
Table of Contents
CHAPTER I - DATA FITTING WITH LINEAR MODELS...4
1. INTRODUCTION..5
2. LINEAR MODELS ..11
3. LEAST SQUARES ...15
4. ADAPTIVE LINEAR SYSTEMS ..20
5. ESTIMATION OF THE GRADIENT - THE LMS ALGORITHM..28
6. A METHODOLOGY FOR STABLE ADAPTATION ..36
7. REGRESSION FOR MULTIPLE VARIABLES ...48
8. NEWTON’S METHOD...64
9. ANALYTIC VERSUS ITERATIVE SOLUTIONS ...67
10. THE LINEAR REGRESSION MODEL..68
11. CONCLUSIONS ..74
END OF CHAPTER 1 ..78
LEAST SQUARES DERIVATION ...78
VARIANCE ...79
DERIVATION OF CORRELATION COEFFICIENT ...80
COMPUTATION OF CORRELATION COEFFICIENT..81
BATCH VERSUS ONLINE LEARNING ..82
MORE DERIVATION OF PERFORMANCE SURFACE..82
MORE ON DERIVATION OF LARGEST STEPSIZE..83
DERIVATION OF THE TIME CONSTANT OF ADAPTATION ..84
MORE ON SCHEDULING STEPSIZES ...85
DERIVATION OF NORMAL EQUATIONS ..85
PERFORMANCE SURFACE PROPERTIES ...87
MULTIPLE VARIABLE CORRELATION COEFFICIENT...89
CONVERGENCE FOR MULTIPLE WEIGHTS CASE ..90
ESTIMATION OF EIGENVALUE SPREAD ...91
CASTI REFERENCE..91
PROCESSING ELEMENT ...91
EPOCH ...91
LINEAR REGRESSION ...92
MEAN SQUARE ERROR ...92
LEAST SQUARES..92
CORRELATION COEFFICIENT...92
ADAPTIVE SYSTEMS ..92
PERFORMANCE SURFACE ..92
SUPERVISED LEARNING ...93
UNSUPERVISED LEARNING...93
GRADIENT ...93
STEEPEST DESCENT ..93
LEAST MEAN SQUARE ...93
STEP SIZE ...93
ON-LINE TRAINING ...94
EPOCH..94
BATCH TRAINING ...94
TRAINING SET..94
TEST SET ..94
LEARNING CURVE ..94
WEIGHT TRACK..94
GEOMETRIC RATIO...95
TIME CONSTANT OF ADAPTATION ..95
RATTLING..95
MISADJUSTMENT ...95
LEARNING RATE SCHEDULING...95

 1

EIGENVALUE SPREAD...95
NORMALIZED LMS...95
BIG O NOTATION..96
ADALINE ...96
EQ. 4 ...96
EQ. 14 ...96
EQ.6 ..96
EQ.9 ..97
EQ.3 ..97
EQ.10 ..97
EQ.12 ..97
EQ.11 ..97
EQ.13 ..97
EQ.54 ..97
EQ.16 ..98
EQ.17 ..98
EQ.19 ..98
EQ.25 ..98
EQ.28 ..98
EQ.31 ..98
EQ.68 ..98
EQ.69..99
EQ.65 ..99
EQ.27 ..99
EQ.36 ..99
EQ.21 ..99
EQ.33 ..99
EQ.32 ..100
EQ.41 ..100
EQ.5 ..100
EQ.45 ..100
EQ.53 ..100
EQ.52 ..101
EQ.55 ..101
EQ.30 ..101
EQ.26 ..101
EQ.63 ..101
EQ.40 ..101
WIDROW...102
EQ.7 ..102
EQ.15 ..102
WIDROW AND STEARNS...102
LINEAR MODELS ...102
EQ.49 ..102
OUTLIER ...102
RLS...103
GAUSS ...103
COVARIANCE...103
STANDARD DEVIATION..103
ESTIMATION THEORY...103
AUTOCORRELATION...104
CROSSCORRELATION...104
DERIVATION OF SOLUTION...104
CONTOUR...104
EIGENVALUES ...105
Z SCORES...105

 2

NEWTON’S DERIVATION...105
ILL-CONDITIONED ..105
GRADIENT DEFINITION AND CONSTRUCTION...105
DEVELOPMENT OF THE PHONE SYSTEM...107
MARS’ PATHFINDER MISSION..108

 3

Chapter I - Data Fitting with Linear Models
version 2.0

This Chapter is Part of:

Neural and Adaptive Systems: Fundamentals Through Simulation© by

Jose C. Principe
Neil R. Euliano

W. Curt Lefebvre

Copyright 1997 Principe

The goal of this chapter is to introduce the concepts of:

• Data fitting and the derivation of the best linear (regression) model.

• Iterative solution of the regression model.

• Steepest descent methods.

• The LMS (least mean square) estimator for the gradient.

• The trade-off between speed of adaptation and solution accuracy.

• Examples using NeuroSolutions.

• 1. Experimental Model Building

• 2. Linear Models

• 3. Least Squares

• 4. Least squares as a search for the parameters of a linear system

• 5. Estimation of the gradient - the LMS algorithm

• 6. Getting a grip on adaptation

• 7. Regression for multiple variables

• 8. Newton’s method

• 9. Analytic versus Iterative solutions

• 10. The linear Regression Model

• 11. Conclusions

 4

 Go to next section

 Go to the Appendix

1. Introduction
Engineering is a discipline that builds physical systems from human dreams, re-inventing

the physical world around us. In this respect it transcends physics that has a passive role

of explaining the world, and also mathematics that stops at the edge of the physical

reality. Engineering design is just like a gigantic Lego, where each piece is a subsystem

grounded in its physical or mathematical principles. The role of the engineer is to first

develop the blue print of the “dream” through specifications, and then look for the pieces

that fit the blue print. Obviously the pieces can not be put together at random since each

has its own principles attached. So it is mandatory that the engineer first learns the

principles attached to each piece and specifies the interface. Normally this study is done

using the scientific method. When the system is physical we use the principles of physics,

and when it is software we use the principles of mathematics. development of the phone

system This method has been highly successful, but let us evaluate it in broad terms.

First, engineering design requires the availability of a model for each subsystem. Second,

when the number of pieces increase the interactions among the subsystems increase

exponentially. Fundamental research will continue to provide a steady flux of new

physical and mathematical principles (provided the present trend of federal funding for

fundamental science is reversed) but the exponential growth of interactions required for

larger and more sophisticated systems is harder to control. In fact at this point in time, we

simply do not have a clear vision how to handle complexity in the long term. But there are

two more factors that present big challenges. They are the autonomous interaction of

systems with the environment and the optimality of the design. We will discuss these

below.

Humans have traditionally mediated the interaction of engineering systems with the

external world. After all humans use technology to enhance their physical constraints so

 5

we have been in control of the machines we build. Since the invention of the digital

computer there is a trend to create machines that interact directly with the external world

without the human in the loop. This brings the complexity of the external world directly

into engineering design. We are not yet totally prepared for this, because our

mathematical and physical theories about the external world are mere approximations:

very good approximations in some cases, but rather poor in others. This disturbs the

order of engineering design, and creates performance problems (the worse subsystem

tends to limit the performance of the full system) Mars’ pathfinder mission .

System optimality is also a rising concern to save resources and augment the

performance/price ratio. We could think that designing optimally each sub-system would

bring global optimality, but this is not always true. So optimal design of complex systems

is a difficult problem that has also to take into consideration the particular type of system

function, that is, the complexity of the environment is once again present. We can

conclude that the current challenges faced in engineering are the complexity of the

systems, the need for optimal performance, and the autonomous interaction with the

environment that will require some form of intelligence. These are the challenges for XXI

century (and beyond) engineering.

Whenever there is a challenge, we should look elsewhere for answers. Quite often the

difficulty of a task is also linked to the particular method we are using to find the solution.

Is building machines by specification the only way to proceed?

Let us look at living creatures from an engineering systems perspective. The cell is the

ultimate optimal factory building directly from the environment at the fundamental

molecular level what it needs to carry out its function. The animals we observe today

interact efficiently with the environment (otherwise they would not have survived), they

work very close to optimality in terms of resources (otherwise they would have been

replaced in their niche by more efficient animals), and they sure are complex. Biology has

in fact conquered already some of the challenges we face in building engineering

 6

systems, so it is worthwhile to investigate what are the principles at work

Biology has found a set of inductive principles that are particularly well tuned to the

interaction with a complex and unpredictable environment. These principles are not

known explicitly, but are being intensively studied in biology, computational

neurosciences, statistics, computer science and engineering. They involve extraction of

information from sensor data (feature extraction), efficient learning from data, creation of

invariants and representations, and decision making under uncertainty. In a global sense

autonomous agents have to build and fit models to data through their daily experience,

they have to store these models, choose which shall be applied in each circumstance,

and assess the likelihood of success for a given task. An implicit optimization principle is

at play, since the goal is to do the best with the available information and resources.

From a scientific perspective, biology uses adaptation to build optimal system

functionality. The anatomical organization of the animal (the wetware) is specified in the

long term by the environment (through evolution), and in the short-term it is used as a

constraint to extract in real time the information that the animal needs to secure

survivability. At the nervous system level, it is well accepted that the interaction with the

environment molds the wetware using a learning from examples metaphor.

1.1. Neural and Adaptive systems
Neural and adaptive are a unique and growing interdisciplinary field that studies adaptive,

distributed, and mostly nonlinear systems, three of the ingredient found in biology. We

believe that neural and adaptive systems should be considered another tool in the

scientist/engineers toolbox. They will complement effectively the present engineering

design principles and help build the preprocessors to interface with the real world, and

the optimality needed in complex systems. When applied correctly the performance of a

neural or adaptive system may considerably outperform other methods.

Neural and adaptive systems are used in many important engineering applications such

as, signal enhancement, noise cancellation, classification of input patterns, system

 7

identification, prediction, and control. They are used in many commercial products such

as: modems, image processing and recognition systems, speech recognition, frontend

signal processors, biomedical instrumentation, etc. We expect that the list we will grow

exponentially in the near future.

The leading characteristic of neural and adaptive systems is their adaptivity, which brings

a totally new system design style (Figure 1). Instead of being built a priori from

specification, neural and adaptive systems use external data to automatically set their

parameters. This means that neural systems are parametric. It also means that they are

made “aware” of their output through a performance feedback loop that includes a cost

function. The performance feedback is utilized directly to change the parameters through

systematic procedures called learning or training rules, such that the system output

improves with respect to the desired goal (i.e. that the error decreases through training).

ADAPTIVE

SYSTEM (W)

C
O
S
T

input output

desired

error
training
algorithm

change parameters

Figure 1. Adaptive system’s design methodology

The system designer has to specify just a few but crucial steps in the overall process:

he/she has to decide the system topology, to choose a performance criterion, to design

the adaptive algorithms. In neural systems the systems parameters are modified in a

selected set of data called the training set, and fixed during operation. So the designer

has to know how to specify the input and desired response data and when to stop the

training phase. In adaptive systems the system parameters are continuously adapted

during operation with the current data. We are at a very exciting stage in neural and

 8

adaptive system development because:

• We now know some powerful topologies that are able to create universal input-output
mappings.

• We also know how to design general adaptive algorithms to extract information from data and
adapt the parameters of the mappers.

• We are also starting to understand the pre-requisites for generalization, i.e. to guarantee that
the performance in the training set can be extended to the data found during system
operation.

Therefore we are in a position to design effective adaptive solutions to moderately difficult

real world problems. Due to the practicality derived from these advances we believe the

time is right to teach adaptive systems in undergraduate engineering and science

curricula.

Throughout this textbook we will be explaining the principles that are necessary to make

judicious choices about the design options for neural and adaptive systems. The

discussion is slanted towards engineering, both in terminology and in perspective. We

are very much interested in the engineering model-based approach, and in explaining the

mathematical principles at work. We center the explanation on concepts from adaptive

signal processing, which are rooted in statistics, pattern recognition and digital signal

processing. Moreover, our study will be restricted to model building from data.

1.2 Experimental Model Building
The problem of data fitting is one of the oldest in experimental science. The real world

tends to be very complex, unpredictable, and the exact mechanisms that generate the

data are often unknown. Moreover, when we collect physical variables the sensors are

not ideal (finite precision, noisy, constraint bandwidth, etc.) so the measurements do not

represent exactly the real phenomena. One of the quests in science is to estimate the

underlying data model.

The importance of inferring a model from the data is to apply mathematical reasoning to

the problem. The major advantage of a mathematical model is the ability to understand,

explain, predict and control outcomes in the natural system [Casti]. Figure 2 illustrates the

 9

data modeling process. The most important advantage of the existence of a formal

equivalent model is the ability to predict the natural system behavior at a future time and

to control its outputs by applying appropriate inputs.

Observable
Natural
System

Formal
Model

Natural World

Mathematical
world

Predict

Decoding

Measurements

Figure 2. Natural systems and formal models

In this chapter we will address the issues of fitting data with linear models, which is called

the linear regression problem. Notice that we have not specified what the data is,

because it is really immaterial. We are seeking relationships between the values of the

external (observable) variables of the natural system in Figure 1. So this methodology

can be applied either to meteorological data, biological data, financial data, marketing

data, engineering data, etc.

1.2 Data Collection
The data collection phase must be carefully planned to ensure that:

• data will be sufficient,

• data will capture the fundamental principles at work,

• data is as free as possible from observation noise.

 10

X D
1 1.72
2 1.90
3 1.57
4 1.83
5 2.13
6 1.66
7 2.05
8 2.23
9 2.89
10 3.04
11 2.72
12 3.18

Table 1 - Regression Data

Table I presents a data example with two variables x, d in tabular form. The

measurement x is assumed error free, and d is contaminated by noise. By observing

Table I very little can be said about the data, except that there is a trend, i.e. when x

increases d also increases. Our brain is somehow able to extract much more information

from figures than numbers, so data should be first plotted before performing data analysis.

Plotting the data allows verification, ensures the researcher that the data was collected

correctly and provides a “feel” for the relationships that exist in the data (e.g. natural

trends, etc.).

Go to the Next Section

2. Linear models
From the simple observation of Figure 3, it is obvious that the relationship between the

two variables x and d is complex, if one assumes that no noise is present. However there

is an approximate linear trend in the data. The deviation from the straight line could be

produced by noise, and underlying the apparent complexity could be a very simple

(possibly linear) relationship between x and d, i.e.

 11

d wx b≈ + Equation 1

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 1

x

d

2

Figure 3. Plot of x versus d

or more specifically,

d wx b yi i i i= + + = +ε iε Equation 2

where εi is the instantaneous error that is added to yi (the linearly fitted value), w is the

slope and b is the y intersect (or bias). Assuming a linear relationship between x and d

has the appeal of simplicity. The data fitting problem can be solved by a linear system

with only two free parameters, the slope w and the bias b.

w

Σ

b

xi

+1

yi

PE

Figure 4 - Linear Regression Processing Element

The system of Figure 4 will be called the linear processing element (PE), or ADALINE

 12

(for adaptive linear element) and it is very simple. It is built from two multipliers and one

adder. The multiplier w scales the input, and the multiplier b is a bias, which can also be

thought of as an extra input connected to the value +1.The parameters (b, w) have

different functions in the solution. We will be particularly interested in studying the

dependence of the solution on the parameter(s) that multiply the input xi.

NeuroSolutions 1

1.1 The Linear Processing Element in NeuroSolutions

The goal of this book is to demonstrate as many concepts as possible through

demonstrations and simulations. Neurosolutions is a very powerful Neural

Network/Adaptive System design and simulation package which we will use for the

demonstrations. Neurosolutions constructs adaptive systems in a Lego style, i.e.

component by component. The components are chosen from palettes, selected

with the mouse and dropped in the large window called the breadboard. This

object oriented methodology allows for the simple creation of adaptive systems by

simply “dragging and dropping” components, connecting them, and then adjusting

their parameters. Particularly in the early chapters, we will automatically create

the adaptive systems for you through a set of “macros”. This will shield you from

the details of Neurosolutions until you have a better grasp of the fundamentals of

adaptive systems and the use of Neurosolutions.

In this first example, we introduce a few simple components. The first component

required in any simulation is an input component, which belongs to the Axon

family. Its function is to receive data from the computer file system or from signal

generators within the package. In this case, we will add a file input component to

the input axon to read in the data from Table 1. The linear PE shown in figure 3

can be constructed with a Synapse and a BiasAxon. The Synapse implements a

sum of products and the BiasAxon adds the bias. The output of such system is

exactly Eq. 2. The “controller” manages the system and controls the firing of data

 13

through the system. Since Table 1 has 12 data points, the controller is configured

to send 12 points through the system.

The purpose of this example is to display the output of the linear PE, which is a

line, and modify its location in the space by entering different slope and bias

values. To display the input and regression line, we use the DataStorage

component (stores 12 samples) and the Scatter Plot component. The Scatter Plot

component allows us to plot the input (x axis) versus the system response (y axis).

We also add two edit boxes to allow you to change the values of the two

parameters, the weight (slope) and bias (y-intercept). After changing these

parameters, you use the “control palette” to run the network.

The Run Button is the green triangle and tells the controller to send the data

through the network. The other buttons are not important now, but will be used

and explained later. Now run the NeuroSolutions Example by clicking on the

yellow NeuroSolutions icon below. It will walk you through the creation of the

breadboard and allow you to see how the regression line changes as you change

the weight (slope) and bias (y intercept).

 NeuroSolutions Example

 14

We face a problem when trying to fit a straight line to the noisy observations of Table I. A

single line will fit any two observations (two points define a line), but it is unlikely that all

points will fall on exactly the same line. Since no single line will fit every point, a global

property of the points is needed to find the best fit. The problem of fitting a line to noisy

data can be formulated as follows: what is the best choice of (w, b) such that the fitted

line passes the “closest” to all the points?

Goto Next Section

3. Least Squares
Least squares solves the problem by finding the line for which the sum of the square

deviations (or residuals) in the d direction (the noisy variable direction) are minimized.

The fitted points in the line will be denoted by ii wxbd +=
~

 . The residuals are defined

as iii dd ~
−=ε . The fitted points id~ can also be interpreted as approximated values

of di estimated by a linear model when the input xi is known,

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12

Residuals

regression line
y=1.33 + .14x

Fitted
points

Figure 5. Regression line showing the deviations.

iiiii ddwxbd ε=−=+−
~)(Equation 3

This linear model will be called the linear regressor. Estimated quantities will be denoted

by the tilda ~ throughout the book. The outputs of the linear system of Figure 4 are the

 15

fitted points, i.e. in Figure 5. In order to pick the line which best fits the data, we

need a criterion to determine which linear estimator is the “best”. The average sum of

square errors J (also called the mean square error (MSE) (MSE)) is a widely utilized

performance criterion given by

~d yi = i

J
N i

i

N

=
=
∑1

2
2

1
ε

 Equation 4

where N in the number of observations.

NeuroSolutions 2

1.2 Computing the MSE for the linear PE

In order to create a simulation that displays the MSE, we have to add a new

component to the breadboard, the L2Criterion. The L2Criterion implements the

mean square error Eq. 4 . The L2Criterion requires two inputs to compute the

MSE – the system output and the desired response. We will attach the L2Criterion

to the output of the linear PE (system output) and attach a file input component to

the L2Criterion to load in the value of the desired response from Table 1. In order

to visualize the MSE, we will place a MatrixViewer probe over the L2 criterion (cost

access point). This MatrixViewer simply displays the data from the component

that it resides over – in this case, the mean square error.

Run the demonstration and try to set the slope and bias to minimize the mean

square error. Compute by hand the error according to Eq. 4 and see if it matches

the value displayed.

 16

 NeuroSolutions Example

Our goal is to minimize J analytically, which according to Gauss can be done by taking its

partial derivative with respect to the unknowns and equate the resulting equations to zero,

i.e.

∂
∂
∂
∂

J
b
J
w

=

=

⎧

⎨
⎪

⎩
⎪

0

0
 Equation 5

which yields after some manipulation Click here for Least Squares Derivations

b
x d x x d

N x x

i
i

i
i

i
i

i i
i

i
i

=
−

−

∑ ∑ ∑ ∑
∑

2

2[()]

w
x x d d

x x

i i
i

i
i

=
− −

−

∑
∑

()(

()2

)

 Equation 6

where the bar represents the variable’s mean value
x

N
xi

i

N

=
=
∑1

1 .

This procedure to determine the coefficients of the line is called the least square method.

If we apply these equations to the data of Table I, we get the regression equation (best

line through the data)

d x= +013951 133818. .
The least square computation for a large data set is time consuming, even with a

computer.

NeuroSolutions 3

1.3 Finding the minimum error by trial and error

Enter these values for the slope and bias by typing them in the respective Edit

Boxes. Verify that with these values the error is the smallest. Change the values

slightly (in either direction) and see that the MSE increases. Enter a negative slope

and see how the error increases a lot. For the negative slope, what is the value of

 17

the bias that gives the smallest error? Note that when one of the coefficients is

wrong, the value of the other for best performance is also wrong, i.e. they are

coupled.

It is important to explore the NeuroSolutions breadboards. The best way to

accomplish this is to open the Inspector associated with each icon. Select a

component with the mouse. Then press the right mouse button, and select

properties. The Inspector will appear in the screen. The Inspector has fields that

allow us to configure the NeuroSolutions components, and tell us what are the

settings being used. For instance, go to the input Axon and open the inspector.

You will see that it has one input and one output and no weights (go to the soma

level to look at the weights). If you do the same in the Synapse you will see that it

also has a single input and output and one weight which happens to be our slope

parameter. The BiasAxon has a single input and a single output and has a single

weight that is our bias.

The large barrel on the input Axon is a probe that collects data. Since the barrel is

placed on the activity point, it is storing the 12 data samples that are injected into

the network. This is exactly what gets displayed in the x axis of the ScatterPlot.

The y axis is sent from the L2Criterion by the small barrel (a data transmitter). So

the Scatter plot is effectively displaying the pairs of points (xi,di). Likewise it is

also displaying the output of the system in blue, i.e. the pairs of points (xi,yi).

If you want to know what the component is and what it does, just go to the control

bar, select the arrow with the question mark, and click on the component that you

want to know about (this is called context sensitive help).

 NeuroSolutions Example

3.1 Correlation Coefficient
We have found a way to compute the regression equation, but we still do not have a

 18

measure of how successfully the regression line represents the relationship between x

and d. The size of the Mean Square Error (J) can be used to determine which line best

fits the data, but it doesn’t necessarily reflect whether a line fits the data at all because

the MSE depends upon the magnitude of the data samples. For instance, by simply

scaling the data, one can change the MSE without changing how well the data is fit by

the regression line. The correlation coefficient ® solves this problem by comparing the

variance of the predicted value with the variance of the desired value variance . The

value r² represents the amount of variance in the data captured by the linear regression:

()
()

r
y d

d d

i
i

i
i

2

2

2=
−

−

∑

∑
 Equation 7

If we substitute yi by the equation of the regression line and operate, we obtain Derivation

of correlation coefficient

()()

() ()
r

x x d d

N

d d

N

x x

N

i i
i

i
i

i
i

=

− −

− −

∑

∑ ∑2 2

 Equation 8

The numerator is the covariance of the two variables (see Appendix), and the

denominator is the product of the corresponding standard deviation . The correlation

coefficient is confined to the range [-1,1]. When r =1 there is a perfect positive correlation

between x and d, i.e. they covary which means that they vary by the same amount. When

r=-1, there is a perfect negative correlation between x and d, i.e. they vary in opposite

ways (i.e. when x increases, y decreases by the same amount). When r=0 there is no

correlation between x and d, i.e. the variables are called uncorrelated. Intermediate

values describe partial correlations. For our example r=0.88 which means that the fit of

the linear model to the data is reasonably good.

 19

The method of least squares is very powerful. Estimation theory says that the least

square estimator is the “best linear unbiased estimator” (BLUE), since it has no bias and

has minimal variance among all possible estimators. Least squares can be generalized to

higher order polynomial curves such as quadratics, cubics, etc. (the generalized least

squares). In this case nonlinear regression models are obtained. More coefficients need

to be computed but the methodology still applies. Regression can also be extended to

multiple variables (7. Regression for multiple variables). The dependent variable d in

multiple variable regression is a function of a vector , where T means

the transpose. In this book vectors are denoted by bold letters. In this case the regression

line becomes a hyperplane in the space x1,x2,...xp. This case will be studied later in the

chapter.

T
pxx],...,[1=x

Go to Next Section

4. Adaptive Linear Systems

4.1. Least squares as a search for the parameters of a linear system
The purpose of least squares is to find parameters (b, w) that minimize the difference

between the system output yi and the desired response di. So, regression is effectively

computing the optimal parameters of an interpolating system (linear in this case) which

predicts the value of d from the value of x.

 20

 (b,w) +

Change
Parameters

xi
yi ε i

di

-

y

b

d1

x1 x

y=wx+b

di

d2

x2 xi

Figure 6. Regression as a linear system design problem

Figure 6 shows graphically the operation of adapting the parameters of the linear system.

The system output y is always a linear combination of the input x with the bias, so it has

to lie on a straight line of equation y=wx+b. Changing b modifies the y intersect, while

changing w modifies the slope. Therefore we conclude that the goal of linear regression

is to adjust the position of the line such that the average square difference between the y

values (on the line) and the cloud of points di i.e. the criterion J is minimized.

The key point is to recognize that the error contains information that can be used to

optimally place the line. Figure 6 shows this by including a subsystem that accepts the

error as input and modifies the parameters of the system. Thus, the error εi is fed back to

the system and indirectly affects the output through a change in the parameters (b,w).

Effectively the system is made “aware” of its performance through the error. With the

incorporation of the mechanism that automatically modifies the system parameters, a

very powerful linear system can be built that will constantly seek optimal parameters.

Such systems are called Neural and Adaptive systems, and are the focus of this book.

4.2. Neural and Adaptive systems
Before pursuing the study of adaptive systems, it is important to reflect briefly on the

implications of neural and adaptive systems in Engineering design. System design

usually begins with specifications. First the problem domain is studied and modeled,

 21

specifications are established, and then a system is built to meet the specifications. The

key point is that the system is built to meet the current specifications and will always use

the designed set of parameters, even if the external conditions change.

Here we are proposing a very different system design approach based on adaptation

which has a biological flavor to it. In the beginning the system parameters may be way off,

creating a large error. However, through the feedback from the error, the system can

change its parameters to decrease the error as much as possible. The system’s

“experience” with the data designs the best set of parameters. An adaptive system is

more complex because it not only has to accomplish the desired task, but also has to be

equipped with a subsystem that adapts its parameters. But notice that even if the data

changes in the future, this design methodology will modify the system parameters such

that the best possible performance is obtained. Additionally, the same system can be

used for multiple problems.

There are basically two ways to adapt the system parameters: supervised learning and

unsupervised learning. The method described until now belongs to supervised learning

because there is a desired response. Later on in the book we will find other methods that

also adapt the system parameters, but using only an internal rule. Since there is no

desired response these methods are called unsupervised. We will concentrate here on

supervised learning methods.

The ingredients to pursue adaptive system design are:

• a system (linear in this case) with adaptive parameters;

• the existence of a desired or target response d;

• an optimality criterion (the MSE in this case) to be minimized;

• a method (subsystem) to compute the optimal parameters.

The method of least squares finds the optimal parameters (b,w) analytically. Our goal is

to find alternate ways of computing the same parameters using a search procedure.

 22

4.3. Analysis of the error in the space of the parameters - The
performance surface.

Let us analyze the mean square error (J) as we change the parameters of the system (w

and b). Without loss of generality, we are going to assume that b=0 (or equivalently that

the mean of x and d have been removed), such that J becomes a function of the single

variable w

() ()J
N

d wx
N

x w d x w di i
i

i i i
i

= − = − +∑ ∑1
2

1
2

2
2 2 2 2

i
 Equation 9

If w is treated as the variable and all other parameters are held constant, one can

immediately see that J is quadratic on w with the coefficient of w² (e.g. xi²) being always

positive. In the space of the possible w values, J is a parabola facing upwards (J is

always positive since it is a sum of squares). The function J(w) is called the Performance

surface for the regression problem (Figure 7). The performance surface is an important

tool that helps us visualize how the adaptation of the weights affects the mean square

error.

J

Jmin

w* w

Performance
Surface

Figure 7. The performance surface for the regression problem

NeuroSolutions 4

1.4 Plotting the performance surface

 23

The performance surface is just a plot of the error criterion (J) versus the value of

the weights. So what we will do is to vary the Synapse weight (which corresponds

to the slope parameter of the linear regressor) between two appropriate values

during the simulation. We can imagine that the error will be minimum at an

intermediate value of the weight, and it will increase for both lower values and

higher values.

In order to modify incrementally the Synapse weight we will attach a “linear

scheduler” to the Synapse, and place the MatrixViewer on it so we can see how the

weight is changing. In order to visualize the MSE we will bring another ScatterPlot

to the L2 criterion component. This will allow us to plot the cost versus weight

(performance surface).

Now, run the example and see how the slope parameter of the linear PE affects the

mean square error of the linear regressor. As we are going to see the input and

desired signals affect tremendously the shape of the performance surface. But can

you change the shape of the performance curve without touching the data files?

Let us change the L2Criterion. Go to Palettes and open the ErrorCriteria. Click on

the Lp criterion and bring the pointer to the breadoard. Notice that the pointer

changed to a stamper. If you left click on the L2Criterion component, the L2 is

substituted by the new component which computes a cost given by

∑ε=

i

p
ip

J 1

By default the norm is p=5. Run the simulation again. What do you see? Does the

location of the minimum change appreciably? What about the shape of the

 24

performance surface? Do you understand now better the function of the cost?

 NeuroSolutions Example

Using the performance surface, we can develop a geometric method for finding the value

of w, here denoted by w*, which minimizes the performance criterion. Previously, we

computed w* by setting to zero the derivative of J with respect to w.

The gradient of the performance surface is a vector (with the dimension of w) which

always points towards the direction of maximum J change and with a magnitude equal to

the slope of the tangent of the performance surface (Figure 8). If you visualize the

performance surface as a hill-side, each point on the hill will have a gradient arrow which

points in the direction of steepest ascent at that point, with larger magnitudes for steeper

slopes. Thus, a ball rolling down the hill will always attempt to roll in the opposite

direction of the gradient arrow (steepest descent). The slope at the bottom is zero, so the

gradient is also zero (that is the reason the ball stops there).

In our special case the gradient has just one component along the weight axis w

 given by JJ w∇=∇

∇ =w J
J
w

∂
∂ Equation 10

gradient definition and construction A graphical way to construct ∇ w J at a point w0 is

to first find the level curve (curve of constant J value) that passes through the point (also

called the contour plot). Then take the tangent to the level curve at w0. The gradient

component is always perpendicular to the contour curve at w0, with a magnitude

given by the partial derivative of J with respect to the weight w (Eq. 10). For one weight

as in Figure 8 (1-Dimensional problem) the construction is simplified and we have to only

find the direction of the gradient on the axis.

∇ w J

 25

w

J Performance Surface

w*

Jmin

w0

∇ Jw 0

J w 0 Δ w+() J w 0 Δ w–()–
2 Δ w

Δ w 0→

lim=

w
0
+Δww

0
-Δw

gradient

gradient magnitude

Figure 8. Performance surface and its gradient

At the bottom of the bowl, the gradient is zero, because the parabola has slope 0 at the

vertex. So, for a parabolic performance surface, computing the gradient and equating it to

zero finds the value of the coefficients that minimize the cost, just as we did in Eq.6 . The

important observation is that the analytical solution found by the least squares coincides

with the minimum of the performance surface. Substituting the value of w* into Eq.9 , the

minimum value of the error (Jmin) can be computed.

more derivation of performance surface

NeuroSolutions 5

1.5 Comparison of performance curves for different data sets

In this example, we will provide two sets of input files and two sets of output files.

By changing the input data we will find that the minimum error, its location in the

weight space (a weight line in this 1D example), as well as the shape of the

performance surface changes. On the other hand, if we change the desired signal,

only the minimum value of the performance and its location changes, but the

overall shape remains de same.

 NeuroSolutions Example

 26

4.4. Search of the performance surface with steepest descent

Since the performance surface is a paraboloid which has a single minimum, an alternate

procedure to find the best value of the coefficient w is to search the performance surface

instead of computing the best coefficient analytically by Eq.6 . The search for the

minimum of a function can be done efficiently using a broad class of methods based on

gradient information. The gradient has two main advantages for search.

• The gradient can be computed locally.

• The gradient always points in the direction of maximum change.

If the goal is to reach the minimum, the search must be in the direction opposite to the

gradient. So, the overall method of search can be stated in the following way:

Start the search with an arbitrary initial weight w(0), where the iteration is denoted by the

index in parenthesis. Then compute the gradient of the performance surface at w(0), and

modify the initial weight proportionally to the negative of the gradient at w(0). This

changes the operating point to w(1). Then compute the gradient at the new position w(1),

and apply the same procedure again, i.e.

w k w k J k() () (+ = −1)η∇ Equation 11

where η is a small constant and J∇ denotes the gradient of the performance surface at

the kth iteration. η is used to maintain stability in the search by ensuring that the

operating point does not move too far along the performance surface. This search

procedure is called the steepest descent method. Figure 9 illustrates the search

procedure

 27

J

Jmin

w* w

Performance
Surface

Gradient
Vectors

w(0) w(1)..........

start
here

move this way by J(1)ηΔmove this way by J(0)ηΔ

Figure 9. The search using the gradient information

If one traces the path of the weights from iteration to iteration, intuitively we see that if the

constant η is small, eventually the best value for the coefficient w* will be found.

Whenever w>w*, we decrease w, and whenever w<w*, we increase w.

Goto Next Section

5. Estimation of the gradient - the LMS algorithm

An adaptive system can use the gradient to optimize its parameters. The gradient,

however, is usually not known analytically, and thus must be estimated. Traditionally, the

difference operator estimated the derivative as outlined in Figure 8. A good estimate,

however, requires many small perturbations to the operating point to obtain a robust

estimation through averaging. The method is straight forward but not very practical.

In the late 1960’s Widrow , proposed an extremely elegant algorithm to estimate the

gradient that revolutionized the application of gradient descent procedures. His idea is

very simple: Use the instantaneous value of the gradient as the estimator for the true

quantity. This means to drop the summation in Eq.9 , and define the gradient estimate at

step k as its instantaneous value. Substituting Eq. 4 into Eq.10 , removing the summation,

and then taking the derivative with respect to w yields

 28

()∇ = = ≈ = −∑J k
w

J k
w N w

k k x() () () () ()
∂

∂
∂

∂
ε k

∂
∂

ε ε
1

2
1
2

2 2

 Equation 12

What Eq. 12 tells us is that an instantaneous estimate of the gradient is simply the

product of the input to the weight times the error at iteration k. The amazing thing is that

the gradient can be estimated with one multiplication per weight. This is the gradient

estimate that led to the famous Least Means Square (LMS) algorithm (or LMS rule). The

estimate will be noisy, however, since the algorithm uses the error from a single sample

instead of summing the error for each point in the data set (e.g. the MSE is estimated by

the error for the current sample). But remember that the adaptation process does not

find the minimum in one step. Normally many iterations are required to find the minimum

of the performance surface, and during this process the noise in the gradient is being

averaged (or filtered) out.

If the estimator of Eq.12 is substituted in Eq.11 , the steepest descent equation becomes

w k w k k x k() () () ()+ = +1 ηε Equation 13

This equation is the LMS algorithm. So, with the LMS rule one does not need to worry

about perturbation and averaging to properly estimate the gradient at each iteration, it is

the iterative process that is improving the gradient estimator. The small constant η is

called the step size or the learning rate.

NeuroSolutions 6

1.6 Adapting the linear PE with LMS

Several things have to be added to the previous breadboard of the linear PE to

make it learn automatically using the LMS algorithm. The methodology will be

explained in more detail later. However, the technique used in NeuroSolutions is

called “backpropagation”. In short, the algorithm passes the input data forward

through the network and the error (desired - output) backwards through another

network. The error is propagated through a second layer which can be obtained

 29

from the first with minor and well established modifications (more about this later).

So at every component there is a local activity (the x) and a local error (the ε) such

that the weights of the network can be modified by Eq. 13. NeuroSolutions

implements this technique by adding two additional layers to the network: the

backpropagation layer and the gradient search layer. These two layers can be

automatically added to the breadboard. The backpropagation layer looks like a

small version of the network which sits on top of the original network (in red

instead of orange). The gradient search layer sits on top of the backpropagation

layer and uses the gradient search method to adjust the weights. In our case, the

gradient search layer is a simple “step” layer which implements the gradient

descent rule Eq.13 . Notice that only the components which have adjustable

weights (the synapse (w) and bias axon (bias)) have gradient search components.

In addition to adding the two layers, we need an additional controller to manage

the backpropagation layer. This controller sits above the yellow controller from

before. The backprop controller is where we set parameters like whether we use

batch or on-line learning. In this example, we will use batch learning, i.e. the

system will compute all the weight updates for the training set add them up, and at

 30

the end of the epoch (one presentation of all the training data) update the weights

according to Eq. 13. The initial value of the step size will be set at 0.01. Now we can

click on the start button of the controller to initiate the simulation.

When you run the network, watch the regression line move towards the optimum

value in the ScatterPlot. When the network has finished, notice that the weight is

approximately .139, the bias is approximately 1.33 and the error is approximately

0.033 – all in excellent agreement with the optimal values we computed

analytically.

You should explore this breadboard by entering several values of the stepsize, and

opening the Inspector to see how each component is configured.

 NeuroSolutions Example

5.1. Batch and sample by sample learning

The LMS algorithm was presented in a form where the weight updates are computed for

each input sample, and the weights modified after each sample. This procedure is called

sample by sample learning or on-line training . As we have mentioned, the estimate of

the gradient is going to be noisy, i.e. the direction towards the minimum is going to zigzag

around the gradient direction.

An alternative solution is to compute the weight update for each input sample, but store

these values during one pass through the training set which is called an (epoch) . At the

end of the epoch all the contributions are added, and only then the weights will be

updated with the composite value. This method adapts the weights with a cumulative

weight update, so it will follow the gradient more closely. It is called the batch training

mode or batch learning. Batch learning is also an implementation of the steepest descent

procedure. In fact, it provides an estimator for the gradient that is smoother than the LMS.

We will see that the agreement between the analytical quantities that describe adaptation

 31

and the ones obtained experimentally is excellent with the batch update.batch versus

online learning

In order to visualize the differences between these two update methods, we will plot the

decrease of the error during adaptation (the learning curve) with both of them.

NeuroSolutions 7

1.7 Batch versus online adaptation

It is important to visualize the differences in adaptation for on-line and batch

learning. Up to now we have been using the batch mode. In this example we will

set the Backprop Controller to use on-line training. To display the learning curve,

we have to introduce one new component – the Megascope. The Megascope is a

probe, similar to the Scatter Plot. The Megascope acts just like an oscilloscope –

it plots a continuous stream of inputs, using the iteration number as the x-axis.

To create the learning curve, we simply place a data barrel over the L2 Criterion

and then place a Megascope on top of the data barrel.

We will see that the learning curve is not smooth anymore because we are

updating the weights after each example. Since the individual errors vary from

sample to sample, our updates will make the learning curve noisy. The learning

curve will have a periodic component superimposed on a decaying exponential.

The exponential tells us that we are approaching a better overall solution. The

periodic features show the error obtained for each input sample. So the envelope

is related to the learning curve for the batch mode. Note that the weights never

 32

stabilize, otherwise the performance curve should be smooth and converge to a

single final value. Since there is more noise in on-line learning, we must decrease

the step size to get smoother adaptation. But the price paid is a longer adaptation

time, i.e. the system needs more iterations to get to a predefined final error.

Experiment with the learning rates to observe this behavior.

 NeuroSolutions Example

5.2. Robustness and system testing

One of the interesting aspects of the LMS solution is its robustness. From the picture

given, no matter what is the initial condition for the weights, the solution always

converges to basically the same value. We can even add some noise to the desired

response and find out that the linear regressor parameters are basically unchanged. This

robustness is rather important for real world problems, where noise is omnipresent.

The group of input samples and desired responses (shown in Table I) used to train the

system are called collectively the training set for obvious reasons. It is with their

information that the system parameters were adapted. But once the optimal parameters

are found, the parameters can be fixed and the system can be utilized in new inputs

never encountered before. It will produce for each input a response based on the

parameters obtained during training which should resemble the value of the desired

response for that particular input value.

So we see that the system has the ability to extrapolate responses for new data. This is

an important feature since in general the system will be deployed and one wishes that the

performance obtained in the training set will also apply (generalize) to the new data. But

due to the methodology utilized to derive the parameter values one can never be exactly

sure of how well the system will respond to new data.

For this reason it is a good methodology to use a test set to verify the system

 33

performance before deploying it to the real world application. The test set consists of new

data not used for training, but for which we still know the desired response. It is kind of

the final rehearsal before the play’s inauguration. One should also compute the

correlation coefficient in the test set. Normally we will find a slight decrease in

performance from the training set. If the performance in the test set is not acceptable one

has to go back to the drawing board. When this happens in regression the most common

source is lack of data in the training or not an exhaustive coverage of experimental

conditions. This point will be addressed in more depth in the following chapters.

NeuroSolutions 8

1.8 Robustness of LMS to noise

The LMS algorithm is very robust. It will work from any arbitrary location and even

work well with noise added to the desired data. In order to demonstrate that the

system works well even with noisy data, we will add one additional component to

the breadboard from the previous example – the noise component. The noise

component allows uniform, Gaussian, or “user defined” noise to be added to the

input or desired signals. We will add the noise component to the desired signal

and watch as the system moves close to the optimum location even with the noisy

data.

 NeuroSolutions Example

 34

5.3. Computing the correlation coefficient in adaptive systems

The correlation coefficient, r, tells how much of the variance of d is captured by a linear

regression on the independent variable x. As such, r is a very powerful quantifier of the

modeling result. It has a great advantage with respect to the MSE (mean square error)

because it is automatically normalized, while the MSE is not. However, the correlation

coefficient is “blind” to differences in means because it is a ratio of variances (see Eq.7),

that is, as long as the desired and output co-vary r will be small, in spite of the fact that

they may be far apart in actual value. So one effectively needs both quantities (r and

MSE) when testing the results of regression.

Eq. 7 presents a simple way of computing the correlation coefficient requiring only

knowledge of y and d. Note, however, that y changes during adaptation so one should

wait until the system adapts to read the final correlation coefficient. During adaptation the

numerator of Eq. 7 can be larger than the denominator giving a value for r larger than 1,

which is meaningless. So we propose to compute a new parameter g that is a reasonable

proxy to the correlation coefficient even during adaptation. We subtract a term from the

numerator of Eq. 7 that becomes zero at the optimal setting (i.e.

) but limits g such that its value is always between -1

and 1 even during adaptation. We can write computation of correlation coefficient

*wwwhenrg →→

()

g

y d
y d

y d

d d

i
i

i i
i

i
i

i
i

=

− −
−

−

−

∑
∑

∑

∑

()
()

()
2

2

2

ε

 Equation 14

Note that all these quantities can be computed on line with the information of the error,

the output and the desired response. Remember however that Eq. 14 measures the

correlation coefficient only when the adaline has been totally adapted to the data.

 35

NeuroSolutions 9

1.9 Estimating the correlation coefficient during learning

NeuroSolutions does not include a component to compute the correlation

coefficient. It does, however, allow you to write your own components. These

custom components are called DLLs. A custom component looks just like the

component it takes the place of, except that its icon has “DLL” printed on it. In

this example, we include a custom component to compute the correlation

coefficient. This component looks exactly like an L2 component except it has

“DLL” printed on it.

Plug in the values of the optimal weights and verify that the formula Eq.14 gives

the correct correlation coefficient. Slightly modify w to 0.120 and verify that the

correlation coefficient decreases. If you plug in values for w and b that are very far

away from the fitted regression, this estimation of r using Eq. 14 becomes less

accurate, but still bound by -1 and 1. The example also uses LMS to adapt the

coefficients. Observe that the correlation coefficient is always between -1 and 1

during adaptation and that the final value corresponds to the computed one.

 NeuroSolutions Example

Goto Next Section

6. A Methodology for Stable Adaptation

During adaptation, the learning algorithm automatically changes the system parameters

by Eq.13 . This adaptation algorithm has one parameter (e.g. the step size) that must

be user selected. In order to appropriately set the parameter, the user should have a

good understanding of what is happening inside the system. In this section, we will

 36

quantify the adaptation process and develop visualization tools that will help understand

how well the system is learning.

6.1. Learning curve

As is readily apparent from Figure 9, when the weights approach the optimum value, the

values of J(w(k)) (the MSE at iteration k) will also decrease, approaching its minimum

value Jmin. One of the best ways to monitor the convergence of the adaptation process is

to plot the error at each iteration. The plot of the MSE across iterations is called the

learning curve (Figure 10). The learning curve is as important for adaptive systems as the

thermometer is to check your health. It is an external, scalar, easy to compute indication

of how well the system is learning. But similar to body temperature, it is unspecific, i.e.

when the system is not learning it does not tell us why.

Learning Curves

Number of Iterations

J

Jmin

increasing η

Figure 10. The learning curve

Notice that the error approaches the minimum in an one sided manner (i.e. always larger

than Jmin). As one can expect, the rate of decrease of the error depends on the value of

the step size η. Larger step sizes will take less iterations to reach the neighborhood of

the minimum provided the adaptation converges. However, too large a step size creates

a divergent iterative process and the optimal solution is not obtained. It is interesting to

note that we would like as large a step size as possible because this decreases the

convergence time. However, if the step size is increased too much divergence will result.

 37

So we must seek a way to find the largest possible step size that guarantees

convergence.

NeuroSolutions 10

1.10 The learning curve

The goal of this example is to display the learning curve and show how the

learning rate affects its shape. This will plot the Mean Squared Error over time

which is the Learning Curve, the thermometer of learning.

When you run the simulation, watch as the regression line moves towards the

optimum location how the error moves towards zero. You can also change the

learning rates and watch how the regression line moves faster or slower towards

the optimum location, thus causing the learning curve to be steeper or shallower.

The visualization of the regression line contains more information about what the

system is doing, but is very difficult to compute and display in higher dimensions.

The learning curve, however, is an external, scalar quantity that can be easily

measured with minimal overhead.

 NeuroSolutions Example

6.2. Weight tracks

An adaptive system modifies its weights in an effort to find the best solution. The plot of

the value of a weight over time is called the weight track . Weight tracks are an important

and direct measure of the adaptation process. The problem is that normally our system

has many weights and we don’t know what their optimal values are. Nevertheless the

dynamics of learning can be inferred and monitored from the weight tracks.

In the gradient descent adaptation, adjustments to the weights are governed by two

quantities Eq.11 : the step size η, and the value of the gradient at the point. Even for a

 38

constant step size, the weight adjustments will become smaller and smaller as the

adaptation approaches w*, since the slope of the quadratic performance surface is

decreasing near the bottom of the performance surface. Thus, the weights approach their

final values asymptotically (Figure 11).

Three cases are depicted in Figure 11. If the step size is small, the weight converges

monotonically to w*, and the number of iterations to reach the bottom of the bowl may be

large. If the step size η is increased, the convergence will be faster but still monotonic.

After a value called critically damped, the weight will approximate w* in an oscillatory

fashion (η2>η1), i.e. it will overshoot and undershoot the final solution. The number of

iterations necessary to reach the neighborhood of w* will increase again. If the step size

is too large (η3>η2), the iterative process will diverge, i.e. instead of getting closer to the

minimum, the search will visit points of larger and larger MSE, until there is a numeric

overflow. We say that the learning diverged.

w*• • • •w(0) w(1) w(k) w*
• •• •

w(0) w(1) w*• ••
w(0)

w(k)

w(2) w(2)

w(k)

w(1)

∞→

small η1 η2>η1
too large η3>η2

w* w* w*

w(0) w(0)
w(0)

#iterations #iterations #iterations

weight tracks

Figure 11. Weight tracks and plots of the weight values across iteration for 3 values of η.

NeuroSolutions 11

1.11 Weight tracks

It is very instructive to observe the linear PE parameters during learning, and how

they change as a function of the step size. Let us install a MegaScope over the

 39

Synapse to visualize the slope parameter of the regressor, and over the BiasAxon

to visualize the regressor bias. These are called weight tracks. Run the

simulation and watch how changing the step sizes affects the way the system

approaches its final weights.

The weight tracks are a finer display of how adaptation is progressing, but the

problem is that in systems with many weights, it becomes impractical to observe

all the weight tracks. Why do we say that weight tracks give us a better handle on

the adaptation parameters? Enter 0.02 for the stepsize and see the weight tracks

converge monotonically to their minimum value. Now enter 0.035. The weight

tracks are oscillating towards the final value which means that the system is

already in the underdamped regime (but the learning curve is still monotonically

decreasing towards the minimum at a faster rate). We can expect divergence if we

increase the weighs further. Try 0.038 and see it happen. Relate this behavior with

Figure 11.

 NeuroSolutions Example

6.3. Largest step size for convergence

As we have just discussed, the user would like to choose the largest step size possible

for fastest convergence without creating an unstable system. Since adjustment to the

weights is a product of the step size and the local gradient of the performance surface, it

is clear that the largest step size depends upon the shape of the performance surface.

We saw already that the shape of the performance surface is controlled by the input data

Eq.54 . So we can conclude that the maximum step size will be dictated by the input data.

But how?

If we rewrite the equations which produce the weight values in terms of the first weight

w(0), derivation of largest stepsize

 40

we get

w k w w wk() () (()* *+ = + − −1 1 0ηλ) Equation 15

where

λ = ∑1 2

N
xi

i Equation 16

Since the term (1-ηλ)k is exponential, it must be less than or equal to one to guarantee

weight convergence (and less than one to guarantee convergence to 0, giving

w(k+1)=w*). This implies that

ρ ηλ η
λ

= − < ⇒ <1 1
2

 Equation 17

where ρ is the geometric ratio of the iterative process. Hence, the value of the step size η

must always be smaller than 2/λ. The fastest convergence is obtained with the critically

damped step size of 1/λ. The closer η is to 1/λ the faster is the convergence, but faster

convergence also means that the iterative process is closer to instability. We can

visualize this in Figure 11. When η is increased, a monotonic (overdamped) convergence

to w* is substituted by an alternating (underdamped) convergence that finally

degenerates into divergence.

There is a slight practical problem that must be solved. During batch learning the weight

updates are added together during an epoch to obtain the new weight. This effectively

includes a factor of N in the LMS weight update formula Eq.13 . In order to apply the

analysis of the largest stepsize Eq.17 one has to use a normalized stepsize

η
η

n N
=

 Equation 18

With this modification, even if the number of samples in our experiment changes, the

stepsizes do not need to be modified. Note that for on-line learning (N=1) we get the LMS

rule again. We will always use normalized stepsizes but to make the notation simpler, we

will drop the subscript n in the normalized stepsize. An added advantage of using

 41

normalized stepsizes is that we can switch between on-line updates and batch updates

without having to change the stepsize in the simulations.

This analysis of the largest stepsize Eq.17 also applies in the mean to the LMS algorithm.

However, since the LMS uses an instantaneous (noisy) estimate of the gradient, even

when η obeys Eq.17, instability may occur. When the iterative process diverges, the

algorithm “forgets” its location in the performance surface, i.e. the values of the weights

will change drastically. This means that all the iterations up to that point were wasted.

Hence, with the LMS it is common to include a safety factor of 10 in the largest η

(η=0.1/λ), or to use batch training.

NeuroSolutions 12

1.12 Linear regression without bias

The previous example solved the linear regression problem with one weight and

one bias. In order to compare the equations given above (which are a function of a

single parameter) with the simulations, we have to make a modification in the data

set or in the simulation. Shortly we will see how to extend the analysis for multiple

weights, but for the time being let us work with the simpler case.

We will substitute the BiasAxon by an Axon, a component that simply adds its

inputs, i.e. the regression solution becomes y=wx which has to pass through the

origin. With this new breadboard we can compare the numerical results of the

simulations directly with all the equations derived in this section since there is

only a free parameter. Batch updates will be used throughout.

The optimal value of the slope parameter is computed by Eq.6 , which gives

w=0.30009, with an average error of 0.46. This solution is different from the value

obtained previously (w= 0.139511) for the bias regressor because the regression

line is now constrained to pass through the origin. It turns out that this

constrained solution is worse than before as we can see by the error (0.23 versus

 42

0.033). Observing in the scatter plot the output (red points) and the input samples

(blue) shows clearly what we are describing.

Computing λ Eq.16 yields 54. So, according to Eq.17 the maximum step size is

η=3.6e-2. The critically damped solution is obtained with a step size of 1.8e-2, and

adaptation with a stepsize below this value is overdamped. When we run the

simulator in the overdamped case, the weights approach the final value

monotonically; for the critically damped case, they stabilize quite rapidly; while for

the underdamped case they oscillate around the final value, and the convergence

takes more iterations. Notice also that the linear regressor “vibrates” around the

final position, since the slope parameter is overshooting and undershooting the

optimum value.

According to Eq.19 for the critically damped stepsize τ=1, so the solution should

stabilize in 4 updates (epochs). This stepsize yields the fastest convergence. Go to

the Controller Inspector and use the epoch button to verify the number of samples

until convergence.

 NeuroSolutions Example

6.4. Time constant of adaptation

An alternative view of the adaptive process is to quantify the convergence of w(k) to w* in

terms of an exponential decrease. We know that w(k) converges to w* as a geometric

progression (Eq.15). The envelope of the geometric progression of weight values can be

approximated by an exponential decay exp(-t/τ), where τ is the time constant of weight

adaptation. A single iteration can be linked to a time unit. So one may want to

approximately know how many iterations are needed until the weights converge. The

time constant of weight adaptation can be written:

 43

τ
ηλ

=
1

 Equation 19

derivation of the time constant of weight adaptation

which clearly shows that fast adaptation (small time constant τ) requires large step sizes.

For all practical purposes the iterative process converges after 4 time constants.

The steps used to derive the time constant of weight adaptation can be applied also to

come up with a closed form solution to the decrease of the cost across iterations which is

called the time constant of adaptation. Eq.15 tells us how the weights converge to w*. If

the equation for the weight recursion is substituted in the equation for the cost (Eq.55)

we get

J J w wk= + − −min
*() (()λ ηλ1 02 2)

which means that J also approximates Jmin in a geometric progression, with a ratio equal

to ρ². Therefore the time constant of adaptation is

τ

τ
mse =

2
Since the geometric ratio is always positive, J approximates Jmin monotonically (i.e. an

exponential decrease). The time constant of adaptation describes practically the learning

time (in number of iterations) needed to adapt the system. Notice that these

expressions assume that the adaptation follows the gradient. With the instantaneous

estimate used in the LMS, J may oscillate during adaptation since the estimate is noisy.

But even in the LMS, J will approach Jmin in a one sided way (i.e. always greater than or

equal to Jmin).

6.5. Rattling

Up to now our main focus was the speed of adaptation, i.e. how fast the weights

approximate w*, or equivalently, how fast J approximates Jmin. Unfortunately, this is only

 44

part of the story. For fast convergence we need large step sizes (η). But, when the

search is close to the minimum w*, where the gradient is small but not zero, the iterative

process continues to wander around a neighborhood of the minimum solution without

ever stabilizing. This phenomenon is called rattling (Figure 12), and the rattling basin

increases proportionally to the step size η. This means that when the adaptive process is

stopped by an external command (such as the number of iterations through the data), the

weights may not be exactly at w*. We know they are in a neighborhood of this point, but

not exactly at the optimum.

Jm in

Jfina lw*
• •• ••w(0) w(1)w(2)

FIGURE 12. Rattling of the iteration procedure

If we picture the performance surface (Figure 12), when the final weights are not at w*

there will be a penalty in performance, i.e. the final MSE will be higher than Jmin. In the

theory of adaptation, the difference between the final MSE and the Jmin (normalized by

Jmin) is called the misadjustment M.

M
J J

J
final=

− min

min Equation 20

This means that in search procedures that use gradient descent there is an intrinsic

compromise between accuracy of the final solution (small misadjustment) and speed of

convergence. The parameter that controls this compromise is the step size η. High η

means fast convergence but also large misadjustment, while small η means slow

convergence but little misadjustment.

NeuroSolutions 13

 45

1.13 Rattling

We observed in Example 8 how noisy the learning curve became with the on-line

update. This is an external indication that the weights were changing from sample

to sample even after the system reached the neighborhood of the optimum. The

implication of this random movement in the weights is a penalty in the final MSE.

In this example we will exactly show and quantify the rattling.

The rattling has important consequences for adaptation, since if one sets the

stepsize large for fast convergence we pay a price of inaccurate coefficients, which

is translated in an excess MSE. The rule of thumb for LMS is to use a stepsize that

is 1/10 of the largest possible stepsize. If this is not done the regressor is basically

unusable since the weights ever stabilize. Effectively we do not have a single

regressor but a family of systems, each with a different parameter. We can see this

in the ScatterPlot since the blue dots are no longer in a straight line. For stepsize

close to the largest possible, effectively the MSE for the epoch is smaller than the

theoretical minimum, which is impossible. This happens because the parameters

are changing so much with each update that the slope is being continuous

changed with the present sample. The problem is that when we stop the training

we do not know if the final value of the weight is a good approximation to the

theoretical regression line.

This shows that for adaptive systems the final MSE is only part of the story. We

have to make sure that the system coefficients have stabilized… It is interesting to

note that with batch updates there is no rattling, so in the linear case the batch

solution is more appropriate. Observe this in the simulations by displaying the

MSE for large and small stepsizes. We are just paying a small price of storing the

individual weight updates. For nonlinear systems the batch is unfortunately no

longer always superior to the on-line update as we will see.

 NeuroSolutions Example

 46

This example shows that obtaining a small MSE is a necessary but not sufficient

condition for stable adaptation. Adaptation also requires that the weights of the model

settle onto stable values. This second condition is required because the system can be

endlessly changing its parameters to fit the present sample. This will give always a small

MSE, but from a modeling point of view it is a useless solution because no single model

to fit the data set was found.

6.6. Scheduling the step sizes

As we saw in the latest examples, for fast convergence to the neighborhood of the

minimum a large step size is desired. However, the solution with a large step size suffers

from rattling. One attractive solution is to use a large learning rate in the beginning of

training to move quickly towards the location of the optimum weights but then the learning

rate should be decreased to obtain good accuracy on the final weight values. This is

called learning rate scheduling . This simple idea can be implemented with a variable

step size controlled by

η η() ()n n+ = −1 β Equation 21

where η(0)=η0 is the initial step size, and β is a small constant. Note that the step size is

being linearly decreased at each iteration. If one has control of the number of iterations

we can start with a large step size and decrease it to practically zero towards the end of

training. The value of β needs to be experimentally determined. Alternatively, one can

decrease slowly (in optimization this slow decrease is called annealing) the step size

using either a linear, geometric, or logarithmic rule.

more on scheduling stepsizes

NeuroSolutions 14

1.14 Scheduling of stepsizes

 47

In this demonstration we will use the scheduling component we used previously

(to vary the weights and show the performance surface) to vary the step size. The

scheduler is a component that takes an initial value from the component beneath it

and changes according to a predetermined rule. Here we use the linear rule, and

since we want to decrease the stepsize the factor β is negative. We should set a

maximum and a minimum value just to make sure that the parameters are always

within the range we want. β should be set according to the number of iterations

and the initial and final values (Initμ -βN=residualμ).

Here the important parameter is the minimum (the residual stepsize is set at 0.001)

because after scheduling we may want to let the system fine tune its parameters to

the minimum. However, notice that this implies that the parameter is already in its

neighborhood, and this depends upon a lot of unknowns. So if the scheduling is

not right the adaptation may stall in positions far from the minimum.

You should explore the breadboard by entering other values for b and the final

value and see their impact on the final weight value. You can also bring the

exponential or the logarithmic schedulers and see how they behave. Which one do

you prefer for this case?

 NeuroSolutions Example

Goto Next Section

7. Regression for multiple variables

Assume that d is now a function of several inputs x1, x2,...xp (independent variables), and

the goal is to find the best linear regressor of d on all the inputs (Figure 13). For p=2 this

corresponds to fitting a plane through the N input samples, or a hyperplane in the general

case of p dimensions.

 48

x1 x2

d
y=b+w1x1+w2x2

•

• •

•
•

•

•
•

•

••
•

b

FIGURE 13. Fitting a regression plane to a set of samples in 2D space.

As an example, let us assume that we have two variables x1 (speed) and x2 (feed rate)

that affect the surface roughness (d) of a machined workpiece. In abstract units the

values of x1, x2, d for 15 workpieces are presented in Table II.

x1 x2 d
1 2 2
2 5 1
2 3 2
2 2 2
3 4 1
3 5 3
4 6 2
5 5 3
5 6 4
5 7 3
6 8 4
7 6 2
8 4 4
8 9 3
9 8 4

The goal is to find how well one can “explain” the quality of machining by the two

variables x1 and x2, and which is the most important parameter.

As before, we will assume that the measurements x are noise free and that d is

contaminated by a noise vector ε with some properties (Gaussian distributed with

components that are zero mean, equal variance σ2 and uncorrelated with the inputs).

 49

The regression equation when p=2 is now:

ε i i i id b w x w x= − + +(1 1 2 2) Equation 22

Where xi1 is the ith value of x1 (the ith workpiece in the training set). In the general case,

we write the equation as:

1...N=i
0

∑∑
==

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=ε

p

k
ikki

p

ik
ikkii xwdxwbd

 Equation 23

where we made w0=b and xi0=1 (compare with Eq.3). The goal of the regression problem

is to find the coefficients w0, ….wp. To simplify the notation we will put all these values

into a vector w = [w0, ….wp] that minimizes the MSE of εi over the n samples. We will

use bold letters for vectors. Figure 14 shows that the linear PE now has p inputs and one

bias.

∑

x1i

x2i

xpi

+1

w1

w2

wp

b

yi

di

+
- ε i

Regression System

FIGURE 14. Regression system for multiple inputs

The mean square error (MSE) becomes for this case

J
N

d w xi ik ik
k

p

i
= −

⎛

⎝
⎜

⎞

⎠
⎟

=
∑∑1

2 0

2

 Equation 24

The solution to the extreme (minimum) of this equation can be found exactly in the same

way as before, i.e. by taking the derivatives of J with respect to the unknowns (wk), and

equating the result to zero. derivation of normal equations

 50

This solution is the famous normal matrix equation

x d w x xij i
i

k
k

p

ik ij
i

∑ ∑ ∑=
=0

 j = 0,1,...p
 Equation 25

The normal equations can be written much more compactly with matrix notation (see the

Appendix). Let us define

R
N

x xkj ik ij
i

= ∑1

 Equation 26

as the autocorrelation of the input samples for indices k, j. As you can see the

autocorrelation measures similarity across the samples of the training set. When k=j, R is

just the sum of the squares of the input samples (the variance in the data). When k differs

from j, R measures the sum of the crossproducts for every possible combination of the

indices. As we did for w, we will also put all these Rkj values into a matrix R, i.e.

 . Thus one obtains pairwise information about the structure of

the data set.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

ppp

p

RR

RR
R

...
.........

...

0

000

Let us call

∑=
i

iijj dx
N

P 1

 Equation 27

the crosscorrelation of the input x for index j and desired response d, which can be also

put into a vector p of dimension p+1. As we can expect, Pj measures the similarity

between the input x and the desired response d at shift j. Substituting these definitions in

Eq.25 , the set of normal equations can be written simply

p Rw w R p= −* * or 1= Equation 28

where w is a vector with the p+1 weights wi. w* represents the value of the p+1 weights

 51

for the optimum (minimum) solution. R-1 denotes the inverse of the autocorrelation matrix

(see Appendix). Eq. 28 states that the solution of the multiple regression problem can be

computed analytically as the product of the inverse of the autocorrelation of the input

samples multiplied by the crosscorrelation vector of the input and the desired response.

The least square solution for this problem yields

y x= x+ −1353480 0 286191 0 0041951 2. . .
It is remarkable that we are able to write an equation that describes the relationship

between the two variables when only measured data samples were given. This attests

the power of linear regression. But as for the single variable case, we still do not know

how accurately the equation fits the data, i.e. how much of the variance of the input is

actually captured by the regression model. The multiple correlation coefficient rm can

also be defined in the multiple dimensional case for a single output, as multiple variable

correlation coefficient

r
Nd

Ndm

T
x

T=
−

−
w U d

d d

* 2

2
 Equation 29

and measures the amount of variation explained by the linear regression, normalized by

the variance of d. In this expression d is the vector built from the desired responses di,

and U is a matrix whose columns are the input data vectors. For this case rm=0.68, so

there is a large portion of the variability that is not explained by the linear regression

(either the process is nonlinear, or there are more variables involved). We still can

approximate the correlation coefficient for the multiple regression case by Eq. 14 after

the system has adapted.

NeuroSolutions 15

1.15 Multivariable regression

Moving to multiple dimensional inputs is very simple in NeuroSolutions. You

simply change the input and desired files (for the new input data) and change the

 52

input axon to accept two inputs. The rest is automatic. In this example, we will

do all this for you using macros. Note that in the two dimensional case the

regression line is now a regression plane. There is currently not a good way of

showing a plane in three dimensions in NeuroSolutions so we will not have our

regression line plot. When we run the network, we will see that the learning curve

(one of our only indications of whether the network is training correctly) decreases

steadily and that the weights eventually approach the theoretical optimum weights.

The amazing thing about the adaptive system’s methodology is that we changed

the problem, but the solution did not change that much. It is true that we have to

dimension the system properly, choose new values for the stepsize, but the

fundamental aspects of the methodology did not change at all....

 NeuroSolutions Example

7.1. Setting the problem as a search procedure

All the concepts previously mentioned for linear regression can be extended to the

multiple regression case. The performance surface concept can be extended to p

dimensions, making J a paraboloid in p+1 dimensions, facing upwards (Figure 15 depicts

the two weight case). J involves now matrix computations, but it remains a scalar

qunatity that is a quadratic function of the weights

⎥
⎦

⎤
⎢
⎣

⎡
+−= ∑

i

iTT

N
d

J
2

5.0
2

wpRww
 Equation 30

where the superscript T means the transpose.

 53

J

w1
w2

W*

w*1 w*2

{Jmi n

J=4
J=2

J=1

w1

w2

w*1

w*2

J=4
J=2
J=1

FIGURE 15. The performance surface for 2 dimensions and its contour plot.

The coefficients that minimize the solution are

∇ = = − = −J 0 1Rw p w R p* * or Equation 31

which gives exactly the same solution as Eq.28 Derivation of Optimal Solution . In the

space (w1,w2), J is a parabola facing upwards. performance surface properties

Summarizing, the autocorrelation of the input ® completely specifies the shape of the

performance surface Eq.69 . However, the location of the performance surface in the

space of the weights Eq.31 and its minimum value Eq.68 depend also on the desired

response.

NeuroSolutions 16

1.16 Checking the LMS solution with the optimal weights

Let us consider first a least square solution with only two weights w1, and w2, since

we can still compute it easily by hand. For the data set of Table II, the

autocorrelation matrix is Eq.26 Eq.63

R =

⎡

⎣
⎢

⎤

⎦
⎥

1
15

416 429
429 490

To determine the eigenvalues, we solve the equation

 []det R I− =λ 0

 54

which yields λ1=59 and λ2=1.5. From these results we can immediately see that the

eigenvalue spread is roughly 40, so the performance surface paraboloid is very

skewed (i.e. much narrower in one direction). The performance surface is shown in

the following figure. Notice how it is very steep in one direction and very shallow

in the other. Thus, if we train the network with gradient descent, we would expect

it to move very quickly down the steep slope at first and then move slowly down

the valley towards the optimum.

To compute the optimum solution, we first need to compute the crosscorrelation

vector Eq.27 , Eq.65 is

P =

⎡

⎣
⎢

⎤

⎦
⎥

1
15

212
229

For the two dimensional case it is still easy to solve for w1 and w2, by writing Eq.28

416 429 212
429 490 229

1 2

1 2

w w
w w

+ =
+ =

⎧
⎨
⎩

which gives for optimal weights w1=0.2848 and w2=0.2180. The minimum J is 0.390

Eq.68 . When we run the simulator with the BiasAxon substituted by the Axon (no

bias), the network weights will eventually approach the optimum.

 55

 NeuroSolutions Example

7.2. Steepest descent for multiple weights

Gradient techniques can also be used to find the minimum of the performance surface,

but now the gradient is a vector with p+1 components

∇ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

J
∂

∂
∂

∂
J

w
J

wp

T

0
,...,

 Equation 32

The extension of Eq.11 is

w w J() () ()k k+ = −1 η∇ k

Rw

 Equation 33

where all quantities are vectors, i.e. . In order to calculate

the largest step size η, we again rewrite the update equation in the form of

w() [(),... ()]k w k w kp
T= 0

w I R w() () () *k k+ = − +1 η η Equation 34

where I is the identity matrix, R is the input autocorrelation matrix and

 . The solution of this equation is cross coupled, i.e. the

way w converges to w* depends on the behavior of the geometric progression in all the

p+1 directions. So, the simple picture of having w(k+1) converge to w* with a single

geometric ratio as in the unidimensional case has to be modified. One can show that the

weights converge with different time constants, each related to an eigenvalue of R.

convergence for multiple weights case

w* * *() [(),... ()]k w k w kp
T= 0

7.3 Stepzise Control
As we have seen, the set of values taken by the weight during adaptation is called the

weight track. The weight moves in the opposite direction of the gradient at each point, so

the weight track depicts the gradient direction at each point of the performance surface

visited during adaptation. Therefore, the gradient direction tells us about the performance

 56

surface shape. In particular we can construct the contour plot of J since the gradient has

to be perpendicular to the lines that link points with the same J value. It is important to

provide a graphical construction for the gradient at each point assuming we know the

contour plot.

Given a point in a contour, we take the tangent of the contour at the point. The gradient is

perpendicular to the tangent, so the weights will move along the gradient line and

pointing in the opposite direction. Likewise if we run the adaptation algorithm with several

initial conditions and we record the value of J at each point, we can determine the

contour plots by taking ellipses that pass through the points of equal cost and are

perpendicular to the weight tracks.

When the eigenvalues of R are the same (see Appendix), the contour plots are circular

and the gradient always points to the center, i.e. to the minimum. In this case the gradient

descent only has a single time constant as in the 1-D case. But this is an exceptional

condition. In general the eigenvalues of R will be different. When the eigenvalues are

different, the weight track bends because it follows the direction of the gradient at each

point, which is perpendicular to the contours (Figure 17). So the gradient direction does

not point to the minimum, which means that the weight tracks will not be straight lines to

the minimum. The adaptation will take longer for two reasons: first a longer path to the

minimum will be taken. Secondly, the stepsize must be decreased compared with the

circular case. Let us address the stepsize aspect further.

 57

w1

w2

w2(0)
w2(1)

w1(0) w1(1)

w2*

w1*

gradients

w(0)
w(1)

w1

w2

w 2(0)
w 2(1)

w1(0) w 1(1)

w2*

w1*

gradients

w(0)

w(1)

FIGURE 17. Weight track towards the minimum. First is the case of equal eigenvalues.

For guaranteed convergence, the learning rate in each principal direction of the

performance surface must be

iλ
<η<

20
 Equation 35

where λi is the corresponding eigenvalue. The worst case condition to guarantee

convergence to the optimum w* in all directions is therefore,

max

2
λ

<η
 Equation 36

i.e., the step size η must be smaller than the inverse of the largest eigenvalue of the

correlation matrix. Otherwise the iteration will diverge in one (or more) directions. Since

 58

the adaptation is coupled, divergence in one direction will cause the entire system to

diverge.

In the early stages of adaptation, the convergence is primarily along the direction of the

largest eigenvalue since the weight update along this direction will be bigger. On the

other hand, towards the end of adaptation, the algorithm will adapt basically only the

weight associated with the smallest eigenvalue (which correspond to the smallest time

constant). The time constant of adaptation is therefore

min

1
ηλ

=τ
 Equation 37

An implication of this analysis is that when the eigenvalue spread of R is large, there will

be very different time constants of adaptation in each direction. This reasoning gives a

clear picture of the fundamental constraint of adapting the weights using gradient descent

with a single step size η: the speed of adaptation is controlled by the smallest eigenvalue,

while the largest step size is constrained by the inverse of the largest eigenvalue. This

means that if the eigenvalue spread is large, the convergence will be intrinsically slow.

There is no way around it when only a single stepsize is used in the steepest descent.

The learning curve will approach Jmin in a geometric progression as before. However,

there will be many different time constants of adaptation, one per each direction. Initially

the learning curve will decrease at the rate of the largest eigenvalue, but towards the end

of adaptation the rate of decrease of J is controlled by the time constant of the smallest

eigenvalue.estimation of eigenvalue spread

NeuroSolutions 17

1.17 Visualizing the weight tracks and speed of adaptation

According to our previous calculations, the largest stepsize for convergence is

Eq.36 3.3e-2. The critically damped mode along the largest eigenvector should be

1.6e-2. The time constant of adaptation for the largest stepsize is around 20

 59

iterations (epochs for batch), i.e. the convergence should take 80 epochs with this

stepsize.

When we run the simulations, the algorithm converges first along the direction of

the largest eigenvalue (largest eigenvector direction), and then along the direction

of the smallest eigenvector. Since the eigenvalue spread is 40, the steps are much

bigger along the largest eigenvector direction. If we look at the figure below, we

can see that the weights converge perpendicular to the contour plots since this is

the steepest descent path. As we will see, there are two distinct regions in the

learning curve: in the beginning it is controlled by the geometric ratio along the

largest eigenvector, while towards the end it is controlled by the geometric ratio of

the smallest eigenvector.

After running this example and observing the weight tracks let us change the input

data file such that the eigenvalue spread is smaller. Mouse down on the input file

icon and bring up its inspector by clicking the mouse right button. Remove the

present input file, and add the file regression2a.asc from the

NSBook/chapter1/NS30Examples/1. 17 MR weight tracks folder.

 60

The modification was only made in the variable x2, all the rest is the same.

Respond to the panel Associate by clicking on the close button. In the Costumize

panel skip the desired signal, and click on close. You have just modified the input

data to this example. This new file has a much smaller eigenvalue spread, so we

can expect that the weight tracks are basically straight lines to the minimum.

Compute the new eigenvalue spread, and adjust the learning rates such that the

convergence is as fast as possible.

 NeuroSolutions Example

7.4. The LMS algorithm for multiple weights

It is straight forward to extend the gradient estimation given by the LMS algorithm from

one dimension to many dimensions. We just apply the instantaneous gradient estimate

Eq.12 to each element of Eq.33 . The LMS for multiple dimensions reads

w w x() () () ()k k k+ = +1 ηε k

i

 Equation 38

What is interesting is that the LMS adaptation rule still uses local computations, i.e. we

can write for the ith weight

w k w k k x ki i() () () ()+ = +1 ηε Equation 39

Note that although the analysis of the gradient descent techniques is complex, the LMS

algorithm itself is still very simple. This is one reason why the LMS is so widely used. But,

since the LMS is a steepest descent algorithm, the analysis and discussions concerning

the largest step size for convergence and coupling of modes also apply to the LMS

algorithm.

NeuroSolutions 18

1.18 Visualizing weight tracks with on-line learning

 61

In this example, we will switch the backprop controller to on-line learning to

implement the LMS algorithm. Notice that the weight tracks follow basically the

same path as before, but now the path is much more irregular due to the sample by

sample update of the weights. When the eigenvalue spread is very large (the

performance surface is very steep in one direction and shallow in others), the

problem is difficult for LMS to solve. Any small perturbation in the smallest

eigenvector direction gets amplified by the large eigenvalue spread.

 NeuroSolutions Example

7.5. Multiple regression with bias

Up to now we have implemented and solved analytically the multiple regression problem

without bias. The reason for that is only based on simplicity. With two weights we can still

easily solve the multiple regression case by hand, however if the bias is added, we must

do the computations with three parameters. The simulations are transparent to these

difficulties since one just substitutes the Axon by a BiasAxon. Note that the largest

stepsize between the two cases will differ since the input data was effectively changed if

one interprets the bias as a weight connected to an extra constant input of one. Hence

the autocorrelation function changed, and likewise its eigenvalue spread.

We should state that the use of a bias is called the full least square solution and it is the

recommended way to apply least squares. The reason can be understood easily: when a

bias is utilized in the PE the regression line is not restricted to pass through the origin of

the space, and normally smaller errors are achieved. There are two equivalent ways to

set up the full least squares solution for N input variables:

• • The input and desired responses need to be modified such that they

become zero mean variables (this is called the deviation or z scores). In this case a N

weight regression will effectively solve the original problem. The bias b is computed

 62

indirectly by

∑

=

−=
N

i
ii xwdb

1

 where wi are the optimal weights and the bars represent mean values.

• • Alternatively, the input matrix has to be extended with an extra column of 1s (the

first column). This transforms R into a (N+1)x(N+1) matrix, which introduces an

N+1 weight in the solution (the bias).

NeuroSolutions 19

1.19 Linear regression without bias

We will now substitute the a BiasAxon for the Axon in the previous breadboard.

This will effectively provide the regression solution without constraining the

regression plane to pass through the origin. We see that the weight tracks are very

similar in the beginning but that the error continues to drop, and the weights

advancing towards the w1=0 line. This means that the optimal solution changed.

We now have a better solution than before, but with increased complexity of the

performance surface (4 dimensional instead of 3) and an increased number of

adjustable parameters in our system (2 weights and a bias).

 NeuroSolutions Example

7.6. The LMS algorithm in practice

One can use some rules of thumb to choose the step size in the LMS algorithm. The step

size should be normalized by the variance of the input data estimated by the trace of R.

η
η

= 0

tr()R Equation 40

 63

where η0= 0.5 to 0.01. This normalization by the input variance was the original rule

proposed by Widrow to adapt the adaline. We can expect the algorithm to converge in a

number of iterations k given by

k ≈
1

4ηλ min Equation 41

The LMS algorithm has a misadjustment that is basically the trace of R times η

M tr R= η () Equation 42

So with the LMS algorithm, selecting η such that it produces 10% misadjustment means

a training duration in iterations of 10 times the number of inputs.

Go to next section

8. Newton’s method

If you are familiar with numerical analysis, you may be asking why aren’t we using

Newton’s method for the search? Newton’s method is known to find the roots of quadratic

equations in one iteration. The minimum of the performance surface can be equated to

finding the root of the gradient equation Eq.32 , as is outlined by Eq.31 . Hence Newton’s

method can also be used in search. The adaptive weight equation using the Newton’s

method is Newton’s Derivation

)()()1(1 kkk JRww ∇−=+ −
 Equation 43

Comparing with Eq.33 note that the gradient information is weighted by the inverse of the

correlation matrix of the input, and η is equal to one. This means that Newton’s method

corrects the direction of the search such that it always points to the minimum, while the

gradient descent points to the maximum direction of change. These two directions may or

may not coincide (Figure 18).

 64

w1

w2

w1*

w2*

Newton’s direction
Gradient descent

FIGURE 18. Directions of the steepest descent and newton’s method

They coincide when the contour plots are circles, i.e. when the largest and the smallest

eigenvalue of the correlation matrix are the same. When the ratio of the largest to the

smallest eigenvalue (the eigenvalue spread) increases, the slope of the performance

surface in the two direction differs more and more. So for large eigenvalue spreads, the

optimization path taken by gradient descent is normally much longer than the path taken

by Newton’s method. This implies that Newton’s method will be faster than LMS when

the input data correlation matrix has a large eigenvalue spread.

Another advantage of Newton’s method versus the steepest descent is in terms of

geometric ratios or time constant of adaptation. When the gradient is multiplied by R −1

not only the direction of the gradient is being changed but also the different eigenvalues

in each direction are being equalized. What this means is that Newton’s method is

correcting automatically the time constant of adaptation for each direction such that all

the weights converge at the same rate. Hence, Newton’s method has a single time

constant of adaptation, unlike the steepest descent method.

These advantages of the Newton’s method should not come as a surprise, because

Newton’s method uses much more information about the performance surface (the

curvature). In fact, to implement Newton’s method one needs to compute the inverse of

the correlation matrix, which takes significantly longer than the single multiplication

required by the LMS method and also requires global information. Newton’s method is

 65

also brittle, i.e. if the surface is not exactly quadratic, the method may diverge. This is the

reason Newton’s method is normally modified to have also a small step size η instead of

using η=1 as in Eq.40 .

w w R x() () () ()k k k+ = + −1 1η ε k Equation 44

Note that x(k) is a vector and R −1
 is a matrix, so the update for one weight influences

all the other inputs in the system. This is the reason the computations are no longer local

to each weight. However they are not difficult if one assumes that the inverse of R is

known a priori. The case where R −1
 has to be estimated on-line is much more

involved and leads to the recursive least squares (RLS) algorithm.

Alternatively, to improve convergence speed with the LMS, we can implement an

orthogonalizing transformation of the input correlation function followed by an

equalization of the eigenvalues which is called a whitening transformation. (see

Appendix). Since the Newton’s method coincides with the steepest descent for

performance surfaces that are symmetric, this preprocessing will make the LMS perform

as Newton.

NeuroSolutions 20

1.20 Newton’s method

In this example, we implement Newton’s method with a custom DLL. For this

example, we must compute R −1
 and apply Eq.41 to the simulator. The

autocorrelation function for this example is

R =

⎡

⎣
⎢

⎤

⎦
⎥

1
15

416 429
429 490

so R −1
 becomes (see Appendix)

 66

R − =

−
−

⎡

⎣
⎢

⎤

⎦
⎥

1 15
0 0247 0 0217
0 0217 0 0210
. .
. .

By applying Newton’s method to the learning algorithm, we have essentially

compensated the eigenvalue spread. This means that the Newton’s method

behaves as the steepest descent for a circular performance surface where the

steepest descent direction always points directly to the optimal value. Thus,

although the calculations are more complicated and more demanding (we need to

know R −1
), the convergence is much faster (in fact, you can converge in one

epoch!). When we run the simulator, notice that no matter where we start, we

always head directly towards the optimum.

 NeuroSolutions Example

.

Go to next section

9. Analytic versus Iterative solutions

Selecting a search procedure to find the optimal weights is a drastic conceptual change

from the analytic least square solution, albeit equivalent. In learning systems the iterative

solution is the most utilized for several reasons:

When working with learning systems the interest is very often in on-line solutions, i.e.

solutions that can be implemented sample by sample. The analytic solution requires data

to be available before hand to compute the correlation matrix R and crosscorrelation

vector p. Fast computers are required to crank out the solution (inverse of R and product

with p). The method produces a value that immediately gives the best possible

performance. But several problems may surface when applying the analytic approach,

because if the matrix R is ill-conditioned , the computation of R −1
 may not be very

 67

accurate. Moreover, the analytic solution also requires lots of computation time

(computation of a matrix inverse is proportional to the square of the number of columns N

of the matrix. In the big O notation this means O(N²)).

The iterative solution is not free from shortcomings. We already saw that there is no

guarantee that the solution is close to the optimal weight w* when all the input samples

are used by the algorithm. This depends on the data and upon a judicious selection of the

step size η. The accuracy of the iterative solution is not directly dependent upon the

condition number of R, but matrices with large eigenvalue spread produce slow

convergence because the gradient descent adaptation is coupled. As we said previously,

the slowest mode controls the speed of adaptation, while the largest stepsize is

constrained by the largest eigenvalue.

The great appeal of the iterative approach to optimization is that very efficient algorithms

exist to estimate the gradient (e.g. the LMS algorithm). Only two multiplications per

weight are necessary, so the computation scales proportional to the number of weights N

(i.e. O(N) time). Moreover, the method can be readily extended to nonlinear systems,

while the analytic approach for most of the cases of practical relevance can not be

computed.

Go to the next section

10. The Linear Regression Model

We started this chapter by pointing out the advantages of building models from

experimental data. In the previous sections we developed a set of techniques that adapt

the parameters of a linear system (the adaline) to fit as well as possible the relationship

between the input (x) and the desired data (d). This is our first model and it “explains” the

relationship f(x,d) as a hyperplane that minimizes the square distance of the residuals.

 68

We will have the opportunity to study other (nonlinear) models in later chapters.

It is instructive to stop and ask the question: How can we use the newly developed

regression model? One interesting aspect of model building that we mentioned previously

is the ability to predict the behavior of the experimental system. Basically what this

means is that once the adaline is trained, we can “forecast” the value of d when x is

available. We do this by computing the adaline output y and assume that the error ε is

small (Eq.3). You can now understand why we want to minimize the square of the error,

since if the square of the error is small than d is going to be close to y in the training data.

Figure 19 shows a productive way of looking at the input-output pairs that we used to

train the adaline.

unknown system
x1
x2
...
xN

d1
d2
...
dN

y1
y2
..
yN

ADALINE
_ +

Figure 19. A view of the desired response as the output of an unknown model

We assume that the experimental system produces the desired response d for each input

x according to a rule that we do not know. The purpose of building the model is to

approximate as well as possible this hidden relationship.

We expect also that even for x values that the system did not use for training, y is going

to be close to the corresponding unknown value d. Our intuition tells us that if:

• the data used for training covered well all the possible cases,

• if we had enough training data,

 69

• and the correlation coefficient is close to one,

then in fact y should be close to the unknown value d. However, this is an inductive

principle, which has no guarantee of being true. The ability to extrapolate the good

performance from the training set to the test set is called generalization. Generalization is

a central issue in the adaptive systems’ approach since it is the only guarantee that the

model will perform well in the future data that will be presented to the system while in

operation.

Remember that in the test mode the system parameters must be kept constant, i.e. the

learning algorithm MUST be disabled. In the next section we will familiarize ourselves

with training and using the linear model.

10.1 Regression Project

Getting real world data
We will end Chapter I by giving you a flavor of the power of linear regression to solve real

life problems. We will go to the World Wide Web and seek real data sets, import them

into NeuroSolutions and solve regression problems. We will adopt the breadboard from

Example 7.

The first thing is to decide what data we will work with. There are many interesting Web

sites to visit in the search for data. We suggest the following sites:

climate data: http://ferret.wrc.noaa.gov/fbin/climate_server

Center for Biomedical Modeling Research (CBMR)

http://www.scs.unr.edu/~cbmr/research/data.html

or Dr. B’s WWW Data site

http://seamonkey.ed.asu.edu/~behrens/teach/WWW_data.html

These sites have plenty of data (some duplicated). We assume that you know how to get

connected to the Web and how to download data. You should get the data in ASCII and

store it in column format with one of the variables (the independent variable) in the input

 70

http://ferret.wrc.noaa.gov/fbin/climate_server
http://www.scs.unr.edu/%7Ecbmr/research/data.html
http://seamonkey.ed.asu.edu/%7Ebehrens/teach/WWW_data.html

file and the dependent variable in the output file. Alternatively we have provided sample

data on the CD-ROM under the Chapter1\data directory. Read the readme file to choose

the data sets that interest you.

NeuroSolutions Project
The fundamental question is to find out how well a linear relation “explains” the

dependence between the input data and the desired data. We will exemplify the project

with a single dimensional set of input data, but the multidimensional case is similar.

The first thing to do is to modify the NeuroSolutions breadboard such that it will be able to

work with the data you downloaded. The data should be stored in an ASCII file and

formatted in columns. Right click on the input file icon and select properties. The

Inspector will appear on the screen. Remove the present file (click the remove button)

and click on the add button. The Windows 95 file inspector will appear and you have to

open the file that contains the input data, i.e. the input to your linear model.

In NeuroSolutions, the Associate panel appears which you can close (we assume that

the input file has ASCII data in column format). The next panel that pops open is the

Customize panel. Here you select the columns that you want to use (for those columns

that you do not want select the column label and click on the skip button), and then click

on the close button. The input file is now open and ready to be used by NeuroSolutions.

You should repeat the procedure for the desired file. Make sure that the number of

samples of the input and desired files are the same.

Another thing that we should do is to normalize the data. Sometimes the input and

desired variables have very different ranges so one should always normalize between 0

(or -1) and 1 both the desired and input data files. To do this go to the Stream page (click

on the Stream tab) of the Inspector to access the normalization panel. Click the normalize

check box and set the normalization range (don’t forget to go to the DataSet level of the

inspector to translate the data again and make the normalization effective).

We always recommend that you visually check the data either with a plotting program or

 71

the Scatter plot in NeuroSolutions to ensure that there aren’t any outlier present in the

data. When outliers exist, they may distort any possible linear relationship that may exist.

Once the data sets are open, we can effectively start the adaptation of the linear

regressor. The first important consideration is the largest stepsize that can be used for

convergence. When the data is normalized one can always guess an initial value of 0.1.

By plotting the learning curve, or the weight tracks (if the problem has few input channels)

we can judge how appropriate this value might be. Alternatively we can compute the

eigenvalues and find the exact largest possible stepsize, but this is rarely done. The trial

and error method is OK for small problems.

If the problem takes a long time to converge and increasing the step size creates

instability, then the eigenvalue spread is large, and there is little we can do short of using

Newton’s method.

After the algorithm converges (the error stabilizes) one should bring the correlation

coefficient DLL to estimate the correlation coefficient. Note that it is always possible to

pass an hyperplane through some data points, but the real issue is does the hyperplane

provide a good model? To answer this question one needs to estimate the correlation

coefficient.

For the multiple variable regression case the relative weight magnitude tells us about the

relative importance of the each variable in the regression equation. So it is rather

important to read the values of the regression weights including the bias. Remember that

if the data is normalized, the displayed weight values must be “unnormalized” in order to

compare them with the original data. You can find the values NeuroSolutions used to

normalize the data by going to the DataSet page of the inspector and opening the

normalization file. Neurosolutions multiplies the data set by the first value in the

normalization file (range) and adds the second value in the normalization file (offset). To

reverse this process, you must subtract the second value and then divide by the first

value.

 72

Remember that the parameters of the regression equation can be used to predict desired

responses when the input is known. We can do this by testing the system with another

data file for which we do not have a desired response. To do this in NeuroSolutions, you

should go to the Controller (the yellow dial) Inspector and turn off the “learning” check

box (this fixes the weights).

No problem is finalized without a critical assessment of the results obtained. You should

start with a hypothesis about the data relationship, and confirm your hypothesis with

NeuroSolutions results. If there is a discrepancy between what you expect and the results,

you must explain it. This is where the NeuroSolutions probes are very effective. You

should verify that the data is being properly read, if the input and output files are

synchronized, if the system is converging (weight tracks, learning curve), etc. Computers

are great tools, but they are very susceptible to the “garbage-in garbage-out syndrome”

so it is the user responsibility to check the inputs and the methodology of data analysis.

NeuroSolutions 21

1.21 Linear regression Project

We will illustrate the project with a regression between two time series, the sea

temperature and atmospheric pressure downloaded from the NOAA site

(atmospheric data base). We will start with the breadboard from Example 7. We

will replace the input with the file containing the sea temperature and desired

response data with the file containing the pressure data. NeuroSolutions

automatically sets the number of inputs from the file (verify this in the file

Inspector), and the number of exemplars in an epoch. Verify this in the Controller

Inspector. We also have to decide how many iterations we need. In the Controller

Inspector enter 1,000 in the Epochs/Run. This number may be too large, but when

the coefficients do not change we can always interrupt the simulation. Experiment

with everything we have learned in this chapter.

 73

 NeuroSolutions Example

Go to next section

11. Conclusions
In this first Chapter we introduced very important ideas for the rest of the book. Probably

the most important was the concept of adaptive systems. Instead of designing the system

through specifications, we let the system learn from the input data. In order to achieve

this the system has to be augmented with an external cost criterion to measure

“goodness of fit” and an algorithm that will adapt the system parameters such the

minimum of the cost can be reached. This idea will be with us until the end of the book.

But we covered much more in this chapter. We described an extremely simple and

elegant algorithm that is able to minimize the external cost function by using local

information available to the system parameters. The principle is to search the

performance surface in the opposite direction of the gradient. The name of the algorithm

is LMS (least means squares) and in just 2 multiplications per weight and data sample it

is able to put the system parameters in the neighborhood of the optimal values. Gradient

descent is a powerful concept that we will hear constantly until the end of the book.

When we applied the LMS to the linear network we end up with a system that can fit

hyperplanes to data, and which is called the linear regressor. The solution is identical to

least squares.

We quantified the properties of the LMS algorithm, and we showed the fundamental

trade-off of adaptation: the compromise between speed of adaptation and precision in the

final solution. We defined the learning curve, which we called the thermometer of learning.

This will also be with us until the end of the book. Therefore, this chapter covers the basic

concepts for the intriguing adventure of designing systems that learn directly from data.

We have also provided a project to help you understand the power of adaptive systems.

The applications of the adaline are bounded by our imagination and the data we can find

 74

to train it. So knowing how to get data from the Web and how to use it in NeuroSolutions

is of great value.

NeuroSolutions Examples

1.1 The Linear Processing Element in NeuroSolutions

1.2 Computing the MSE for the linear PE

1.3 Finding the minimum error by trial and error

1.4 Plotting the performance surface

1.5 Comparison of performance curves for different data sets 1.6 Adapting the linear PE with LMS

1.7 Batch versus online adaptation

1.8 Robustness of LMS to noise

1.9 Estimating the correlation coefficient during learning

1.10 The learning curve

1.11 Weight tracks

1.12 Linear regression without bias

1.13 Rattling

1.14 Scheduling of stepsizes

1.15 Multivariable regression

1.16 Checking the LMS solution with the optimal weights

1.17 Visualizing the weight tracks and speed of adaptation

1.18 Visualizing weight tracks with on-line learning

1.19 Linear regression without bias

1.20 Newton’s method

 75

1.21 Linear regression Project

Concept Map for Chapter I

 76

 77

Experimental Model
Building

1
2

Nonlinear Models
Chapter V, X, XI

Optimal Linear
Models
1D 2
MD 7

Search with
gradient

1D 4.4, MD 7.2

Analytic Solutions
3 Adaptive Linear

Systems
4

LMS Gradient
estimation
1D 5, MD 7.3

Methodology for
Stable adaptation
6

Stepsize control
6.3, 7.2

Search
concavity

8

One
dimension

link

Multi-
dimensions

link

Performance
measures

3.1

Quadratic error
1D 4.3, MD 7.1

Project
10

Rattling
6.5

Batch
Sample

5.1

Measures
performance

5.3

Probing

Learning
Curve
6.1

Weight
tracks
6.2

Time
constant
6.4 Scheduling

6.6

Robustness
5.2

LMS in
practice
7.5, 7.6

Adaptive Filters
Chapter IX

Associative Memories
Chapter VII

Go to next Chapter

Go to the Table of Contents

Go to the Appendix

End of Chapter 1

This is the End of Chapter 1

Go to the Table of Contents

least squares derivation
From Eq.5 we can work out the derivatives to obtain

d Nb w x

x d b x w x

i
i

N

i
i

N

i i
i

N

i
i

N

i
i

N
= =

= = =

∑ ∑

∑ ∑ ∑

= +

= +

1 1

1 1

2

1 Equation 45

We will demonstrate this for the derivative with respect to w, i.e.

∂
∂

∂
∂

J
w N

d wx b
w N

d wx b xi i
i i i=

− −
= − −∑ ∑1

2
1

0
2()

() =
 Equation 46

which gives the second equation in Eq.6 . The set of Eq.45 is called the normal equations.

The solution of this set of equations is

 78

b
x d x x d

x
x

N

i
i

i
i

i
i

i i
i

i
i

i
i

=
−

−

⎛

⎝
⎜

⎞

⎠
⎟

∑ ∑ ∑ ∑

∑
∑

2

2

2

w
x d

x d

N

x
x

N

i i
i

i
i

i
i

i
i

i
i

=
−

−

⎛
⎝
⎜

⎞
⎠
⎟

∑
∑ ∑

∑
∑

2

2

Equation 47

which provides the coefficients for the regression line of d on x. The summations run over

the input output data pairs. In order to solve Eq. 45, one just needs to get the value of b

from the first equation and substitute it in the second equation to obtain w as a function of

x and d. Continue by substituting the value of w in the first equation to finally obtain b as

a function of x and d (variable elimination). It is easy to prove that the regression line

passes through the point

x

N

d

N

i
i

i
i

∑ ∑⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,

Equation 48

which is called the centroid of the observations. The denominator of the slope parameter

of w and b is the corrected (for the mean) sum of squares of the input.

Return to Text

variance
Data collected from experiments is normally very complex and difficult to describe by few

parameters. The mean and the variance are statistical descriptors of data clusters

which are normally utilized in such cases.

The mean of N samples is defined as

 79

x
N

xi
i

N

=
=
∑1

1
A physical interpretation for the mean is the center of mass of a body made up of

samples of the same mass. It is the first moment of the probability density function (pdf).

We can have very different data distributions with the same mean, so the mean is not

that powerful descriptor. Another descriptor very often used is the variance, which is

defined as

σ2 2

1

1
= −

=
∑N

x xi
i

N

()

The variance is the second moment around the mean and it measures the dispersion of

samples around the mean. The square root of the variance is called the standard

deviation. Mean and variance are much better descriptors of data clusters. In fact they

define univocally Gaussian distributions, which are very good models for lots of real world

phenomena.

Go back to text

Derivation of correlation coefficient

Note that () ()d d y d d yi i i− = − + − i which leads to

() () ()d d y d d yi
i

i
i

i i
i

− = − + −∑ ∑ ∑2 2 2

 Equation 49

when the optimal solution is obtained (the cross terms are zero for the optimal solution

because the error is orthogonal to the output y).

The first term measures the dispersion (square difference) of the predicted values with

respect to the mean, while the second term measures the mismatch between the

observed values and the result of the regression. Hence, the first term measures the

dispersion contained in the regression model, and the second measures the dispersion

that was not modeled by the linear model (the variance of ε). If we normalize the first term

 80

of the equation by the variance of d we get an index of how much the variability of d is

captured by the regression model,

()
()

r
y d

d d

i
i

i
i

2

2

2=
−

−

∑

∑
 Equation 50

We can now substitute the regression equation for y=w*x and the definition of d and

w* to obtain the equation in the text.

Return to text

computation of correlation coefficient
The important thing to note is that with optimal coefficients the error samples interpreted

as a vector is perpendicular to the adaline output y. This condition is called the

orthogonality condition. In fact from the figure below it is easy to see that the smallest

error is obtained when the projection of d on y is the orthogonal projection.

ε.y

ε

d εmin

y

During adaptation the error will always be larger than εmin, meaning that y can be larger

than d. So Eq.7 may be larger than one, which is misleading since |r|<1. Using the fact

that the minimum error is perpendicular to y, one can compute the dot product of ε with y

and subtract it to the numerator of Eq. 7. We can prove that the numerator is always

smaller than d and the extra term is zero at the optimal solution, so will not affect the final

 81

value of the correlation coefficient. This is exactly what is done in Eq. 14 .

Return to text

batch versus online learning
The on-line and batch modes are equivalent for parabolic performance surfaces.

Note that the number of weight updates of the two methods for the same number of data

presentations is very different. The on-line method (LMS) does an update each sample,

while batch does an update each epoch, i.e.

LMS updates =(batch updates) x(# samples in training set).

Return to text

more derivation of performance surface
So, for a quadratic performance surface Eq.9 , computing the gradient and equating it to

zero finds the value of the coefficients that minimize the cost, i.e.

∇ = = = − +
⎛
⎝
⎜

⎞
⎠
⎟∑ ∑J

J
w N

d x w xi i
i

i
i

∂
∂

0
1 2

 Equation 51

or

w
x d

x

i i
i

i
i

* =
∑
∑ 2

Equation 52

This solution is fundamentally the same as found in Eq.6 (b=0 is equivalent to assuming

that the average value of x and d are zero). So, the very important observation is that the

analytical solution found by the least squares coincides with the minimum of the

performance surface. Substituting this value of w* into Eq.9 , the minimum value of the

error becomes

 82

J
N

d
d x

xi
i

i i
i

i
i

min = −

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

∑
∑
∑

1
2

2

2

2

Equation 53

Eq.9 can be re-written in the form

J J
N

w w x w wi
i

= + − −∑min
* *() ()

1
2

2

 Equation 54

To verify this just operate Eq. 54 and substitute Eq. 52 for w* and Eq. 53 for Jmin. This is

another important conclusion. Notice that:

• the minimum value of the error Jmin Eq.53 depends on both the input signal (xi), and the
desired signal (di)

• the location in coefficient space where the minimum w* occurs Eq.52 also depends on
both xi, di.

• the performance surface shape Eq.54 depends only on the input signal (xi)

Return to text

more on derivation of largest stepsize
The best way to find the upper bound for η is to write the equation that produces the

weight values. Let us rewrite the ideal performance surface Eq.54 as

J J w w= + −min

*()
λ
2

2

Equation 55

where

λ = ∑1 2

N
xi

i
Equation 56

By computing the gradient of J Eq.55 , we get

 83

∇ = −J w wλ(*)

*

 Equation 57

so the iteration that produces the weight updates Eq.11 can be written as

 w k w k w() () ()+ = − +1 1 ηλ ηλ
Equation 58

This is a first order linear constant coefficient difference equation which can be solved by

induction. Start with a solution w(0).

 ()

w w w
w w w

w w w

() () () *
() () () *[()]

() () () *[()]

1 1 0 2
2 1 0 2 1 1

3 1 0 2 1 1 1

2

3 2

= − +
= − + − +

= − + − + − +

ηλ ηλ
ηλ ηλ ηλ

ηλ ηλ ηλ ηλ
which provides by induction the equation

w k w w w wk n

n

k
k

k

() () () * () () () *
()
()

= − + − = − +
− −
− −=

−

∑1 0 1 1 0
1 1
1 10

1

ηλ ηλ ηλ ηλ ηλ
ηλ
ηλ

This equation can be rewritten as in the text.

Return to text

derivation of the time constant of adaptation
Writing exp(-1/τ)= ρ and expanding the exponential in Taylor series,

ρ
τ τ τ

= − = − + −exp()
!

....
1

1
1 1

2 2

we get approximately ρ~1-1/τ. We saw that geometric ratio of the gradient descent is

Eq.17 so we get

τ
ηλ

=
1

Return to text

 84

more on scheduling stepsizes
If the initial value of η0 is set too high, the learning can diverge. The selection of β can be

even tricker than the selection of η because it highly dependent on the performance

surface. If β is too large, the weights may not move quickly enough to the minimum and

the adaptation may stall. If β is too small, then the search may reach the global minimum

quickly and must wait a long time before the learning rate decreases enough to minimize

the rattling. There are other (more automatic) methods for adapting the learning rate

which we will discuss later in the book.

Return to text

derivation of normal equations
When the derivative of J with respect to the unknown quantities (the weights) is taken, we

end up with a set of p+1 equations in p+1 unknowns

∂
∂

J
w N

x d w x
j

ij i k ik
k

p

i
= − −

⎛
⎝
⎜

⎞
⎠
⎟ =

=
∑∑1

0
0

 for j = 0... p
 Equation 59

Notice that these equations are linear in the unknowns (the wj), so they can be easily

solved. The solution is the famous normal matrix equation

x d w x xij i
i

k
k

p

ik ij
i

∑ ∑ ∑=
=0

 j = 0,1,...p
 Equation 60

or expanding

 85

x d w x x

x d w x x

x d w x x

i i
i

k ik
ik

i i
i

k ik
ik

ip i
i

k ik
ik

0 0

1 1

∑ i

i

ip

∑∑
∑ ∑∑
∑ ∑∑

=

=

=
 Equation 61

Let us define

R
N

x xkj ik ij
i

= ∑1

 Equation 62

as the autocorrelation of the input samples for indices k, j. The autocorrelation matrix R of

dimension (p+1)(p+1) can be created with entries Rkj,

R =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

R R R
R R R

R R R

p

p

P p pp

00 01 0

10 11 1

0 1

...

...
...

...
 Equation 63

This matrix is square and symmetric (but not necessarily Toeplitz). Let us call

P
N

x dj i
i

= ∑1
j i

=

 Equation 64

the crosscorrelation of the input x for index j and desired response y, which can be also

put into a vector p of dimension p+1.

 Equation 65

p =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

P
P

Pp

0

1

...

Substituting these definitions in Eq.25 , the set of normal equations can be written simply

p Rw w R p= −* * or 1
 Equation 66

where w is a vector with the p+1 weights wi.

 86

 Equation 67

w =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

w
w

wp

0

1

...

w* represents the value of the vector for the optimum (minimum) solution.

We used here the statistical definition for R and p. Let us clarify that when estimating

these quantities from real data the properties only approximately apply .

Return to text

performance surface properties
The minimum value of the error can be obtained by substituting the optimal weight Eq.31

into the cost equation Eq.30 , yielding

J
d
N
i T

i
min

*= −
⎡

⎣
⎢

⎤

⎦
⎥∑1

2

2

p w
 Equation 68

We can re-write the performance surface in terms of its minimum value and w* as

J J T= + − −min
* *() ()

1
2

w w R w w
 Equation 69

For the one dimensional case, this equation is the same as Eq.54 (R becomes a scalar

equal to the variance of the input). In the space (w1,w2) J is now a parabola facing

upwards. The shape of J is again solely dependent upon the input data (through its

autocorrelation function). One can show that the principal axes of the performance

surface contours (surfaces of equal error) correspond to the eigenvectors of the input

 87

correlation matrix R, (see Appendix) while the eigenvalues of R give the rate of change

of the gradient along the principal axis of the surface contours of J (Figure 15).

direction of
smallest eigenvector
of R

direction of largest
eigenvector of R

{

{

{

{

difference is smallest
difference is
largest eigenvalue
of R eigenvalue of R

w1

w2

w1*

w2*

contour plots of J

FIGURE 15. Contour plots of the performance surface with two weights

The eigenvectors and eigenvalues of the input autocorrelation matrix are all what matters

to understand convergence of the gradient descent in multiple dimensions. The

eigenvectors represent the natural (orthogonal) coordinate system to study the properties

of R. In fact in this coordinate system the convergence of the algorithm can be studied as

a joint adaptation of several (one for each dimension of the space) unidimensional

algorithms. Along each eigenvector direction the algorithm behaves just like the one

variable case that we studied in the beginning of this chapter. The eigenvalue becomes

the projection of the data onto that direction just like λ in Eq.55 is the projection of the

data on the weight direction..

The location of the performance surface in weight space depends upon both the input

and desired response Eq.31 . The minimum error is also dependent upon both data

Eq.68 . Multiple regression finds the location of the minimum of a paraboloid placed in an

unknown position in weight space. The input distribution defines the shape of the

performance surface. The input distribution and its relation with the desired response

distribution define both the value of the minimum of the error and the location in

coefficient space where that minimum occurs.

Return to text

 88

multiple variable correlation coefficient
The idea of the correlation coefficient is the same for 1D or multiple dimensions. The

equations get a little more complicated since we are working now with an ensemble of

input vectors. So the nice form of Eq.7 has to be modified. An ensemble of vectors is

better described as a matrix, so we are going to define a new matrix U as

U X

N

p p
N

x x

x x
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
1

1

1

....
...

...

where each column is one of the input samples. Likewise we are going to define a

column vector d with all the desired responses (this is a vector for the single output

regression, otherwise also becomes a matrix)

d =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

d

d N

1

...

The total error variance can be written as

ε εT T T
x= −d d w U d*

where w* is the set of optimal coefficients. This expression can be easily derived if the

output of the regressor is substituted in the left side of the equation Linear Models . The

part of the error that is explained by the linear model is the second term. This equation

keeps the same form if we express it in terms of variance instead of error variance (just

subtract the mean of the desired signal). So if we normalize this equation by the variance

of the desired response we get

r
Nd

Nd

T
x

T
2

2

2=
−

−
w U d

d d

*

which leads to the correlation coefficient for the multivariate case.

 89

Return to text

convergence for multiple weights case
One can show that the condition to guarantee converge Widrow and Stearns is

lim ()
k

k

→∞
− =I ηΛ 0

 Equation 70

where Λ is the eigenvalue matrix,

Λ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

λ

λ

0 0

0

...
...

... p Equation 71

which means that in every principal direction of the performance surface (given by the

eigenvectors of the input correlation matrix R) one must have

0
2

< <η
λ i Equation 72

where λi is the corresponding eigenvalue. This equation also means that with a single η

each weight wi(k) is approaching its optimal value wi* with a different time constant

(“speed”). So the weight tracks bend and the path is no longer a straight line towards the

minimum.

This is the mathematical description that we said earlier that the gradient descent

algorithm behaves as many one dimensional univariable algorithms along the

eigenvector directions. Notice that Eq. 71 is diagonal so there is no cross-coupling

between time constants along the eigenvector directions.

In any other direction of the space, there will be coupling. However, we can still

decompose the overall weight tract as a combination of weight tracts along each

eigendirection as we did in Figure 16. Eq. 72 shows that he stepsize along each

direction obeys the same rule as the unidimensional case (Eq.17).

 90

Return to text

estimation of eigenvalue spread
The eigenvalue spread can be computed by an eigendecomposition of R, but this is a

time consuming operation and hardly ever is performed. An estimate of the eigenvalue

spread is the ratio between the maximum and the minimum of the magnitude of the

Fourier transform of the input data.

Alternatively, the simple inspection of the correlation matrix of the input can provide an

estimation of the time to find a solution. The best possible case is when R is diagonal

with equal values in the diagonal, because in this case the eigenvalue spread is 1 and

the gradient descent goes in a straight line to the minimum. One can not have a faster

convergence than this even when second order methods (such as the Newton’s method

studied later is used). When R is diagonal but with different values, the ratio of the largest

number over the smallest is a good approximation to the eigenvalue spread. When R is

fully populated, the analysis becomes much more difficult. However, if the non-diagonal

terms have values comparable to the diagonal terms, one can expect a long training time.

Return to text

Casti Reference
Casti, J.L., Alternate Realities: Mathematical models of nature and man, Wiley, 1989.

Processing Element
The fundamental computational block in the system. In neural networks PEs are also

called neurons or units.

Epoch
One complete presentation of the input data to the network being trained

 91

linear regression
is the process of fitting (minimization of the sum of the square of the deviations) a cloud

of samples by a linear model

mean square error
is the average of the square difference between the desired response and the actual

system output (the error)

least squares
is an analytic procedure that minimizes the MSE in linear optimization problems (i.e.

problems that are linear in the unknowns)

correlation coefficient
correlation coefficient is the ratio of the variance of the linear regressor over the variance

of the desired response

Adaptive systems
Systems that change their parameters (through algorithms) in order to meet a

pre-specified function, which is either an input-output map or an internal constraint.

Performance surface
is the total error surface plotted in the space of the system coefficients (weights)

 92

Supervised learning
learning or adaptation is supervised when there is a desired response that can be used

by the system to guide the learning

Unsupervised learning
learning is unsupervised when the system parameters are adapted using only the

information of the input and are constrained by pre-specified internal rules

gradient
is a vector that always points to the direction of maximum change, with a magnitude

equal to the slope of the tangent to the curve at the point.

steepest descent
is a search procedure that seeks the next operating point in the direction opposite to the

gradient

Least Mean Square
or LMS is a steepest descent search algorithm that uses a very efficient estimate of the

gradient (the product of the error times the input)

step size
or learning rate is the constant that scales the gradient to correct the old weights

 93

on-line training
is a learning procedure that modifies the weights after the presentation of every sample

epoch
one complete presentation of the training data.

batch training
is the adaptation of the weight based on an epoch update

training set
is the ensemble of input/desired response pairs used to train the system

test set
is the ensemble of input/desired response data used to verify the performance of the

trained system. This data is NOT used for training

learning curve
is a plot of the MSE across iterations

weight track
is a weight space plot of the weight locations during adaptation

 94

geometric ratio
is the ratio of two consecutive terms in a geometric progression

time constant of adaptation
is the exponent of the exponentially fitted envelop of the weight’s geometric progression

rattling
is the perturbation around the optimal weight value produced by a nonzero learning rate

misadjustment
is the normalized excess MSE produced by the rattling

learning rate scheduling
is the choice of a variable stepsize, which starts large in the begining of training and

decreases progressively towards the end of adaptation

eigenvalue spread
is the ratio of the largest over the smallest eigenvalue

normalized LMS
is the LMS algorithm with a stepsize normalized by an estimate of the input data variance

 95

big O notation
is an approximate way to express the complexity of a computer algorithm, where only the

largest factor is shown. Normally we are interested in multiplications since they are the

most time consuming to execute in general purpose computers

adaline
Bernard Widrow called the linear processing element ADALINE for adaptive linear

element

Eq. 4

J

N i
i

N

=
=
∑1

2
2

1
ε

 Eq. 14

()

()
r

y d
y d

y d

d d

i

i i
i

i
i

i

i
i

2

2

2

2

2=

− −
−

−

−

∑
∑∑

∑

(())

()

ε

Eq.6

w
x x d d

x x

i i
i

i
i

=
− −

−

∑
∑

()(

()2

)

b
x d x x d

N x x

i
i

i
i

i
i

i i
i

i
i

=
−

−

∑ ∑ ∑ ∑
∑

2

2[()]

 96

Eq.9

() ()J

N
d wx

N
x w d x w di i

i
i i i

i
= − = − +∑ ∑1

2
1

2
2

2 2 2 2
i

i

Eq.3

 d b wx d di i i i− + = − =() ~ ε

Eq.10

∇ =J

J
w

∂
∂

Eq.12

()∇ = = ≈ = −∑J k

w
J k

w N w
k k x() () () () ()

∂
∂

∂
∂

ε k
∂

∂
ε ε

1
2

1
2

2 2

Eq.11
 w k w k J k() () (+ = −1 η∇)

Eq.13
w k w k k x k() () () ()+ = +1 ηε

Eq.54

J J
N

w w x w wi
i

= + − −∑min
* *() ()

1
2

2

 97

Eq.16

λ = ∑1 2

N
xi

i

Eq.17

ρ ηλ η

λ
= − < ⇒ <1 1

2

Eq.19

τ

ηλ
=

1

Eq.25

x d w x xij i

i
k

k

p

ik ij
i

∑ ∑ ∑=
=0

 j = 0,1,...p

Eq.28
 P RW W R P= = −* * or 1

Eq.31
 ∇ = = − = −J RW P W R0 1 or * P

Eq.68

J
d
N

P Wi T

i
min

*= −
⎡

⎣
⎢

⎤

⎦
⎥∑1

2

2

 98

EQ.69

J J W W R W WT= + − −min

* *() (
1
2

)

Eq.65

P

P
P

Pp

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0

1

...

Eq.27

P

N
x dj i

i
= ∑1

j i

Eq.36

η

λ
<

2

max

Eq.21
 η η() ()n n+ = −1 β

)

Eq.33
 W k W k J k() () (+ = −1 η∇

 99

Eq.32

∇ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

J
J
w

J
wp

T
∂
∂

∂
∂0

, ...,

Eq.41

 W k W k R k X k() () () (+ = + −1 1η ε)

Eq.5
∂
∂
∂
∂

J
b
J
w

=

=

⎧

⎨
⎪

⎩
⎪

0

0

Eq.45

d Nb w x

x d b x w x

i
i

N

i
i

N

i i
i

N

i
i

N

i
i

N
= =

= = =

∑ ∑

∑ ∑ ∑

= +

= +

1 1

1 1

2

1

Eq.53

J
N

d
d x

xi
i

i i
i

i
i

min = −

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

∑
∑
∑

1
2

2

2

2

 100

Eq.52

w
x d

x

i i
i

i
i

* =
∑
∑ 2

Eq.55

J J w w= + −min

*()
λ
2

2

Eq.30

J W RW P W
d
N

T T i

i
= − +

⎡

⎣
⎢

⎤

⎦
⎥∑2

2

Eq.26

R

N
x xkj ik ij

i
= ∑1

Eq.63

R

R R R
R R R

R R R

p

p

P p pp

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

00 01 0

10 11 1

0 1

...

...
...

...

Eq.40

 W k W k R J k() () ()+ = − ∇−1 1

 101

Widrow
Bernard Widrow was one of the first researchers that explored engineering applications

of adaptive systems. We are going to hear a lot about him in this book.

Eq.7

()
()

r
y d

d d

i
i

i
i

2

2

2=
−

−

∑

∑

Eq.15

 w k w w wk() () (()* *+ = + − −1 1 0ηλ)

Widrow and Stearns
Adaptive Signal Processing, Prentice Hall, 1985 (Chapter 4).

Linear Models
Consult for instance the textbook Intro. to Linear Models by Dunteman, Sage Publications,

1984.

Eq.49

() () ()d d y d d yi

i
i

i
i i

i
− = − + −∑ ∑ ∑2 2 2

outlier
is a noisy point that does not follow the characteristics of the input (or desired response)

data.

 102

RLS
is an on-line algorithm to compute the optimal weights (as opposed to the batch process

to solve the least squares). Unfortunately it is also much more computational intensive

than the LMS. To know more please consult

Adaptive Filter Theory by Haykin, Prentice Hall, 1996

Gauss
Karl Friedrich Gauss (1777-1855) was a mathematical genius who proposed the use of

least squares to solve sets of linear equations. He realized that in optimization problems

involving Gaussian distribution models, a quadratic equation was obtained (after taking

the logarithm), which leads to an easy solution for the optimum.

covariance
is the sum of the crossproducts of the two variables with the means removed.

standard deviation
is the square root of the variance. The variance is the second moment of the data with

respect to the mean.

Estimation theory
see for instance

 103

autocorrelation
is a measure of similarity of the samples’ distribution, which is computed by the sum of

the crossproducts between the data set and its shifted versions. The autocorrelation is a

function of the shift.

crosscorrelation
measures the similarity between two different data sets, and it is computed by the sum of

the crossproducts between the two data sets at different lags (it is a function of the lag).

Derivation of Solution
Let us just take the derivative of J with respect to the weights, using the matrix

operations.

pRwpwRRwpRwRw
w
J TT 2222 −=−+=−+=

∂
∂

since the transpose of R is equal to itself (Toeplitz). If we equate this to zero we obtain

the optimal weights, i.e.

pRw 1* −=
which is the equation in the text

Return to Text

Contour
is a curve linking all the points with the same value of J (J=constant). The contour plot for

J is formed by concentric ellipsoids (ellipses for the 2D case).

 104

eigenvalues
are the scaling constants in the eigenvalue equation of a matrix. Here the matrix is the

input autocorrelation matrix. Eigenvalues can be considered as the projections of the

data along the eigenvectors.

Z scores
is a statistical terminology that means that all the variables are zero mean variables.

See ???????

Newton’s Derivation
The equation can be easily proved if we recall the gradient of the performance surface

pRwJ −=∇

left multiply by
1−R to obtain

JRwpR ∇−= −− 11

and then substitute in the optimal solution Eq. 28 to obtain

JRww ∇−= −1*
From this equation we can derive the incremental equation presented in the text

Return to Text

ill-conditioned
A matrix is ill-conditioned when the determinant is almost zero. See the appendix.

gradient definition and construction
The gradient is formally defined in terms of partial derivatives of a function f(x,y). Let us

 105

consider a function f(x,y) that has partial derivatives at x0,y0. The gradient of f at x0,y0 is

defined by

yyxx uyxfuyxfyxfyxgradf),(),(),(),(00000000 +=∇=

where are the unit vectors along x and y and are the partial derivatives

of f along the x and y directions respectively, which are given by

yx uu , yx ff ,

y
yxff

x
yxff yx ∂

∂
=

∂
∂

=
),(,),(

The gradient is associated with the concept of a directional derivative of a function. Let us

assume we have a direction yx buauu +=
 . The directional derivative of f at x0,y0

along u is

h
yxfhbyhaxf

yxfD
hu

),(),(
lim),(0000

000
−++

=
→

So the gradient can be defined as a function of the ordered derivatives as

uyxgradfyxfD u ⋅=)),((),(0000

where the operation is the dot product of two vectors (for yx ducuv +=

). bdacuv +=⋅

This expression means that the maximum value of the directional derivative as a function

of the direction u is given by the size of the gradient and it occurs exactly when the

direction u coincides with the gradient direction.

Moreover, we can also find this direction pretty easily. Let us consider the curve C(x,y)

defined as the line in the x,y plane where the function f has a constant value (this line is

called the level curve or the contour of f). At a point x0,y0 in C the rate of change of f in

the direction of the unit vector u tangent to C must be zero (see the definition above), i.e.

0)),((),(0000 =⋅= uyxgradfyxfD u
But this implies that the gradient vector is perpendicular to the tangent vector u of the

level curve at x0,y0. This explains the graphical construction outlined in the text.

 106

Return to Text

development of the phone system
A good example is the telephone system. Long and meticulous research was conducted

at Bell Laboratories on human perception of speech. This created the specification for the

required bandwidth and noise level for speech intelligibility. Then engineers perfected the

microphone that would translate the pressure waves into electrical waves to meet the

specification. Then these electrical waves where transmitted through copper wires over

long distances to a similar device, still preserving the required specification. For

increased functionality the freedom of reaching any other telephone was added to the

system. So switching of calls had to be implemented. This created the phone system.

Initially, the switching among lines was done by operators. Then we invented a machine

that would automatically switch the calls. Operators were still used for special services

such as directory assistance. But now that the fundamental engineering aspects are

stable, we are asking machines to automatically recognize speech and directly assist

callers.

The development of the phone system is an excellent example of engineering design.

Once we have a vision we try to understand the principles at work, create specifications

and a system architecture. The fundamental principles at work are found by applying the

scientific method. The phenomenon under analysis is first studied with physics or

mathematics. The importance of models is that they translate general principles and

through deduction we can apply them to particular cases like the ones we are interested

in. These disciplines create approximate models of the external world using the principle

of divide-and-conquer. First the problem is divided in manageable pieces, each is studied

independently of the others and protocols among the pieces are drawn such that the

system can work as a whole, meeting the specifications drawn a priori. This is what

engineering design is today.

Return to the Text

 107

Mars’ pathfinder mission
When the machines have to autonomously interact with the environment, or have to

operate near the optimum set point, we can not specify all the functions a priori and in a

deterministic way. Take for instance the Mars Pathfinder mission. It was totally

impossible to specify all the possible conditions that the rover Sojourner would face, even

if remotely controlled from Earth. So the problem could not be solved by a sequence of

instructions determined a priori in JPL’s laboratory on Earth. The vehicle was given high

level instructions (way points) and was equipped with cameras and laser sensors that

would see the terrain. The information from the sensors was analyzed and catalogued in

general classes. For each class a procedure was designed to accomplish the goal of

moving from point A to point B. This is the type of engineering systems that we will be

building more and more in the future.

The big difference from the initial machines and Sojourner is that the environment is

intrinsically in the loop of the machine function. This brings a very different set of

problems, because as we said earlier, the environment is complex and unpredictable. If

our physical model does not capture the essentials of the environment, then errors

accumulate over time and the solution becomes impractical. So we do not have anymore

the luxury of dictating the rules of the game, as we did for the early machine building era.

It turns out that animals and humans do Sojourner type of tasks effortlessly.

Return to the Text

 108

Index

1

1. Experimental Model Building ... 5

2

2. Data Collection... 9

3

3. Least Squares .. 12

4

4. Least squares as a search for the parameters of a linear system 15

5

5. Estimation of the gradient - the LMS algorithm ... 21

6

6. Getting a grip on adaptation... 26

7

7. Regression for multiple variables.. 34

8

8. Analytic versus Iterative solutions .. 47
8. Newton’s method... 45

B

batch versus online learning.. 58

C

Chapter I- Data Fitting with Linear Models ... 4
computation of correlation coefficient .. 57
Conclusions ... 51
convergence for multiple weights case .. 64

D

Derivation of correlation coefficient ... 57
derivation of normal equations .. 61
derivation of the time constant of adaptation .. 60
development of the phone system... 79

E

End of Chapter 1.. 55
estimation of eigenvalue spread.. 65

L

least sqaure derivation ... 55

M

Mars’ pathfinder mission .. 79
more derivation of performance surface .. 58

 109

more on derivation of largest stepsize.. 59
more on scheduling stepsizes ... 60
multiple variable correlation coefficient ... 63

P

performance surface properties .. 62

T

The linear Regression Model.. 48

V

variance ... 56, 57

 110

	 Chapter I - Data Fitting with Linear Models
	1. Introduction
	2. Linear models
	3. Least Squares
	4. Adaptive Linear Systems
	5. Estimation of the gradient - the LMS algorithm
	6. A Methodology for Stable Adaptation
	7. Regression for multiple variables
	8. Newton’s method
	9. Analytic versus Iterative solutions
	10. The Linear Regression Model
	11. Conclusions
	End of Chapter 1
	least squares derivation
	variance
	Derivation of correlation coefficient
	computation of correlation coefficient
	batch versus online learning
	more derivation of performance surface
	more on derivation of largest stepsize
	derivation of the time constant of adaptation
	more on scheduling stepsizes
	derivation of normal equations
	performance surface properties
	multiple variable correlation coefficient
	convergence for multiple weights case
	estimation of eigenvalue spread
	Casti Reference
	Processing Element
	Epoch
	linear regression
	mean square error
	least squares
	correlation coefficient
	Adaptive systems
	Performance surface
	Supervised learning
	Unsupervised learning
	gradient
	steepest descent
	Least Mean Square
	step size
	on-line training
	epoch
	batch training
	training set
	test set
	learning curve
	weight track
	geometric ratio
	time constant of adaptation
	rattling
	misadjustment
	learning rate scheduling
	eigenvalue spread
	normalized LMS
	big O notation
	adaline
	Eq. 4
	 Eq. 14
	Eq.6
	Eq.9
	Eq.3
	Eq.10
	Eq.12
	Eq.11
	Eq.13
	Eq.54
	Eq.16
	Eq.17
	Eq.19
	Eq.25
	Eq.28
	Eq.31
	Eq.68
	EQ.69
	Eq.65
	Eq.27
	Eq.36
	Eq.21
	Eq.33
	Eq.32
	Eq.41
	Eq.5
	Eq.45
	Eq.53
	Eq.52
	Eq.55
	Eq.30
	Eq.26
	Eq.63
	Eq.40
	Widrow
	Eq.7
	Eq.15
	Widrow and Stearns
	Linear Models
	Eq.49
	outlier
	RLS
	Gauss
	covariance
	standard deviation
	Estimation theory
	autocorrelation
	crosscorrelation
	Derivation of Solution
	Contour
	eigenvalues
	Z scores
	Newton’s Derivation
	ill-conditioned
	gradient definition and construction
	development of the phone system
	Mars’ pathfinder mission

