doubling), and it is the same in both cases. The second system had 
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less taps, so the parameter m that controls the memory depth adapted to a lower 

value. So the dynamic neural net was able to compensate for the fewer number of 

taps by decreasing the value of the recursive parameter, and achieving the same 

overall memory depth. The memory resolution in the latter case is worse than in 

the previous case. The tap delay line with 3 taps will never solve this problem.  

It is very interesting to place a scope at the hidden layer to visualize how the 

network is able to solve the frequency doubling. The solution is very natural.  The 

PE activations are 90 degrees apart. One is saturated to the most positive value, 

the other to the most negative value, yielding half sinusoids. Then the top layer 

can add them up easily.  

With the trained system, let us fix the weights and see how it generalizes.  Modify 

the input frequency and see what is the range for which the output is still a 

reasonable sinusoid of twice the frequency of the input.  

 

 NeuroSolutions Example 
When the data flow implementation of BPTT is utilized to train TLFNs (see Chapter III), 

only the topology of the net and the local maps need to be specified, i.e. there is no need 

to rewrite the learning equations for each new topology. For TLFNs where the topology is 

normally highly complex, you will appreciate the advantage of not having to write learning 

equations...., and the flexibility that this brings, since any minor modification to the 

topology would require the rewriting of such equations. This data flow approach to train 

dynamic networks was implemented in NeuroSolutions since its inception (in 1992) 

although this fact was only published by Wan in 1996.  

Go to next section  
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6. Dynamical Systems 
TLFNs encapsulate the recurrencies into the processing elements, i.e. in the memory PE, 

and all the other connections where feedforward and instantaneous. There is no reason 

why a PE output can not be fed to some other PE that was already connected to the 

original one, producing a feedback loop across the topology, as we did in a restricted 

fashion in the Elman and Jordan networks. In the spatially recurrent systems, assuming 

an instantaneous map at the PE, and an instantaneous connection between the PEs (a 

product by a weight) will lead to infinite looping which is unrealistic and can not be 

modeled. So delays have to be incorporated either at the PE or at the interconnection 

level to create time dependencies. One needs a principled way to treat this type of 

systems, and the best strategy is to use again the ideas from dynamics and mathematical 

system theory, where these issues have been addressed a long time ago.  

Here, the signals of interest change with time. We can think that there is a deterministic 

system that generates the time series data we are observing. Such a system is called a 

dynamical system, i.e. a system where its state changes with time (Figure 6).  

Dynamical
system

y(n)

time
  

Figure 6.  A dynamical system producing a time series  

In Figure 6, y(n) is the system output and it is a time function. A dynamical system can be 

described by a relationship (a function) that links the next value y(n+1) to the present y(n), 

i.e.  

( ) ( )( )y n f y n+ =1    Equation 25 

This is one of the simplest dynamical systems we can think of, since it is governed by first 

order dynamics, i.e. the (next) value at time n+1 only depends upon the (previous) value 
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at time n. As we saw in Chapter VIII, Eq. 25 is called a first order difference equation. If 

the function f(.) is a constant μ, we obtain a first order linear dynamical system. We have 

already studied in Chapter X such a system in the form of the context PE. But f(.) may 

also be a nonlinear function, and in this case the system is a first order nonlinear 

dynamical system.  

In neural networks we are very interested in first order nonlinear dynamical systems. In 

fact each PE of all the networks studied so far can be modeled in a very general way by a 

first order nonlinear first order difference equation, i.e. 

( ) ( ) ( )( )y n f x n wy n+ = +1    Equation 26 

where x(n) is the input to the PE, f is one of the nonlinearities studied, and w is a 

constant.  

6.1. The State Space model 
A productive (and principled) way to think jointly about static and dynamic PEs is to 

introduce the concept of state space model. Let us assume that there is an internal 

variable in the PE that describes its state at sample n. We will call this variable the state 

variable net(n). One can rewrite Eq.26 using the state variable as a set of equations 

( ) ( ) ( )
( ) ( )( )

net n net n x n

y n f net n

+ = +

+ = +

1

1 1

γ

   Equation 27 

where γ is a constant that may depend on the iteration. Having a set of two equations 

enhances our understanding. The first equation is dynamic and it shows the evolution of 

the state through time, and in neural networks it is a linear first order difference equation. 

x(n) is the combined input to the PE. The second equation is static (both y(.) and net(.) 

depend on the same instant of time), and it shows the nonlinear relation between the 

output of the PE and the state. A dynamic neural network will be a distributed 

interconnection of these PEs.  
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6.2 Static versus dynamic PEs 
Now we can understand a little better the relation between the static PE covered in 

Chapters I to VII and the dynamic PEs we have discussed for temporal processing. 

Basically the static PE only represents the second equation in Eq. 27 . The function f(.) is 

the nonlinear map that we found in the McCulloch and Pitts PE or the sigmoid PEs. For 

all practical purposes the static PE gets the input through the state.  

The dynamic PE is different. The next state is a function of the previous state (dynamics) 

and of the combined input to the PE. The state is then nonlinearly modified to provide an 

output. Note that the dynamic PE has dynamics of its own.  

The memory PE that we studied conforms exactly with this principle, except that f(.) was 

the identity, i.e. we were using the state as the output. It is also instructive to compare 

Eq.27 with the equation of the nonlinear context PE, which is obtained by including the 

nonlinearity in Eq.3 of Chapter X, i.e.  

( ) ( ) ( ) ( )y n f w x n b y n j ij ij i j j
j

= + + − −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≠∑ 1 1μ

  Equation 28 

where f is one of the sigmoid nonlinearities found in Chapter III. The recurrent nonlinear 

PE looks like Figure 7. The quantity in parenthesis in Eq. 28 is the state equation that 

represents a dynamical system since it depends on two different time indices.  

∑ ∑
1−μ

x1

x2

xp

z-1

1−μ

y

  

Figure 7.  Nonlinear context PE. 

Eq. 28 should be contrasted with the equation that defines the McCulloch-and-Pitts PE 

indexed by sample n that we copy below for convenience, 
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    Equation 29 

y n f w x n b j ij ij
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Note that the M-P PE is static, i.e. the output depends only on its current input (or 

equivalently on the current outputs of the other PEs when connected in a network). While 

in Eq. 28 the output at time n depends on the previous output at time n-1. This is the big 

difference between a static and a context PE.  

Go to next section  

7. Recurrent Neural Networks 
How can one construct recurrent neural networks? There are probably many different 

ways, but here we will describe one that allows us to construct directly recurrent neural 

networks from all the previous static components. Let us implement the static map of 

Eq.27 by the PE, and achieve total compatibility with all the PEs studied so far. Moreover, 

let us assign the dynamics to the connectivity among PEs in the following way: if the 

connection is feedforward, the present value of the activation is used; but if the 

connection is a feedback connection let us include a delay of one time step in the 

activation. This can be written as  
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j i
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  Equation 30 

where I(n) is an external input eventually connected to the PE. Note that we divided the 

computation of the state into two sums: the first is the feedforward connections for which 

with our notation the first index of the weight is always larger than the second index, and 

the feedback connections where the first index is always smaller than the second. Such a 

system is called the (fully) recurrent neural network (Figure 8).  

Once again we have to remember that there are no instantaneous loops in this network, 

i.e. all the feedback loops include a delay of one sample. Unfortunately this is never 

represented in the diagrams of recurrent networks. When a dynamical system is built, it is 
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a good practice to include a   symbol in the feedback connections and avoid any 

confusion.  

z−1

The recurrent networks include the feedforward systems (MLPs and linear combiner) as 

well as the TLFNs as special cases. In fact, let us write the inter-connection matrix for a 

recurrent system with N PEs (Figure 8). In such cases the weight matrix is fully populated 

with non-zero values.  

x(n)

y(n)

1

2

3

4

W

w 11 w12 w13 w14

w 21 w22 w23 w24

w 31 w32 w33 w34

w 41 w42 w43 w44

=

  

Figure 8.  Fully recurrent network 

A fully recurrent network with N PEs has N 2
  weights. Note that the diagonal terms in 

W are the self recurrent loops to each PE. The upper triangular weights represent 

feedback connections, while the lower triangular weights represent feedforward 

connections.  

In order for the system to become feedforward, the main diagonal weights are zero, as 

well as the upper triangular weights (with the numbering as in the Figure 8). The 

feedforward network is depicted in Figure 9. Note that the system became static.  
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x(n)

y(n)

1

2

3

4

W

0 0 0 0
w 21 0 0 0

w 31 w32 0 0
w 41 w42 w43 0

=

  

Figure 9.  The corresponding feedforward network. 

A layered system has even fewer connections different from zero (Figure 10).  

x1(n)

y2(n)

1

2

3

4

W

0 0 0 0
0 0 0 0

w31 w 32 0 0

w41 w 42 0 0

=
x2(n)

y1(n)

  

Figure 10.  The corresponding layered network (perceptron) 

In feedforward systems the first weight index is always larger than the second (with our 

notation). For the layered system of Figure 10 which implements an MLP we included 

another input and another output, otherwise there would be PEs that would not have 

input, or for which the output would not be connected to the external world.  

The TLFNs can also be derived from the fully recurrent system when some of the PEs 

are made linear and their connectivity restricted to cascades as in the memory PE. This 

arrangement indicates a specialization (pre-wiring) for temporal processing. 

Go to next section  

8. Learning Rules for Recurrent Systems 
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8.1 Fixed Point Learning 
How can we train recurrent systems to associate a static input with a static desired 

response? Here we will present an extension of backpropagation to train recurrent 

systems, which has been called fixed point learning. The cost function is given by Eq. 5 . 

Our goal is to utilize the paradigm of static backpropagation, i.e. present a static input 

pattern, clamp it, compare the (steady state) response with the desired static response 

and backpropagate an error. With a local activation and a local error, any gradient 

descent update can be used to adapt the weights. Can backpropagation still be used for 

this task? Notice that now the system is not instantaneous as the MLP. When an input is 

presented to a stable recurrent system, the output “relaxes” (i.e. slowly evolves) to a final 

value. We say that the recurrent system has an attractor or a fixed point. After relaxing to 

a fixed point the system response does not change, i.e. the system becomes also static. 

We are not going to provide a demonstration here (see Almeida ) , but backpropagation 

can be extended to train recurrent system with fixed points if the following procedure is 

followed: 

1- Present the static input pattern for a number of samples (clamped) until the output 
stabilizes.  

2- Compare the output with the static desired pattern, form the error and backpropagate the 
error through the dual system, just as was done in the static case.  

3- Apply the error in the dual system (clamped) until the propagated error stabilizes.  

4- Then utilize the search procedure of your choice to update the weights. Repeat the 
procedure for the next pattern. 

There are three important remarks to be made. The input pattern and the error have to be 

clamped (held at a constant value) until the response stabilizes. This process converges 

as long as the forward system is stable, i.e. the system outputs must stabilize. If the 

forward system is stable the dual system is also stable, so the local errors will also 

stabilize. However, the relaxation time constants of the two systems can be different from 

each other and change from iteration to iteration. In fact experience shows that many 

times the relaxation time constants decrease (i.e. activations and error take longer to 
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stabilize) when we approach the solution.  

The other aspect is that the learning rates have to be slow. Unlike the static case, here 

we have two dynamical processes at play: the dynamics of learning that change the 

system weights, and the dynamics of the recurrent system. The dynamics of learning 

have to be much slower than the dynamics of the system (adiabatic condition), otherwise 

we are not training one system but a family of systems, and no guarantee of convergence 

exists.  

As a result of these four steps, we can see that standard backpropagation is a special 

case of the fixed point learning procedure (no relaxation). To implement fixed point 

learning one just needs to control appropriately the relaxation across iterations. So any of 

the recurrent topologies can be trained with fixed point learning if the goal is to create a 

mapping between two static patterns (the input and the desired response). An important 

question that does not have a clear answer is the advantage of using a recurrent 

topology versus a MLP to learn static mappings. Due to the fine-tuning required to 

successfully train a recurrent system with fixed-point learning we suggest that first the 

MLP be tried. 

NeuroSolutions 8 
11.8 Learning the XOR with a recurrent neural network 
 

We will solve the old XOR problem but now using a recurrent topology and fixed 

point learning. The topology is a fully connected set of PEs that receive input from 

the file and produces an output through one of the PEs. We will use an 

ArbitrarySynapse with a weight of 1 at the output. All the other weights will be 

adaptive. We can solve this problem with just 2 PEs and this is what we will use. 

We will use fixed point learning to train this system. If we go to the dynamic level 

of the controller inspector we can select fixed point learning. The difference 

between fixed point and trajectory learning is that the same sample is always sent 

to the network during the specified number of samples per exemplar. The goal is to 

let the system relax to a stable output such that we can computer a meaningful 
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error, send it to the dual network, let the dual stabilize and then compute the 

weight updates. The time the system takes to relax is dependent upon the current 

weights, so this is a difficult variable to set.  But at an initial guess we can use a 

long relaxation time of 100 samples (enter 100 in the exemplar per sample window).  

We should monitor the appropriateness of the relaxation time by putting a scope 

on the hidden layer PEs.  

We are ready to train the system.  There is a local minima at 0.5 (input weights go 

to zero and the system stalls, so we may have to randomize the weights). The 

selection of the stepsize and momentum are very important for this problem. 

Notice that the system trains better for long relaxation times.  We have two PEs 

but a lot of weights, so this topology is not as efficient as the MLP. It may however 

be more resistant to noise than the MLP.  

 
 

 NeuroSolutions Example 
 

8.2. Learning trajectories 
One of the unique applications of recurrent networks is to learn time trajectories. A 

trajectory is a sequence of samples over time. Trajectory learning is required when we 

want to specify the system output at every time sample, such as in temporal pattern 

recognition, some forms of prediction (called multi-step prediction) and control 

applications. The cost function is given by Eq. 4 . We dare to say that a recurrent system 

is naturally trained in time since it is a dynamical system, so trajectory learning is rather 

important in many dynamical applications of neural networks. Static networks can not 

learn time trajectories since they do not possess dynamics of their own.  

Unlike the previous case of fixed point learning, here we seek to train a network such that 

its output follows a pre-specified sequence of samples over time. In a sense, we do not 

only enforce the final position as in fixed point learning, but we are also interested in 
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defining the intermediate system outputs (i.e. a trajectory). Another case of interest is 

when the desired response is known at each time step but sometimes later in the near 

future. The learning system has to be run forward until the desired response is available, 

and then the weights updated with all the information from the time interval.  

There are two basic principles to implement trajectory learning: real time recurrent 

learning (RTRL) and backpropagation through time (BPTT). We already covered these 

two training paradigms. With the same boundary conditions they compute the same 

gradient, hence they are equivalent. However, the computation and memory 

requirements of the two procedures are very different as we will see now.  

NeuroSolutions 9 
11.9 Trajectory learning: the figure 8 
 

This problem will show the power that a recurrent system has to follow trajectories 

in time. We will start with a very simple case of learning an eight trajectory in 2 D 

space using an MLP. We will use prediction to train the system.   

The more interesting thing is to actually see if the trained system can be used to 

generated the trajectory autonomously. Towards this goal we will feed the output 

back to the input and disconnect the input. Can the system still generate the figure 

8? Try and verify that it is almost impossible…. 

We will then train the recurrent system with the global feedback loop, but we have 

to face a problem. Which will be the input to the system? The waveform generators 

or the feedback? Since we want the neural network to ultimately create the 

trajectory without an external input (just the feedback) we should disconnect the 

input. But notice that this became a very difficult problem to solve. 

In fact after reset, the weights are going to be very different from the final position 

and so the output is going to be very different from the desired. So it will be very 

difficult to move the weights to the right values using the error computed over the 

trajectory.  You may want to do this but it takes a long time to train and the 
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learning rates have to be small. Also you have to avoid local minima problem (e.g. 

if the trajectory length is equal to the length of the figure 8 zero is a local 

minimum).  

An alternative is to use BOTH the input and the feedback, but in a scheduled way. 

In the beginning of training most of the information should come from the input to 

help put the weights approximately at the correct positions. But towards the end of 

training only the feedback should be active. We can either do this by segmenting 

the trajectory in a portion that comes from the signal generator and another 

portion that comes from the feedback, or simply create a weighted average 

between the two signals.  In the beginning of training a large weight should be 

given to the signal generator, and towards the end of training the weight should be 

given just to the feedback. We will implement this latter here through a DLL with a 

linear scheduler.   

Observe the system train (it takes a while…). Once it is trained you can fix the 

weights and you will see that it will keep producing the trajectory 8, i.e. we have 

created an oscillator with a very strange waveshape. This is a powerful 

methodology for dynamic modeling complex time series (i.e. we can replace the 

simple figure 8 by arbitrarily complex trajectories created by real world time 

series). 

 NeuroSolutions Example 
 

A word of caution is in order here. In the literature sometimes we see training of recurrent 

networks with static backpropagation. This is NOT correct, since as we have seen the 

gradients in recurrent systems are time dependent. When static backpropagation is 

utilized we are effectively truncating the gradient at the current sample, i.e. we are 

basically saying that the dual system is static, which is at best an approximation and can 

lead to very bad results. On the other hand, this does not mean that we need the full 
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length of the trajectory to effectively compute the gradient over time. An interesting 

approach is to try to find out what is a reasonable number of samples to propagate back 

the gradients which leads to what has been called truncated backpropagation (see 

Feldkamp ). Truncated backpropagation is more efficient since we are no longer storing 

the activations and sensitivities during the full length of the trajectory. 

8.3 Difficulties in adapting dynamic neural networks 
It is fair to say that enough knowledge exists to train MLP topologies with 

backpropagation, which means that one can expect robust solutions.  However, it is not 

easy to adapt dynamic neural networks, both TLFNs and fully recurrent topologies. The 

difficulty stems not only from the sheer computation complexity that produces slow 

training, but also from the type of performance surfaces, the possibility of instability (in 

fully recurrent), and the natural decay of gradients through the topology and through time. 

Training recurrent neural networks with BPTT (or with RTRL) is still today more an art 

than a science, so extreme care shall be exercised when training dynamic neural 

networks. We would like to add that TLFNs are easier to train than fully recurrent 

networks, and should be the starting point for any solution.  

The performance surface of dynamic neural networks tend to have very narrow valleys 

and so the stepsize must be carefully controlled to train such systems. Adaptive stepsize 

algorithms are preferred here. In NeuroSolutions we can use the transmitters to schedule 

the stepsize by hand when automatic algorithms do not perform well.  

During training the recurrent network can become unstable. The nonlinearity in the PEs 

will not allow the system to blow up, but the PEs will get pegged and may oscillate widely 

between the extreme values. Monitoring for this situation and resetting learning is 

normally the only way out. Effectively such PEs are not being used for processing 

functions, i.e. the effective number of degrees of freedom of the system is much less than 

the number of available PEs would suggest. There are definitions of stability more 

appropriate than BIBO stability for nonlinear systems but they are difficult to apply.  
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Another problem is the decay of the gradient information through the nonlinearities, which 

has been called the long term dependency problem (see Bangio ). A dynamic neural 

network in a classification task will tend to have its hidden PEs saturated to work as a 

finite state machine. In such cases the gradients will be attenuated greatly when the 

system is trained with BPTT, which makes training partial and very slow. There is no 

known mathematical solution to this problem, but engineering solutions have been 

proposed. This characteristic of dynamic networks implies that utilizing memory PEs 

inside the network topology as we did in the distributed TLFN network may simplify 

training and turn the networks more accurate. Advantage of linear memory PEs  

All these aspects raise the question of the applicability of gradient descent learning to 

train dynamic neural networks. Recently, alternate training procedures using decoupled 

Kalman filter training have been proposed with very promising results.  decoupled 

Kalman filtering  

Go to next section   

9. Applications of dynamic networks to system 
identification and control 

 

The area of system identification and control is probably the leading candidate to benefit 

from the power of dynamic neural networks and BPTT. We already presented in Chapter 

X some applications of ANNs to system identification and control. The advantage of 

ANNs is that they are adaptive universal mappers. However, in Chapter X we did not 

know how to adapt the feedback parameters so we had to restrict ourselves to a few 

topologies (TDNN).  

Now with the introduction of BPTT we can lift this restriction and apply ANY ANN 

topology (static or dynamic) to identify or control plants. There are many different ways to 

establish a successful strategy to identify and control plants. See Narendra for a 
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complete discussion. Here we will address some preliminary issues that are important for 

the understanding and application of the material covered in this book.   

9.1 Adapting ANN parameters in larger dynamical systems 
This issue was already covered in Chapter III where we showed how to optimally design 

a system built from an adaptive sub-system (a neural network) with some other 

sub-systems which were differentiable with fixed parameters, but static. Enhancing this 

view when the subsystems are dynamic is critical for system identification and control. In 

practical applications we may be faced with the task of including neural networks in larger 

systems built from unknown plants or other engineering systems (such as controllers), 

and of course we would still like to be able to optimally set the network parameters.   

If you recall, the reason why we could easily adapt an ANN inside a larger system is that 

backpropagation is local in space. This means that the ANN only cares about the signals 

that were transmitted from the input (through an unknown subsystem) and 

backpropagated from the output (also through another unknwon subsystem). Since 

backpropagation was generalized to BPTT, we still can apply fully the same principle, i.e. 

we still can optimally adapt a dynamic system built from subsystems that have fixed 

parameters interconnected with a dynamic neural network. But since BPTT is not local in 

time, we have to work always with gradients from a segment of data. To preserve the 

ability to do on-line learning we have to advance the trajectory one sample at a time. 

However, for some applications the use of trajectory chunking is still practical and leads 

to more efficient implementations than RTRL. Probably the method more widely used in 

the control literature is dynamic backpropagation (see Narendra ) 

Dynamic backpropagation combines RTRL and BP. It adapts the static neural networks 

using BP, but uses RTRL to propagate forward the sensitivities. For the terminology of 

Figure 11, dynamic backpropagation can be written as 
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where the last term is computed with backpropagation while the sensitivity relative to the 

propagation of the parameter change is done with RTRL.   dynamic backpropagation  

Hence it can be implemented in a sample by sample basis (real time). The problem is 

that the forward propagation of sensitivities is very expensive computationally, and the 

method must be adapted to the particular system interconnectivity (block diagram). Let us 

study the most common examples (Figure 11). In this Figure, ANN means a neural 

network, while P(x,w) means a dynamic subsystem (linear or nonlinear) with constant 

parameters. We will assume that we only have available sequences of input-desired 

output pairs, and that we want to adapt the ANN parameters using this information. One 

can show (Narendra ) that for each case dynamic backpropagation can adapt the 

parameters of the ANNs  

 

ANN P(v,w)
x

v y

ANN
1

P(v,w) ANN
2

ANN

P(y,w)

x y

ANN 1

P(y,w)

x yANN
2

x v z y

Representation 1 Representation 2

Representation 3 Representation 4

  
Figure 11. The 4 most common configurations involving ANNs and fixed dynamical systems. 

The adaptation of the ANN parameters using the ideas of backpropagation through time 

requires simply the construction of the dual of P(v,w), and of the ANN dual according to 

the dataflow implementation we presented in Chapter III. This is in sharp contrast with 

dynamic backpropagation that requires much more computations and treats each of 

these cases differently. 
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Notice however that if the ANN is dynamic or the system P(v,w) is dynamic, BPTT must 

be utilized which means that a trajectory length has to be specified, and the flow of the 

BPTT algorithm must be preserved. We can not do the adaptation in a sample by sample 

basis, only on a trajectory basis. The length of the trajectory is important because it 

should be sufficiently long to capture the dynamics of the overall system, however this is 

not known a priori so the trajectory length is subject to experimentation. Notice also that 

to avoid discontinuities at the end of the trajectories the system state at the final trajectory 

time must be stored, and used as the initial condition for the following trajectory.  

NeuroSolutions 10 
11.10 Training an embedded neural network in a dynamical system 
  

To show that we can use BPTT in a system built from ANNs and other dynamic 

components, let us solve the following problem. Consider a feedback system 

(representation 3) where the forward transfer function is 
g v

v
v

( ) =
+1 4 2   and the 

feedback P(v,w) is linear and given by 
H z

z
z z
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112 0 33

08 0152  . The input is x(n) 

= 2sin(πn/25). The goal is to identify this feedback system assuming that we know 

the feedback transfer function, i.e. we want to identify the forward path only. 

However, we can not disconnect the two components, so training must be done in 

the integrated system since we just know the combined output.  We will use BPTT 

for this task.  

The breadboard has two basic networks. One called modeled plant and the other 

called ANN model. The modeled plant has an unknown part implemented by the 

top Axon with a DLL, and a feedback part which is known and also modeled by an 

Axon with a DLL. The feedback part is copied to the ANN model at the bottom of 

the breadboard and called known feedback model. The desired response for the 

ANN model comes from the modeled plant also through the DLL on the L2 

component, while the input is fed both to the plant and the ANN model, so this is 
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pure system identification.  

The ANN model is identifying only the feedforward part of the plant, which is easier 

than identifying the full plant with feedback.  As a rule of thumb, we should 

include in our ANN models as much information as available from the external 

world. This breadboard shows how you can do it.  

 NeuroSolutions Example 

9.2. Indirect Adaptive Control 
Probably the most general control problem is one in which we do not have an equation 

for the plant, but we have access to the plant input and output. How can we derive a 

model to control such plant? The block diagram we will be using is called indirect 

adaptive control and it is shown in Figure 12.  

The main idea is to use two neural networks, one to identify the plant, and the other to 

control the plant. The identification model will then be used to pass the errors back to 

adapt the controller. If the plant is dynamic BPTT (or dynamic backpropagation) must be 

used. The Figure also shows an extra input-output loop that includes the reference model. 

The reference model dictates which will be the required plant behavior when the input is 

r(t). We can think that the one sample advance is a special case of the reference model.  
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Figure 12. Indirect adaptive contoller. 

Let us explain the Figure. Since we do not have an equation for the unknown plant it 

would be impossible to adapt  the controller (ANN2) which requires sensitivities 

generated by comparing the reference input (desired behavior) to the plant output. Hence, 

we create a neural network identifier (ANN1) which will learn to produce an output which 

is similar to that of the plant. We will be using here the most general model for system ID 

explained in Chapter X, where the output is both a nonlinear function of the plant input 

(and its past values) and of the plant output (and its past values). But other choices are 

possible. 

Once this ANN1 is adapted it behaves like the plant in terms of input-output, but most 

importantly, we created a known system description for which the dual can be obtained. 

Therefore, the controller ANN2 can be adapted by simply backpropagating the errors 

through the dual of ANN1.  
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This scheme requires that ANN1 be adapted first (eventually off-line), its parameters 

fixed and then the controller ANN2 adapted. When both the controller and the system 

identifier are trained at the same time, the stepsize for ANN 2 (the controller) has to be 

much smaller than that of the ANN 1 (the system identifier). Once again the rule of thumb 

of 10 times slower is a good starting point. 

NeuroSolutions 11 
11.11 Training a neural controller   
 

We will solve the following problem with NeuroSolutions. Suppose that we want to 

control a plant of unknown input-output mapping using a direct controller (Fig 12). 

We just have the chance of exciting the plant and measuring the output.  A 

fundamental problem is how to adapt the weights of the controller using BPTT, 

since we require the dual of the plant.  So we have to use the black box approach 

of the indirect adaptive control. The reference model is just an advance of 1 

sample. We will use a reference input r(n)=sin(2πn/25).  The unknown plant is 

described by the second order differential equation  
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This function is implemented at the top Axon through a DLL and labeled model plant.  

There are two part so the solution. The first part is to identify the plant, while the 

second is the training of the controller. In the first part we create ANN1 labeled 

ANN for system ID which is a one hidden layer  focused TDNN receiving a 

common input (to the plant) which is filtered white noise.  The desired response is 

transmitted from the plant output through the DLL placed on the L2 criterion. So 

this is the pure system identification configuration, and BPTT is used to adapt the 

plant model. In the second panel, we simply check the result of the system 

identification step. Notice that the backprop plane was discarded since the ANN1 

(plant model) should keep the weights fixed after the identification.  
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In the third panel we implement the ANN2 (controller) of Fig 12. We use also a 

focused TDNN with one hidden layer to create the controller ANN2, adapted with 

BPTT. Notice the interconnections. ANN2 receives as input the reference input 

(delayed one sample), and its desired response is obtained from the difference of 

the plant output and the reference input. However, the error signal is propagated 

through the dual of the ANN1 (plant model). We have to assume that the first step 

is sufficient accurate since we are passing the forward signal through the 

unknown plant and the errors through the dual of the plant model. If the plant 

model and the plant are different this backpropagation strategy will have 

catastrophic consequences.   

 
 

 NeuroSolutions Example 
 

Go to next section  

10. Hopfield networks 
Hopfield networks are a special case of recurrent systems with threshold PEs, no hidden 

units, and where the interconnection matrix is symmetric. The original model did not have 

any self-recurrent connections (Figure13).  

•••••

x1 x2
xN

y1 y2 yN

  

Figure 13.  The Hopfield network  

We will describe the discrete Hopfield net in discrete time as 
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where sgn represents the threshold nonlinearity, b is a bias. We assume that the update 

is done sequentially by PE number. The input binary pattern   

works as an initial condition, i.e. it is presented to the network and then taken away to let 

the network relax. For simplicity the bias terms below are set to zero.  

x = [ , ,... ]x x xN
T

1 2

Let us see what is the function of such network. Suppose that we have an input pattern x, 

and we want this input pattern to be stable at the output, i.e. we want the system to be an 

autoassociator and produce an output pattern y = x. The condition for the fixed point 

implies  
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   Equation 33 

because the forward Eq. 32 will produce no change, i.e. the system is at the attractor. It 

can be shown (Hopfield ) that to meet this condition, the weight matrix becomes 

w x x w
N

x xij i j ij i j∝ ⎯→⎯ =
1

   Equation 34  

or in words, the outer product of the patterns automatically computes the weights of the 

Hopfield network without the need for any learning laws. Alternatively, we can utilize the 

Hebbian learning to create the weight matrix, just as in the static associative memory 

case.  

The weight matrix , W is a symmetric matrix. But notice that this system is dynamic, i.e. 

when we present the input x to the network as an initial condition, the system dynamics 

produce an output sequence y(n) that takes some time to stabilize, but will approximate 

the input x.  

NeuroSolutions 12 
11.12 Hopfield network dynamics 
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This first example with Hopfield networks will show the dynamics of the system. 

We have created a 3 input/3 output Hopfield network with two point attractors at 

the vertices of the unit cube (1,-1,1) and (-1,1,-1). Just examine the weight matrix to 

see that they comply with Eq. 34.  

Each of these attractors creates a basin of attraction. The input will set the initial 

condition for the system state. Hence the system state will evolve towards the 

closest attractor under the “force” of the computational energy. This force is rather 

strong, as we can see by the “acceleration” of the system state.  

Try inputs that will put the system state close to the boundary of the two basis 

(here the boundary is the plane x-y+z=0). At exactly these locations the final value 

is zero. However, all the other values will produce a convergence towards one of 

the two point attractors.   

 NeuroSolutions Example 
What is interesting is that even when the input is partially deleted or is corrupted by noise, 

the system dynamics will still take the output sequence y(n) to x. Since the system 

dynamics are converging to x, we call this solution a point attractor for the dynamics.  

This system can also store multiple patterns P with a weight matrix given by  

w
N

x xij
p

i
p

j
p

P

=
=
∑1

1    Equation 35 

Just like what happened in the feedforward associative memory, there is cross-talk 

between the memory patterns, and the recall is only possible if the number of (random) 

input patterns is smaller than 0.138 N, where N is the number of inputs. For the case of 

very large N, the probability of recall (99% of the memories recalled with an asymptotic  

probability of 1) of m patterns is guaranteed only if  

m
N N

<
1

4 ln    Equation 36 
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which is rather disappointing since it approaches zero even for large N. So the intriguing 

property of the Hopfield network is pattern completion and noise removal, which is 

obtained by the convergence of the system state to the attractor.  

NeuroSolutions  13 
11.13 Pattern completion in Hopfield networks 
 

This example is to show the convergence of the Hopfield network in a more 

realistic situation. We have created a 64 input Hopfield to present the characters 

developed in Chapter VI when we also treated the case of associative memories. 

We would like to show that the same behavior of association is also present in the 

Hopfield case.  

We created a weight matrix “by hand” using Eq. 34. Then we can present the 

pattern at the input (just once) and observe the output pattern appear. This will  

be very fast (just a few iterations, so you may want to single step through the 

simulation).  

A more interesting thing is to show that even when the patterns are noise or 

fragmented the end result is still the full pattern. We can understand this in terms 

of basins of attraction. If the input puts the system state at the appropriate basin of 

attraction the final output will be the stored pattern which is the complete (or noise 

free) character.  

 NeuroSolutions Example 

10.1 The Energy Function 
We just presented the practical aspects of Hopfield networks, but we assumed that the 

dynamics do in fact converge to a point attractor. Under which conditions can this 

convergence be guaranteed? This is a nontrivial question due to the recurrent and 

nonlinear nature of the network.  

The importance of the Hopfield network comes from a very inspiring interpretation of its 

function provided by Hopfield . Due to the extensive interconnectivity it may seem 
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hopeless to understand what the network is doing when an input is applied. We can write 

the dynamical equations for each PE as Eq. 32 , but due to the fact that these difference 

equations are highly coupled and nonlinear their solution seems to be beyond our reach. 

Effectively this is not so. When the weight matrix is symmetric, the PEs are threshold 

nonlinearities and the biases are zero, one can show that the network accepts an energy 

function H 

H y w y yij i j
ji

( ) = − ∑∑1
2   Equation 37 

derivation of energy function  

The energy function is a function of the configuration of the states {yi} which is 

non-increasing when the network responds to ANY input. We can easily show this by 

taking into account that every time one PE changes state, H will decrease. When the PE 

does not change H remains the same. Hence, this means that the global network 

dynamics are pulling the system state to a minimum (along the gradient of H), which 

corresponds to one of the stored patterns. The location of the minimum in input space is 

specified by the weights chosen for the network. Once the system reaches the minimum 

(the memory) will stay there so this minimum is a fixed point or an attractor . 

When the system receives an input, the system state is placed somewhere in weight 

space. The system dynamics will relax to the memory that is closest to the input pattern. 

So around each fixed point there is a basin of attraction that leads the dynamics to the 

minimum (effectively there are some problems, since when we load the system with 

patterns, spurious memories are being created which may attract the system to unknown 

positions). We can understand the reason why the Hopfield network is so robust to 

imprecisions (added noise or partial input) of the input patterns. Once the system state is 

in the basin of attraction for a stored pattern, the system will relax to the undistorted 

pattern.  

The conjunction of an energy surface with minima and basin of attraction creates the 
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mental picture of a computational energy landscape, which is similar to a particle subject 

to a gravitational field. This metaphor is very powerful, because all of a sudden we are 

talking about global properties of a tremendously complex network in very simple terms. 

We have ways to specify each connection locally, but we also have this powerful picture 

of the computational energy of the system. This is pictorially depicted in Figure 14. 

configuration 
space {xi}

Energy surface

Attractor (specified by wij)

system state

  

Figure 14.  Computational energy over the configuration space 

Hopfield provided until today one of the strongest links between information processing 

and dynamics. The existence of the computational energy function makes the 

convergence of the state of the Hopfield net to the stored pattern the same dynamical 

problem as a ball rolling down a hill in a gravitational field (which also accepts a potential 

function). We can then say that a dynamical system with point attractors implements an 

associative memory. No matter if the “hardware” is VLSI, a computer running these 

algorithms, biological neurons, or a solar system. Hopfield’s view was crucial for the 

revival of neural networks in 1987.  

Note that the Hopfield net, although a dynamical system, becomes “static” after 

convergence. So other paradigms must be searched to understand the temporal 

processing that goes on permanently in our brains. Notice that dynamical systems may 

have singularity higher than the zero order (point attractor), such as limit cycles and 

chaotic attractors.  
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The Hopfield network normally is used with the weights pre-specified. They can be 

computed easily for the case of the associative memories. We can also apply the fixed 

point learning algorithm to train a single layer net as an associative memory. However, 

there is no guarantee that the net is an Hopfield net, unless the weight matrix symmetry 

is externally enforced.  

NeuroSolutions 14 
11.14 Training a recurrent network as an associative memory 
 

Up to now we have always created the weights of the Hopfield network by hand, i.e. 

loading them without training. However, we can also use fixed point learning as the 

training rule to load the weights. Fixed point learning is selected in the dynamic 

controller (fix point in the dynamic level).  

In general we can no longer say that we have an Hopfield  network since the 

weights may not be symmetric. But this should not discourage us of using such a 

training procedure. In rare occasions the system may go unstable, but we have 

workable solutions that are obtained in a more “neural network” like procedure 

without actually entering by hand the weights.  

In this example we will use the association between long distance phone calls and 

their price (same example of Chapter VI) to show that the “Hopfield like” network 

can be used as an heteroassociative memory.  

 NeuroSolutions Example 
Hopfield networks have also been used in optimization, because we can link the energy 

surface to problem constraints. The solution is simply found by relaxing the system with 

the present input to find the closest solution (attractor). However, the problem of the 

spurious minima have limited the practical applications of such networks.  

NeuroSolutions 15 
11.15 Hopfield networks for optimization 
 

The convergence of the Hopfield network to point attractors can be explored also 

for optimization problems.  Just imagine that the solution of an optimization 
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problem is coded in the energy function of the network. Then when an input is 

given to the net, the system state will evolve providing the optimal answer to that 

particular instance, since the Hopfield net minimizes the energy. The difficulty is to 

encode the optimization problem in the energy function. But once this is done the 

simple application of an example to the net will provide an output that is the 

desired answer.  

Here we will treat a simple problem: A/D conversion. In fact Hopfield and Tank 

showed that we can see the problem of converting an analog signal into bits as an 

optimization, which then can be solved by an Hopfield network.     

We will restrict our example to two digit conversions, i.e. we will try to approximate 

the integer input X by 

X~ x1+2x2 

where x1 and x2 will be 0 or 1. Hence the range for X is the set of integers [0, 3]. 

Hopfield proposed the performance index 

J X x x xi
i i

i i
ii

( ) . [ ] . [ ( )]x = − − −− −

==
∑∑05 2 05 2 11 2 2 2

1

2

1

2

  
where the first term computes the error and the second is a constraint that is 

minimized when xi are 0 or 1.  This leads to a Lyapunov function of the type of Eq. 

35 (but extended with the bias term) which can be implemented with  

W b
X
X=

−
−
⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡

⎣
⎢

⎤

⎦
⎥

0 2
2 0

05
2 2

.

  
 

So the user supplied value X is applied to the bias of the two PEs instead of the 

conventional input (as in the associative memory example).  We have created in 

NeuroSolutions a very simple breadboard and two input fields. The user should 

enter 0,1,2,3 in the box labeled X and the double of the first digit in the box 2X. Try 

several inputs and observe the network provide the result. 

 NeuroSolutions Example 
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Although very important from the conceptual point of view, Hopfield networks have met 

applications with limited success, mainly due to the spurious memories that limit the 

capacity to store patterns. 

10.2. Brain state in a box model 
Another very interesting dynamic system that can be used as a clustering algorithm is 

Anderson’s Brain State in a Box (BSB) model. BSB is a discrete time neural network with 

continuous state (as the Hopfield with sigmoid nonlinearities). However, the equation of 

motion is 

y n f x n w x n

f u
if u

u if u
if u

i i ij
j

N

( ) ( ( ) ( )

( )

+ = +

=
≥

− ≤ ≤
− ≤ −

⎧

⎨
⎪

⎩
⎪

=
∑1

1 1
1 1

1 1

1
α j )

  Equation 38 

The nonlinearity is threshold linear. We assume here that there is no external bias, and α 

is a parameter that controls the convergence to the fixed points. The name BSB comes 

from the fact that such a network has stable attractors in the vertices of the hypercube 

 , provided that W is symmetric and positive semidefinite or  [ ]− +1 1, n α
λ

≤
2

min  . We 

can show that BSB behaves as a gradient system that minimizes the energy of Eq. 37 . 

The weight matrix to create the memories in the vertices of the hypercube follows the 

Hebbian rule of Eq. 35 where xi are restricted to be +/-1. One can show that the 

asymptotic capacity of the BSB model is identical to the Hopfield network.   

However, the BSB model is normally utilized as a clustering algorithm instead of an 

associative memory as the Hopfield network. Both systems create basin of attractions 

and have point attractors, but the BSB has faster convergence dynamics and the basins 

of attraction are more regular than in the Hopfield network. Hence it is possible to divide 

the input space in regions that are attracted to the corners of the hypercube, creating the 
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clustering function.  

NeuroSolutions 16 
11.16 Brain State in a Box model 
 

The BSB model is basically a positive feedback nonlinear system. Due to the 

shape of the nonlinearities the system will have to converge to one of the corners 

of the hypercube, i.e. the system will amplify the present input until all of the PEs 

are saturated. Hence the BSB is very sensitive to the initial pattern position in the 

input space, which has yielded its application in decision feedback.  In order for 

the corners of the hypercube to behave as point attractors it is enough that the 

diagonal elements of the weight matrix be larger than the off-diagonal elements. 

Here we will have a simple example of the BSB. We created a 2D example. Enter a 

value in the boxes and you will see the system relax to the closest corner. So the 

system is similar in function to the Hopfield network, but here the location of the 

attractors is predefined at the vertices of the hypercube. Hence it can be used for 

clustering.      

 

 NeuroSolutions Example 
 

Go to next section  

11. Grossberg’s additive model 
If we abstract from the interconnectivity of the PEs, we realize that all the neural networks 

presented so far have a lot of things in common. Each PE has simple first order dynamics, 

it receives activations from other PEs multiplied by the network weights, adds them, 

feeds the result to the static nonlinearity, and finally weights the result by the previous 

value. This sequence of operations can be encapsulated in continuous time for each PE 

by a first order differential equation as follows, 
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d
dt

y t y t f w y t b I t
i N

j ii i ij j i
j

i( ) ( ) ( ) ( )
,...

= − + +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

=
≠∑μ

1

 Equation 39 

where I(t) represents the forcing function and yi(t) represents the state of the dynamical 

system, and N is the number of PEs in the system. This is called Grossberg’s additive 

model, and it is one of the most widely utilized neural model. In the additive model the 

weights are not a function of the state nor of time (after adaptation). Eq. 39 implements a 

computationally interesting model if the three dynamical variables, I(t), y(t), and w span 

three different time scales. The parameters w contain the long term system memory and 

y(t) the short term system memory. When I(t) is presented to the neural system, y(t) 

reflects the degree of matching with the long term memory of the system contained in the 

weights. Figure 15 shows the block diagram of Grossberg’s model. 

  

net(t)

y(t)
I(t)

∑

∑ W

∫

-μ

f(.)

  
Figure 15. Grossberg’s neural model  

Notice that all the connections are vectorized (multidimensional pieces) and they 

represent the computation, not the actual topology. A neural model is an abstraction of 

the neural network because it characterizes the dynamics, and does not care about the 

interconnection matrix, i.e. the topology that we normally call the neural network. In the 

additive model, the interaction among the PEs is additive, and the PEs have first order 

dynamics. It is also interesting that the additive model without the nonlinearity f(.) defaults 
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to the ARMA model, the most general linear system model.  

In discrete time the equation becomes a difference equation of the form 

y n y n f w y n b I n
i N

j ii i ij j
j

i i( ) ( ) ( ) ( ) ( )
, . . .

+ = − + +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

=
≠∑1 1

1
μ

 
 Equation 40 

Grossberg’s additive model gives rise to all of the neural networks studied in this book! A 

dynamical neural network is obtained when the external patterns are attached to I(n), and 

the initial states of the dynamical system are held constant (normally zero) in Eq.40. Fully 

recurrent neural networks are the most general implementation of dynamical neural 

networks. But some other special cases are also possible. For instance, when the first 

term of Eq. 40 is zero, it means that there are no self connections. When the first term is 

zero and the sum index j is kept smaller than i (i>j) the topology is feedforward but 

dynamic. TLFNs are also a special case of this topology, where some of the PEs are 

linear and pre-wired for time processing.  TLFN architectures   

The static mappers (MLPs) are obtained when the connections are restricted to be 

feedforward, the external inputs are applied to the initial states, and the forcing functions 

are zero (I(n)) in Eq. 40 . When the initial states of the dynamical system are clamped by 

the inputs, there is no time evolution of states that characterize the relaxation, and y(n+1) 

can be computed in zero steps.  

Recurrent neural networks are regarded as more powerful and versatile than feedforward 

systems. They are able to create dynamical states. They have a wealth of dynamic 

regimes (fixed points, limit cycles, chaotic attractors) which can be changed by controlling 

the system parameters. So they are very versatile and useful to model signals that are 

time varying, such as in time series analysis, control applications and neurobiological 

modeling.  

 

Go to next section  
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12. Beyond first order dynamics: Freeman’s 
model 

Neurocomputing has been centered around Grossberg’s neural model for many years, 

but alternate models exist. Here we briefly describe a biological realistic model of the 

cortex that has been proposed by Freeman following his studies of the rabbit olfactory 

system. The interesting thing about Freeman’s model is that it is a computational model 

built from local coupled nonlinear oscillators, and it produces chaotic activity. Information 

is processed by the global chaotic dynamics, unlike any of the previous models where 

information processing requires stable dynamic regimes (remember the fixed points of 

Hopfield’s associative memory).  

The simplest biological system we model is the cell assembly, an aggregate of hundred 

of neurons. Freeman models the cell assembly (K0 model) as a second order nonlinear 

dynamical system which is composed of a linear part given by Eq.41 

[ ] ))(()()()()(
.
1

2

2

txQtabx
dt

tdxba
dt

txd
ba

=+++
          Equation 41 

where a and b are constants, x(t) represents the system state and Q(x(t)) is a forcing 

function. This forcing function brings the contributions of other PEs through a nonlinearity 

Q(x) where 

Q x Q
e
Q

if V u

if V u
m

x

m( ) [ exp( )]= − −
−

> −

− ≤ −

⎧
⎨
⎪

⎩⎪

1
1

1
0

0    Equation 42 

The nonlinearity belongs to the sigmoid class but it is asymmetric. As we can see this 

neuron model is divided into two parts: one is a linear time dependent operator defined 

as a second order differential equation followed by a non-linear static nonlinearity. This 

division is in tune with the models utilized in neurocomputing. The nonlinearity models the 

synaptic transmission, while the dynamical equation models the transmission through 
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axons and integration though dendrites.  

In order to get a discrete network (a neural network) to approximate the continuous time 

behavior of Eq. 41, the impulse response of the linear sub-system will be digitized and 

approximated by a three tap gamma filter which we already described. This provides the 

following implementation for the K0 model (Figure 16) 

   

∑ Q

g(n)

g(n)

x(n)

y(n)

w
1

w
2

w
3

w1=-0.002913; w2=0.124521; w3=0.901061

μ=0.023676

  
Figure 16. Gamma implementation of the K0 model. 

The next level in the hierarchy is the modeling of interactions between cell assemblies. 

Freeman proposes that the individual cell assemblies modeled by the K0 are effectively 

connected by excitatory and inhibitory interactions with constant coupling coefficients, 

which represent (mitral-granule cell) interactions. He proposes the development of 

tetrads of K0 models, interconnected as shown in the Figure 17 , 

-
-

+

+

+

+

+

- + -
-
-

+

K0
(M1)

K0
(M2)

K0
(G1)

K0
(G2)

input

  
Figure 17. KII model called here the Freeman’s PE 
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where the minus and the positive signs mean inhibitory and excitatory connections 

respectively. Each group is described by a set of 8 differential equations with fixed 

connections. Since all the elements so far are fixed, they represent the building block for 

the model of the olfactory system, and will be called the Freeman’s PE. Freeman’s PE 

models the processing going on in the cortical column. Each column is therefore a neural 

oscillator. Table I shows the coefficients of Freeman’s PE which have been derived from 

neurophysiologic measurements. The same Table also shows the patterns stored in the 

model for the simulations. 

Table I - Parameters Set (e.g. WMG Means gain from element G to M. W1-4 are gains associated with f1-4(.) 
KII [WMM_H; WMM_L; WGG]= [0.3; 1.5; 0.25] 

[WMM; WMG; WGM; WGG;]= [0.3; 5; 0.2, 0.25] 
Patterns 
Stored 

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
 

KIII 
 
 
 

(Internal) 

[WPP; WMM_H; WMM_L; WGG]= [0.2; 4; 0.5, 1.5] 
[WMP; WEM; WAM_L; WCB; WBC]= [0.5; 1.0; 1.0; 1.5; 

1.0] 
 

[WMM; WMG; WGM; WGG;]= [0.25; 1.5; 1.5, 1.8] 
[WEE; WEI; WIE; WII]= [1.5; 1.5; 1.5, 1.8] 

[WAA; WAB; WBA; WBB]= [0.25; 1.4; 1.4, 1.8] 
[W1; W2; W3; W4]= [1.6; 0.5; 2, 1.5] 
[Te1; Te2; Te3; Te4]= [11; 15;12, 24] 
[Ts1; Ts2; Ts3; Ts4]= [20; 26; 25, 39] 

Patterns 
Stored 

1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
⎡

⎣
⎢

⎤

⎦
⎥

 

 
The KII model is a connected arrangement of Freeman’s PEs (each K0 is connected to 

all other K0s in the same topological position) as shown in Figure 18.  

 64 



-
-

+

+

+

+

+

- + -
-
-

+

K0

K0

K0

K0

input

-
-

+

+

+

+

+

- + -
-
-

+

K0

K0

K0

K0

input

-
-

+

+

+

+

+

- + -
-
-

+

K0

K0

K0

K0

input

  
Figure 18. The connections of several Freeman’s PEs.  

The KII system models the olfactory cortex as a dynamical system with two basins of 

attraction. When no forcing input is applied the KII model has a fixed point at the origin, 

but when an input is applied the system changes state to an oscillatory regime with large 

amplitude. The following simulation exemplifies the dynamics.  

NeuroSolutions 17 
11.17 Simulating Freeman’s KII model 

 
This example shows the NeuroSolutions implementation of the KII model. The KII 

model is an arrangement of KI sets which we called the Freeman PE. The Freeman 

PE is an arrangement of  4 K0 sets which are approximated by a gamma network 

of Fig 16. The connections to form the KI set (internal unit feedback) and KII (global 

feedback among channels) have been separated for readability. Notice that a DLL 

implements the asymmetric sigmoidal nonlinearity.  

We would like to show the response of the KII model to a step input. The model is a 

20 PE system that receives 1/0 from the input. When we plot the response of one of 

the PEs that receive an input, we will see that the amplitude of the PE oscillation 

will increase. When the input is set to zero the system state slowly decreases to 

zero. We will depict time plots of the input and outputs of an active and inactive 

PEs. We will also show the phase plot of one of the active Freeman PEs (output of 
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the excitatory input versus the inhibitory input).  This example shows that the 

local PEs are stable oscillators with an amplitude modulated by the input. Hence 

the codification of information is contained as a spatio-temporal pattern of 

amplitudes over the model. 

 NeuroSolutions Example 
According to Freeman, the central olfactory system consists of two layers of coupled 

oscillators, the olfactory bulb (OB) and the prepyriform cortex (PC) mediated by lumped 

control of the anterior nucleus (AON). The receptor input goes to periglomerular (PG) and 

mitral cells (M). The mitral cells transmit to granule cells (G) and to AON and PC. From 

PC the final output is sent to other parts of the brain by deep pyramidal cells (P) as well 

as back to the OB and AON.  

The central olfactory system will be implemented by the KIII model, which is an 

hierarchical arrangement of KII models  (Fig. 19). The input is a fixed weight, fully 

connected layer of excitatory K0 models (the periglomerular cells - PG). The second layer 

is the KII model described above (which models the olfactory bulb  -OB). This is were 

learning takes place by changing the excitatory to excitatory connections using a 

modified Hebbian learning. The next layer is a single Freeman PE (modeling the anterior 

olfactory nucleous - AON), followed by another Freeman PE (modeling the prepyriform 

cortex - PC), which finally connects to a K0 set (modeling the pyramidal cells - P). There 

are extensive (but not fully) connections in the topology: the output of the OB layer is fed 

to the AON and the PC layers with diffuse connections (modeling the medial olfactory 

tract). Feedback transmission is implemented from the P and PC layers through long 

dispersive delays (modeling the medial olfactory tract - MOT) which are represented in 

Figure 19 as f(.). The parameters of the Freeman’s PE in layers AON and PC are 

different from the OB layer (in fact creating incommensurate oscillating frequencies) - see 

Table. 
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Figure 19. KIII model 

The KIII model is a chaotic dynamical system. With no input the system at the OB layer 

produces chaotic time series with small amplitude and no spatial structure (the basal 

state). When a previously stored pattern is presented to the system, the OB layer still 

produces chaotic time series, but “resonates” in a stable spatial amplitude distribution. 

This spatial distribution is what codifies the stored pattern. Hence, the system works as 

an associative memory. However, the interesting thing is that the dynamics are no longer 

towards a point attractor as in the Hopfield network, but to a spatio-temporal chaotic 

attractor. Freeman states this system is able of very fast switching among patterns and is 

robust to noise in the patterns. 

NeuroSolutions 18 
11.18 Simulation of Freeman’s KIII model 
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This example will demonstrate the oscillation produced by a 8 PE OB layer. The 

breadboard is rather large. We have labeled each block according to Fig 17. Notice 

that the breadboard is a replication of basically two pieces: the KII model and the 

gamma filter implementing the dispersive delay operator. Each has different 

parameters according to biological measurements.  

The input is a rounded pulse.  When there is no input, the system lies in a chaotic 

basal state where the amplitude of each PE time series has the same basic 

amplitude but very complex time series as shown in the scope. When the pulse is 

applied the system jumps to a new state, and the phase space plot (excitatory 

versus inhibitory PEs) shows a phase transition to one of the wings of the chaotic 

attractor. When the input disappears the system goes back to its initial chaotic 

basal state. The system transitions are very repeatable and fast. Notice that we do 

not need any extra mechanism to take the system from the pattern created by the 

excitation (as the fixed point of the Hopfield net). The information is still coded in 

the amplitude of the chaotic oscillation across the PEs.  All the parameters of the 

simulation were fixed (i.e. no learning is taking place).  

 NeuroSolutions Example 
The exciting thing about Freeman’s model is that it extends the known paradigm of 

information processing which have low order dynamics (Hopfield nets have dynamics of 

order zero, i.e. fixed points) to higher order spatio-temporal dynamics. Moreover, the 

model was derived with neurophysiologic realism. It is too early to predict its impact in 

artificial neural networks research and information processing paradigms, but it is 

definitely an intriguing dynamical system for information processing.  

Go to next section  

 

13. Conclusions 
This Chapter presented the development of learning rules for time processing with 
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distributed TLFNs and fully recurrent networks. We showed what is the difficulty of 

training networks with delays, and we presented an extension to static backpropagation 

that was able to train topologies with delays. Backpropagation through time (BPTT) 

shares some of the nice properties of static backpropagation (such as locality in space, 

efficiency since it uses the topology to compute the errors) but it is non-local in time. This 

creates difficulties that require the use of memory and backpropagating the error from the 

final time to the initial time (hence the name). With BPTT we harness the power to train 

arbitrary neural topologies to learn trajectories which is necessary to solve problems in 

controls, system identification, prediction and temporal pattern recognition. In a sense, 

this chapter closes the circle started with static nonlinear neural networks and time 

processing. Now we have the tools to train nonlinear dynamical systems. 

In this chapter we also present a view of dynamic neural networks as nonlinear 

dynamical systems. Hopefully the difference between static and dynamic neural networks 

became more apparent. We can not discuss recurrent neural networks without presenting 

Hopfield networks, mainly due to the perspective of the computational energy. This 

analogy provides a “physical” view of computation in distributed systems, which makes 

us wonder about the nature of computation and the tools to quantify and design 

computational distributed systems.  

We also alerted the reader for the idea of neural models. Neural models sit at the top of 

the hierarchy to systematize neural computation. Although we covered many neural 

networks throughout this book (linear regressors, MLPs, Hebbian, RBFs, Kohonen, linear 

combiners, TLFNs, recurrent networks), they all belong to the same neural model. This 

clearly leaves open the search for other neural models.  

We finish the Chapter by providing a glimpse of other computational paradigms that may 

become very important in the future due to their biological realism and information 

principles based on higher order (chaotic) dynamical regimes. Freeman’s model points 

the ultimate paradox: the quest for systematization (understanding) and organization that 
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characterizes humans and their society emanates from brains that may be based on 

higher order nonlinear (chaotic) dynamics.  
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backpropagation versus BPTT 
If the network is static or dynamic but feedforward as the TDNN, and the desired signal 

exists for all time even for the case of trajectory learning there is no point of using BPTT. 

We can use straight backpropagation and add up the gradients over the specified time 

interval, as we did in batch learning. This can be easily proved by analyzing Eq. 4 . 

However, there are cases where the dynamic network is feedforward (TDNN) but the 

desired signal is only known at the terminal time. In this case we have to use BPTT since 

we do not have an explicit error at each time step.  

As was specified in the text, once BPTT is applied to one portion of the network (for 

instance the feedback parameter in the gamma network) the easiest way is to adapt ALL 

the weights with BPTT , although strictly speaking, only the weights that lie in the 

topology to the left of the recurrent connection need to be updated with BPTT. However, 

it is easier to implement the learning algorithm uniformly.  

Return to Text   

 

vector space interpretation of TLFNs 
The vector space interpretation of a memory PE explains the adaptation of the TLFN 

weights as a local approximation of the desired response by a weighted sum of memory 

traces yk(n). These signals are the bases of the local projection space. Let us present the 

most familiar connectionist memories in this framework. We will be studying the case of a 

memory PE inside the neural network (Figure 20).  
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wik

  

Figure 20.  Analysis of the function of the ith memory PE 

The first case discussed is when the memory PE is a context PE. In this case the 

projection space can not be controlled directly, as we saw in Chapter X. The system can 

only control the final projection through two degrees of freedom: one weight wi0, and one 

feedback parameter μi. So both the error and the input represent a point in a space of 

dimension given by the memory depth of the PE (which is 1/μ). The processing goal is to 

find the size and rotation for the one-dimensional projection space by changing μi, and 

then finding in the line the point that is perpendicular to the error by adjusting wi0 (i.e. the 

optimum projection according to Kolmogorov). As was discussed in Chapter X, this 

representation is appropriate when the problem requires long memory depth but does not 

require resolution (i.e. detail).  

In the delay line PE case, xi(n) is projected in a memory space that is uniquely 

determined by the input signal, i.e. once the input signal x(n) is defined, the basis 

become x(n-k) and the only degree of freedom defining the size of the projection space is 

the memory order K. We can not change is the size of the projection space without a 

topological modification.  

This memory structure has the highest resolution but lacks memory depth, since one can 

only improve the input signal representation by increasing K, the order of the memory. In 

terms of versatility, the simple context unit is better (or any memory with a recursive 

parameter), since the neural system can adapt the parameter μ to better project the input 

signal. 
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The gamma PE produces a basis that represents memory space of size K, but the basis 

are no longer a direct use of the past values of the input as in the ideal delay line. The 

basis are already a linear projection of the input trajectory (convolution with the gamma 

kernel). When the parameter μ adapts to minimize the output mean square error,  the 

projections rotate and the span of the projection space changes as a consequence of the 

different time constants (the effective length of the impulse response also changes). This 

is the same phenomena as described by the context PE. However, the relative angle 

among the gamma bases vectors does not change with μ. Hence, a decrease in the error 

must be associated with a decrease in the relative angle between the desired signal and 

the projection space.  

e(t)d(t)

y(t) μ
y1(t)

yk(t)

  

Figure 21.  Change of the relative angle between the projection space and the vector when μ changes 

So the recursive parameter in the gamma structure changes the span of the memory 

space with respect to the input signal (which can be visualized as a relative rotation and 

change in dimensionality between the input signal and the projection space). In terms of 

time domain analysis, the recursive parameter is finding the length of the time window 

(the memory depth) containing the relevant information to decrease the output mean 

square error. So the gamma memory modifies the position of the projection space via μ 

and the weights {wik} choose in this space the point that makes the error orthogonal to the 

space.  

The gamma PE is more powerful than the tap delay line PE, but the search for the best 

orientation of the projection space is not trivial. We can show that the performance 

surface has many local minima. Most of the times any of the local minima provide a 
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better solution than the linear combiner of the same order, so there is a net gain in using 

the gamma memory.  

Return to Text  

 

Advantage of linear memory PEs 
One of the problems of fully recurrent systems is that they tend to work as finite state 

machines, i.e. their PEs tend to saturate on and off during operation. If we think of 

Markov models, the other technology to deal with extracting information in time, this 

seems pretty reasonable, and in fact essential to capture the complex structure of time 

signals.   

The problem is that recurrent systems take a long time to train, if they can be trainable at 

all. The difficulty has been called the long term dependency problem. It simply means 

that when we train a recurrent net with PEs that are saturated, the gradients are going to 

be heavily attenuated so either the relationships are poorly learned or are impossible to 

learn.  

This is where the linear memory structures come to our rescue. The advantage of linear 

memories is that the gradients are not attenuated when backpropagated through them. 

The disadvantage is that they are unable to create nonlinear relationships (states). 

However, a clever intermix of memory PEs and nonlinear PEs as done in the TLFNs has 

been shown to provide better results than fully recurrent topologies. See Giles  

Return to text  

training focused TLFNs 
The goal is to be able to adapt the feedback parameter μ of a locally recurrent memory in 

a focused TLFN (memory at the input layer) with an algorithm that can be integrated with 

static backpropagation. Let us treat the case of the gamma memory. The gamma 

 75



memory forward equation for tap k is  

( ) ( ) ( ) ( )y n y n y nk k+ = − + −1 1 1μ μ k    Equation 43 

Let us take the derivative of y with respect to μ using the direct differentiation method 

 
( ) ( ) ( )∂

∂μ
μ

∂
∂μ

μ
∂
∂μ

y n y n y n y n y nk k k k+ = − + + −− −1 1 1 1( ) ( ) ( )k
  Equation 

44 

So the direct differentiation method provides an on-line approximation (for small 

stepsizes) to adapt the μ parameter. What is necessary is to integrate this equation with 

the information available in a backpropagation environment.  

The goal is to adapt μ using static backpropagation. Let us assume that the gamma 

memory PE is connected to several (p) hidden PEs of the MLP in the focused TLFN. 

Then we can write 

 μ∂
∂J

yi n( )∂
∂J

μ∂
∂ yi n( )

i
∑=

   Equation 45 

where yi(n) are the outputs of the gamma memory PE, the sum is extended to p and J is 

the output criterion. During a backpropagation sweep the errors that are propagated from 

the output through the dual system up to the gamma memory PE are exactly 

∂
∂

J
y ni ( )'  . 

So μ can be adapted using a mix of static backpropagation and RTRL. According to Eq. 

43, the dual system provides 

∂
∂

J
y ni ( )'  which is multiplied by Eq. 42 and then summed 

across the gamma PEs. Eq. 42 can be thought as a new “dual” of the gamma memory 

PE in the static backpropagation framework, since it computes instantaneously the 

sensitivities.  

Notice that the implementation of Eq. 42 (the instantaneous dual gamma PE) must have 

 76 



memory to store each of the previous values of the sensitivities 

∂
∂μ

y ni ( )
  computed 

by Eq. 42. What we gain is a sample by sample update algorithm that does not require 

any storage since it is using static backpropagation. Since we have a single adaptive 

parameter, the implementation of the RLRL part (Eq. 42) is still pretty efficient. Figure 22 

shows a block diagram of the steps involved in the adaptation of μ. Notice that these 

equations are only valid when the context PE is at the input, otherwise all the gradients to 

the left of the gamma memory PE will become time dependent.  
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i

n( )∂
∂J

ε(n)

J

  

Figure 22. How to adapt the focused architectures with a mixture backprop, RTRL.  
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Training the gamma filter 
The gamma filter was presented in Chapter X as an alternative to the Wiener filter. It is 

basically a gamma memory followed by an adder. Since the gamma memory is locally 

recurrent the gamma filter can not be trained with static backpropagation.  

The gamma filter is defined as  

y n w x n

x n x n x n k K

k k
k

K

k k k

( ) ( )

( ) ( ) ( ) ( ) ,...,

=

= − − + − =
=

−

∑
0

11 1 1 1μ μ   Equation 46 

where x0(n) = x(n) is the input signal and y(n) is the output. The weights and the gamma 
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parameter μ will be adapted using the gradients of the cost function given by Eq.4 . We 

can use RTRL and get immediately, 

Δ

Δμ

w
J

w
e n x n

J
e n w n

k
k

k
n

T

k k
k

K

n

T

= − =

= − =

=

==
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η
∂
∂

η

η
∂
∂μ

η α

( ) ( )

( ) ( )

0

00   Equation 47 

where 
α

∂
∂μk
kn

x n
( )

( )
=

 . This gradient can be computed on-line by differentiating the 

gamma filter equation (Eq.46 ), yielding 

α
α μ α μα

0

1 1

0
1 1 1 1

( )
( ) ( ) ( ) ( ) [ ( ) (
n
n n n x n xk k k k k

=
= − − + − + − − −− − 1)]n   Equation 

48 

Note that using the ideas of RTRL, we can for small stepsize η drop the summation over 

time in Eq. 47. Notice that these equations are local in time and the complexity to adapt a 

filter of order k is O(K). NeuroSolutions does not implement this procedure directly, BPTT 

must be used to adapt the gamma filter. 
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training alternate memories 
To train TLFNs with Laguerre PEs, we need to specify two maps, the state equations, the 

state gradients (i.e. the backpropagated errors). Since the Laguerre PE is just a minor 

modification to the gamma PE, we will only present the results below. 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

activation y n y n y n y n
error n n n n

i k i i k i k i i k

i k i i k i k i i k

, , , ,

, , , ,

= − − + − − − −
= − + + + − − +

− −

− −

1 1 1 1
1 1 1 1

1 1

1 1

μ μ
ε μ ε ε μ ε

1
1    

for all taps after the first (k>1). For the first tap the equations read 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

activation y n y n x n
error n n n

i i i i i

i i i i i

, ,

, ,

1 1

1 1

1 1
1 1

= − − + −
= − + + +

μ α
ε μ ε α ε

1
1    

where α i = − −1 1 2( μ i )   and it is the implementation of the frontend lowpass filter. 

The weight update using straight gradient descent is  

( ) ( ) ( ) ( )[ ]weight update
E

y n n n y n
i

i k i k i k i k
k

∂
∂μ

ε ε= + − −∑ , , , ,1 1
    

This is what is needed to train networks with a Laguerre memory PE. 

To adapt the Gamma II PE in a TLFN the following two local maps are needed 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )

y n y n y n y n y n

n n n n
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, , , , ,
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− −

− −

2 1 1 1 2 1 1

2 1 1 1 2 1 1

2 2
1 1

2 2
1 1

μ μ υμ μ μ

ε μ ε μ υμ ε με μ ε n
  

With these maps we can train with BPTT ANY topology that includes these memory PEs.  

Return to text  

TLFN architectures 
In neurocomputing it is known that a general linear delay mechanism can be represented 

by temporal convolutions instead of multiplicative instantaneous interactions as found in 

MLPs. This model has been called the convolution model, and in discrete time the 

activation of the   PE reads i th

y n f w y n I ni ijk jk
k o

K

j
i j

N

i( ) ( ) ( )+ =

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+

==
>

∑∑1
0

  Equation 49 

where Ii(n) is a network input (if the PE is not an input Ii(n)=0), yi(n) is the activation at the 

  PE at time n, N is the total number of PEs, and K is the number of states (taps) of 

the delay subsystem that implements the short term memory mechanism. The index k is 

i th
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associated with the states of the memory filter. The activation of the k th
  tap of the   

PE is written yjk(n). The weight wijk connects the 

j th

k th
  tap of the   PE to the   

PE. Since the topology is required to be feedforward, the condition i>j must be imposed.  

j th
i th

The activation of each PE depends explicitly upon the past value of either the input or 

other states, so that the time history can be captured more easily during learning. In this 

sense, the convolution model is a pre-wired additive model for the processing of time 

information. One can think of the convolution model as a combination of a nonlinear zero 

order mapper (a nonlinear function f(.)) with a short term linear memory mechanism 

represented by net (.), where 

net n w x nij ijk jk
k o

K

( ) ( )=
=
∑

  Equation 50 

As written, the memory mechanism can be globally recurrent. The memories in TLFNs 

are a special case of Eq. 48, when neti(n) is a locally recurrent linear filter, created by 

cascading delay operators. We can recognize this arrangement as a generalized 

feedforward filter. The memory filter is no longer restricted to be finite impulse response 

(FIR) as in TDNN but it can also be an infinite impulse response (IIR) adaptive filter with 

local feedback. The processing function of TLFNs can be described as a combination of 

nonlinear PEs and time-space mappings built from local linear projections. The delay 

operators have been addressed in Chapter X.  

Let us write the TLFN equations in matrix form. Define the signal vectors  

     

x

I
k k Nk

T

N
T

x x

I I

=

=

[ ,...., ]

[ ,...., ]
1

1

and parameter matrices p diag pN i= ( )   and   

W
w w

w w

k N

N k NNk

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11 1

1

...
... ... ...

...

k

where p is the matrix with the parameters of the generalized feedforward memory (GFM). 
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Here k is the index of the state variables associated with the GFM. We can eliminate k if 

we define the GFM state vector  

     

X x x x

II I 0 0

=

=

[ , ,..., ]

[ , ,...., ]
0 1 K

T

T

the nonlinearity  and the matrix of decay parameters 
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and the matrix of weights  

     

Ω =
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w w w0
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...

k

k

p

p

Then any TLFN can be written as 

   
d
dt
Y

PX Y II= − + +Ω
  

which is a N(K+1) dimensional Grossberg model. If we analyze the structure of the matrix 

W we see that the matrix is not fully populated, meaning that the neural topology  is 

prewired when compared to the most general Grossberg model.  

Gamma model Equations 
Changing the memory PE will produce a different type of TLFN. The gamma model is 

built from combining a feedforward topology with memory PEs of the gamma type. The 

purpose of showing here the equations is to provide an introduction to the mathematical 

treatment of TLFNs from the point of view of the convolution model. At the same time, it 

will contrast the advantages of using the data flow implementation of backpropagation 

when compared to the normal equation based learning. Using the convolution model 

Eq.47 , we can easily obtain the dynamical equations that describe the gamma model as 
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y n y n y ni k i i k i i k, , ,( ) ( ) ( ) ( )= − − + −−1 1 1μ 1μ    Equation 51 

The following figure represents the block diagram of the gamma model.  

net(t)

y(t)

I(t)

∑

∑ W

∫

f(.)

p p

w
w

∫ ∫∑ ∑

i>j

  
Figure 23. The gamma neural model. 

Note that the second equation is relating the signals at the gamma PE taps, while the first 

equation is simply combining the temporal signals into a feedforward topology of 

nonlinear PEs. So the equation that is specific of the gamma memory PE is the second 

one.  

To train the gamma model with BPTT, both the gradients with respect to the system 

states, and to the weights wij and μi are necessary as given by Eq. 50. We are going to 

present here just the results.  
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After analyzing these equations you can imagine the difficulty of making sure the 

equations are right, and then to implement training algorithms that translate without errors 

such procedures. But as we have been saying all along, with the data flow method we do 

not need these equations. We just need the dataflow through time (implemented with the 

dynamic controller) and local maps for the nonlinear and gamma memory PEs.  

Remember that one needs to specify graphically the topology and the size of the 

trajectory in the dynamic controller for appropriate training.  

Return to Text  

 

 

dynamic backpropagation 
If we read the control literature we will see that instead of BPTT the preferred method to 

adapt a mixture of neural networks and dynamic systems is dynamical backpropagation. 

Dynamic backpropagation is a blend of RTRL with static backpropagation. The 

parameters of the ANN are adapted with backpropagation but the sensitivities are passed 

forward among sub-modules using the old idea of RTRL. 

The advantage of this technique is that provides adaptation sample by sample, i.e. it is 
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intrinsically on-line. The disadvantage is that it is computationally demanding and it 

depends upon the particular arrangement of sub-systems. As we will see below there is a 

proliferation of blocks needed to pass sensitivity forward, basically one per parameter. 

While in BPTT the gradients are all local to the topology so it can be applied in the same 

manner irrespective of the topological configuration of the system. However BPTT is not 

local in time, which means that the adaptation must be done for a trajectory.    

Let us present here the ideas of dynamic backpropagation as applied to the 

representation 1 of Figure 11. For this representation we need to find the parameter set 

of the ANN, here represented by αi, but since the output of the net v(n) is not directly 

accessible, one has to include the system P(v,w) in the computation of the error. Assume 

that the error at the output is e n d n y n( ) ( ) ( )= −  . Since y is the output of the cascade, 

we have by the chain rule 

   

∂
∂α

∂
∂α

e n
P v w

v n

i i

( )
( , )

( )
=

  

We know already how to compute 

∂
∂α
v n

i

( )

  for every time tick using backpropagation. 

But every time we change one of the parameters there is going to be a corresponding 

change in the output error (for the present time and for future time since P(v,w) is 

dynamic). This change can be computed if the sensitivity of the ANN is passed forward 

through a copy of P(v,w) as in the Figure 
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Notice that we need in general as many copies of P(v,w) as parameters in the ANN (one 

system will generate a partial derivative 

∂
∂α
e n

i

( )

 ). This is were the computational 

complexity gets out of hand quickly. But notice that we can update the parameters of the 

ANN for EACH time step which is an advantage. 

If we want to work with any of the other representations this simple sensitivity model has 

to be appropriately modified, but it is possible in all cases to update the weights at each 

step.  

Return to text  

derivation of energy function 
For the discrete time Hopfield network considered here, it was shown that the function 

   

H y w y y b x G y
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1
2 11 1 1

0   
is a Lyapunov function for the network provided that the weight matrix is symmetric and 

the nonlinearity is sufficiently steep. Notice that if the bias are zero the second term 

 85



disappears, and if the nonlinearity approaches the step function the last term approaches 

a constant.  

The existence of a Lyapunov function for a given dynamical system guarantees stability 

(in the sense of Lyapunov).  A Lyapunov function is a scalar function of the state with 

the following properties: 

• is continuous and has a continuous first partial derivative over the domain, 

• is strictly positive except at the equilibrium point, 

• is zero at the equilibrium point 

• approaches infinite at infinite 

• and has a first difference that is strictly negative in the domain except the equilibrium point.   

A quadratic function of the state is a Lyapunov functions for linear systems. For nonlinear 

systems the form of the Lyapunov function is unknown and normally is difficult to find. 

Hence the importance of Hopfield work.  

H(y) obeys trivially all the conditions except for the last one. The proof shows that when 

the Hopfield network evolves according to its dynamics, H either stays the same or 

decreases proving the strictly negative condition. See Hopfield for the complete proof.  

Return to Text  

fully recurrent 
networks which have arbitrary feedback connections from input-to hidden-to output PEs.  

 

TLRN 
have short-term memory structures anywhere in the network (i.e. either input, hidden or 

output PEs) but they still have a general feedfoward toplogy. 

 

 86 



trajectory 
trajectory learning is the most general case of training a dynamical systems which 

specifies the desired response during a time segment.  

 

fixed point 
is a training regime for dynamical systems where the input - desired response pair is 

specified for all time. This means that we are using a dynamical system as a static 

system (i.e. as a MLP).  

 

Hopfield 
John Hopfield is a theoretical biologist who studied the properties of a fully recurrent 

neural network using the ideas of dynamics, which lead to the powerful concept of 

computational energy . See the paper Neural networks and physical systems with 

emergent collective computational abilities, Proc. Natl. Acad. Sc. USA, 79, 2554-2558, 

1982. 
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unfolding 
is a method to create from a recurrent network an equivalent feedforward network. This is 

possible only for a finite time span.  
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Eq.15 
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attractor 
is the trajectory set that defines the limit point of the dynamics. 

 

dKfl 
decoupled Kalman filtering learning and multistream learning have been recently 

proposed by Feldkamp and co-workers with very promising results. See  

 

Freeman 
Walter Freeman, Tutorial on Neurobiology: from single neurons to brain chaos, Int. J. of 

Bifurcation and Chaos, 2, 451-482, 1992.  
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See also the book “Mass Activation of the Nervous System”, Academic Press, 1975. 

 

Luis Almeida 
A learning rule for asynchronous perceptrons with feedback in a combinatorial 

environment, 1st IEEE Int. Conf. Neural Networks, vol 2, 609-618, 1987. 
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Eq.22 
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Lee Giles 
Proc. IEEE Workshop Neural Networks for Signal Processing VII, pp34- 43, 1997, IEEE 

Press.  
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Narendra 
Narendra K., and Parthasarathy K., “Identification and control of dynamical systems”, 

IEEE Trans. neural networks 1(1):4-27, 1990. 

 

Wan 
(type popup definition text here) 

 

Eq.14 
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Eq.31 
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Bengio 
time dependency 

 

Feldkamp 
truncated backprop 
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