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The goal of this chapter is to introduce the concepts of: 

• Data fitting and the derivation of the best linear (regression) model.  

• Iterative solution of the regression model. 

• Steepest descent methods. 

• The LMS (least mean square) estimator for the gradient. 

• The trade-off between speed of adaptation and solution accuracy.  

• Examples using NeuroSolutions.  

• 1. Experimental Model Building  

• 2. Linear Models  

• 3. Least Squares 

• 4. Least squares as a search for the parameters of a linear system  

• 5. Estimation of the gradient - the LMS algorithm  

• 6. Getting a grip on adaptation  

• 7. Regression for multiple variables  

• 8. Newton’s method  

• 9. Analytic versus Iterative solutions 

• 10. The linear Regression Model  

• 11. Conclusions  
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 Go to next section  

 Go to the Appendix  

1. Introduction 
Engineering is a discipline that builds physical systems from human dreams, re-inventing 

the physical world around us. In this respect it transcends physics that has a passive role 

of explaining the world, and also mathematics that stops at the edge of the physical 

reality. Engineering design is just like a gigantic Lego, where each piece is a subsystem 

grounded in its physical or mathematical principles. The role of the engineer is to first 

develop the blue print of the “dream” through specifications, and then look for the pieces 

that fit the blue print. Obviously the pieces can not be put together at random since each 

has its own principles attached. So it is mandatory that the engineer first learns the 

principles attached to each piece and specifies the interface. Normally this study is done 

using the scientific method. When the system is physical we use the principles of physics, 

and when it is software we use the principles of mathematics. development of the phone 

system This method has been highly successful, but let us evaluate it in broad terms.  

First, engineering design requires the availability of a model for each subsystem. Second, 

when the number of pieces increase the interactions among the subsystems increase 

exponentially. Fundamental research will continue to provide a steady flux of new 

physical and mathematical principles (provided the present trend of federal funding for 

fundamental science is reversed) but the exponential growth of interactions required for 

larger and more sophisticated systems is harder to control. In fact at this point in time, we 

simply do not have a clear vision how to handle complexity in the long term. But there are 

two more factors that present big challenges. They are the autonomous interaction of 

systems with the environment and the optimality of the design. We will discuss these 

below.  

Humans have traditionally mediated the interaction of engineering systems with the 

external world. After all humans use technology to enhance their physical constraints so 
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we have been in control of the machines we build. Since the invention of the digital 

computer there is a trend to create machines that interact directly with the external world 

without the human in the loop. This brings the complexity of the external world directly 

into engineering design. We are not yet totally prepared for this, because our 

mathematical and physical theories about the external world are mere approximations: 

very good approximations in some cases, but rather poor in others. This disturbs the 

order of engineering design, and creates performance problems (the worse subsystem 

tends to limit the performance of the full system) Mars’ pathfinder mission . 

System optimality is also a rising concern to save resources and augment the 

performance/price ratio. We could think that designing optimally each sub-system would 

bring global optimality, but this is not always true. So optimal design of complex systems 

is a difficult problem that has also to take into consideration the particular type of system 

function, that is, the complexity of the environment is once again present. We can 

conclude that the current challenges faced in engineering are the complexity of the 

systems, the need for optimal performance, and the autonomous interaction with the 

environment that will require some form of intelligence. These are the challenges for XXI 

century (and beyond) engineering.  

Whenever there is a challenge, we should look elsewhere for answers. Quite often the 

difficulty of a task is also linked to the particular method we are using to find the solution. 

Is building machines by specification the only way to proceed?  

Let us look at living creatures from an engineering systems perspective. The cell is the 

ultimate optimal factory building directly from the environment at the fundamental 

molecular level what it needs to carry out its function. The animals we observe today 

interact efficiently with the environment (otherwise they would not have survived), they 

work very close to optimality in terms of resources (otherwise they would have been 

replaced in their niche by more efficient animals), and they sure are complex. Biology has 

in fact conquered already some of the challenges we face in building engineering 
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systems, so it is worthwhile to investigate what are the principles at work  

Biology has found a set of inductive principles that are particularly well tuned to the 

interaction with a complex and unpredictable environment. These principles are not 

known explicitly, but are being intensively studied in biology, computational 

neurosciences, statistics, computer science and engineering. They involve extraction of 

information from sensor data (feature extraction), efficient learning from data, creation of 

invariants and representations, and decision making under uncertainty. In a global sense 

autonomous agents have to build and fit models to data through their daily experience, 

they have to store these models, choose which shall be applied in each circumstance, 

and assess the likelihood of success for a given task. An implicit optimization principle is 

at play, since the goal is to do the best with the available information and resources.  

From a scientific perspective, biology uses adaptation to build optimal system 

functionality. The anatomical organization of the animal (the wetware) is specified in the 

long term by the environment (through evolution), and in the short-term it is used as a 

constraint to extract in real time the information that the animal needs to secure 

survivability. At the nervous system level, it is well accepted that the interaction with the 

environment molds the wetware using a learning from examples metaphor.  

1.1. Neural and Adaptive systems 
Neural and adaptive are a unique and growing interdisciplinary field that studies adaptive, 

distributed, and mostly nonlinear systems, three of the ingredient found in biology. We 

believe that neural and adaptive systems should be considered another tool in the 

scientist/engineers toolbox. They will complement effectively the present engineering 

design principles and help build the preprocessors to interface with the real world, and 

the optimality needed in complex systems. When applied correctly the performance of a 

neural or adaptive system may considerably outperform other methods.  

Neural and adaptive systems are used in many important engineering applications such 

as, signal enhancement, noise cancellation, classification of input patterns, system 

 7



identification, prediction, and control. They are used in many commercial products such 

as: modems, image processing and recognition systems, speech recognition, frontend 

signal processors, biomedical instrumentation, etc. We expect that the list we will grow 

exponentially in the near future.  

The leading characteristic of neural and adaptive systems is their adaptivity, which brings 

a totally new system design style (Figure 1). Instead of being built a priori from 

specification, neural and adaptive systems use external data to automatically set their 

parameters. This means that neural systems are parametric. It also means that they are 

made “aware” of their output through a performance feedback loop that includes a cost 

function. The performance feedback is utilized directly to change the parameters through 

systematic procedures called learning or training rules, such that the system output 

improves with respect to the desired goal (i.e. that the error decreases through training).  

ADAPTIVE

SYSTEM (W)

C
O
S
T

input output

desired

error
training
algorithm

change parameters

  
Figure 1. Adaptive system’s design methodology 

The system designer has to specify just a few but crucial steps in the overall process: 

he/she has to decide the system topology, to choose a performance criterion, to design 

the adaptive algorithms.  In neural systems the systems parameters are modified in a 

selected set of data called the training set, and fixed during operation. So the designer 

has to know how to specify the input and desired response data and when to stop the 

training phase. In adaptive systems the system parameters are continuously adapted 

during operation with the current data. We are at a very exciting stage in neural and 
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adaptive system development because: 

• We now know some powerful topologies that are able to create universal input-output 
mappings.  

• We also know how to design general adaptive algorithms to extract information from data and 
adapt the parameters of the mappers.  

• We are also starting to understand the pre-requisites for generalization, i.e. to guarantee that 
the performance in the training set can be extended to the data found during system 
operation.  

Therefore we are in a position to design effective adaptive solutions to moderately difficult 

real world problems. Due to the practicality derived from these advances we believe the 

time is right to teach adaptive systems in undergraduate engineering and science 

curricula.  

Throughout this textbook we will be explaining the principles that are necessary to make 

judicious choices about the design options for neural and adaptive systems. The 

discussion is slanted towards engineering, both in terminology and in perspective. We 

are very much interested in the engineering model-based approach, and in explaining the 

mathematical principles at work. We center the explanation on concepts from adaptive 

signal processing, which are rooted in statistics, pattern recognition and digital signal 

processing. Moreover, our study will be restricted to model building from data. 

1.2 Experimental Model Building 
The problem of data fitting is one of the oldest in experimental science. The real world 

tends to be very complex, unpredictable, and the exact mechanisms that generate the 

data are often unknown. Moreover, when we collect physical variables the sensors are 

not ideal (finite precision, noisy, constraint bandwidth, etc.) so the measurements do not 

represent exactly the real phenomena. One of the quests in science is to estimate the 

underlying data model. 

The importance of inferring a model from the data is to apply mathematical reasoning to 

the problem. The major advantage of a mathematical model is the ability to understand, 

explain, predict and control outcomes in the natural system [Casti]. Figure 2 illustrates the 

 9



data modeling process. The most important advantage of the existence of a formal 

equivalent model is the ability to predict the natural system behavior at a future time and 

to control its outputs by applying appropriate inputs.  

Observable
Natural
System

Formal
Model

Natural World

Mathematical
world

Predict

Decoding

Measurements

  
Figure 2. Natural systems and formal models 

In this chapter we will address the issues of fitting data with linear models, which is called 

the linear regression problem. Notice that we have not specified what the data is, 

because it is really immaterial. We are seeking relationships between the values of the 

external (observable) variables of the natural system in Figure 1. So this methodology 

can be applied either to meteorological data, biological data, financial data, marketing 

data, engineering data, etc.  

1.2 Data Collection 
The data collection phase must be carefully planned to ensure that: 

• data will be sufficient,  

• data will capture the fundamental principles at work,  

• data is as free as possible from observation noise.  
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X D
1 1.72
2 1.90
3 1.57
4 1.83
5 2.13
6 1.66
7 2.05
8 2.23
9 2.89
10 3.04
11 2.72
12 3.18

  
Table 1 - Regression Data 

Table I presents a data example with two variables x, d in tabular form. The 

measurement x is assumed error free, and d is contaminated by noise. By observing 

Table I very little can be said about the data, except that there is a trend, i.e. when x 

increases d also increases. Our brain is somehow able to extract much more information 

from figures than numbers, so data should be first plotted before performing data analysis.  

Plotting the data allows verification, ensures the researcher that the data was collected 

correctly and provides a “feel” for the relationships that exist in the data (e.g. natural 

trends, etc.). 

Go to the Next Section  

2. Linear models  
From the simple observation of Figure 3, it is obvious that the relationship between the 

two variables x and d is complex, if one assumes that no noise is present. However there 

is an approximate linear trend in the data. The deviation from the straight line could be 

produced by noise, and underlying the apparent complexity could be a very simple 

(possibly linear) relationship between x and d, i.e. 
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d wx b≈ +             Equation 1 
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Figure 3. Plot of x versus d 

or more specifically,  

d wx b yi i i i= + + = +ε iε                         Equation 2 

where εi is the instantaneous error that is added to yi (the linearly fitted value), w is the 

slope and b is the y intersect (or bias). Assuming a linear relationship between x and d 

has the appeal of simplicity. The data fitting problem can be solved by a linear system 

with only two free parameters, the slope w and the bias b.  

w

Σ

b

xi

+1

yi

PE
  

Figure 4 - Linear Regression Processing Element  

The system of Figure 4 will be called the linear processing element  (PE), or ADALINE 
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(for adaptive linear element) and it is very simple. It is built from two multipliers and one 

adder. The multiplier w scales the input, and the multiplier b is a bias, which can also be 

thought of as an extra input connected to the value +1.The parameters (b, w) have 

different functions in the solution. We will be particularly interested in studying the 

dependence of the solution on the parameter(s) that multiply the input xi. 

NeuroSolutions  1 

1.1 The Linear Processing Element in NeuroSolutions 

The goal of this book is to demonstrate as many concepts as possible through 

demonstrations and simulations.  Neurosolutions is a very powerful Neural 

Network/Adaptive System design and simulation package which we will use for the 

demonstrations.  Neurosolutions constructs adaptive systems in a Lego style, i.e. 

component by component. The components are chosen from palettes, selected 

with the mouse and dropped in the large window called the breadboard. This 

object oriented methodology allows for the simple creation of adaptive systems by 

simply “dragging and dropping” components, connecting them, and then adjusting 

their parameters.  Particularly in the early chapters, we will automatically create 

the adaptive systems for you through a set of “macros”.  This will shield you from 

the details of Neurosolutions until you have a better grasp of the fundamentals of 

adaptive systems and the use of Neurosolutions. 

In this first example, we introduce a few simple components. The first component 

required in any simulation is an input component, which belongs to the Axon 

family. Its function is to receive data from the computer file system or from signal 

generators within the package. In this case, we will add a file input component to 

the input axon to read in the data from Table 1.  The linear PE shown in figure 3 

can be constructed with a Synapse and a BiasAxon. The Synapse implements a 

sum of products and the BiasAxon adds the bias. The output of such system is 

exactly Eq. 2. The “controller” manages the system and controls the firing of data 
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through the system. Since Table 1 has 12 data points, the controller is configured 

to send 12 points through the system. 

  
The purpose of this example is to display the output of the linear PE, which is a 

line, and modify its location in the space by entering different slope and bias 

values. To display the input and regression line, we use the DataStorage 

component (stores 12 samples) and the Scatter Plot component.  The Scatter Plot 

component allows us to plot the input (x axis) versus the system response (y axis).  

We also add two edit boxes to allow you to change the values of the two 

parameters, the weight (slope) and bias (y-intercept).  After changing these 

parameters, you use the “control palette” to run the network. 

  
The Run Button is the green triangle and tells the controller to send the data 

through the network.  The other buttons are not important now, but will be used 

and explained later.  Now run the NeuroSolutions Example by clicking on the 

yellow NeuroSolutions icon below.  It will walk you through the creation of the 

breadboard and allow you to see how the regression line changes as you change 

the weight (slope) and bias (y intercept). 

 NeuroSolutions Example 
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We face a problem when trying to fit a straight line to the noisy observations of Table I. A 

single line will fit any two observations (two points define a line), but it is unlikely that all 

points will fall on exactly the same line. Since no single line will fit every point, a global 

property of the points is needed to find the best fit. The problem of fitting a line to noisy 

data can be formulated as follows: what is the best choice of (w, b) such that the fitted 

line passes the “closest” to all the points? 

Goto Next Section  

3. Least Squares 
Least squares solves the problem by finding the line for which the sum of the square 

deviations (or residuals) in the d direction (the noisy variable direction) are minimized. 

The fitted points in the line will be denoted by ii wxbd +=
~

 . The residuals are defined 

as iii dd ~
−=ε  . The fitted points id~  can also be interpreted as approximated values 

of di estimated by a linear model when the input xi is known,   

0
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0 2 4 6 8 10 12

Residuals

regression line
y=1.33 + .14x

Fitted
points

  
Figure 5. Regression line showing the deviations.  

iiiii ddwxbd ε=−=+−
~)(             Equation 3   

This linear model will be called the linear regressor. Estimated quantities will be denoted 

by the tilda ~ throughout the book. The outputs of the linear system of Figure 4 are the 
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fitted points, i.e.  in Figure 5. In order to pick the line which best fits the data, we 

need a criterion to determine which linear estimator is the “best”.  The average sum of 

square errors J (also called the mean square error (MSE) (MSE)) is a widely utilized 

performance criterion given by 

~d yi = i

J
N i

i

N

=
=
∑1

2
2

1
ε

                            Equation 4 

where N in the number of observations.  

NeuroSolutions    2 

1.2 Computing the MSE for the linear PE 

In order to create a simulation that displays the MSE, we have to add a new 

component to the breadboard, the L2Criterion. The L2Criterion implements the 

mean square error Eq. 4 .  The L2Criterion requires two inputs to compute the 

MSE – the system output and the desired response.  We will attach the L2Criterion 

to the output of the linear PE (system output) and attach a file input component to 

the L2Criterion to load in the value of the desired response from Table 1. In order 

to visualize the MSE, we will place a MatrixViewer probe over the L2 criterion (cost 

access point).  This MatrixViewer simply displays the data from the component 

that it resides over – in this case, the mean square error. 

  
Run the demonstration and try to set the slope and bias to minimize the mean 

square error. Compute by hand the error according to Eq. 4 and see if it matches 

the value displayed.  
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  NeuroSolutions Example 

Our goal is to minimize J analytically, which according to Gauss can be done by taking its 

partial derivative with respect to the unknowns and equate the resulting equations to zero, 

i.e. 

∂
∂
∂
∂

J
b
J
w

=

=

⎧

⎨
⎪

⎩
⎪

0

0
                    Equation 5 

which yields after some manipulation Click here for Least Squares Derivations  

b
x d x x d

N x x

i
i

i
i

i
i

i i
i

i
i

=
−

−

∑ ∑ ∑ ∑
∑

2

2[ ( ) ]
          

w
x x d d

x x

i i
i

i
i

=
− −

−

∑
∑

( )(

( )2

)

 Equation 6   

where the bar represents the variable’s mean value 
x

N
xi

i

N

=
=
∑1

1  .  

This procedure to determine the coefficients of the line is called the least square method. 

If we apply these equations to the data of Table I, we get the regression equation (best 

line through the data) 

d x= +013951 133818. .   
The least square computation for a large data set is time consuming, even with a 

computer. 

NeuroSolutions     3 

1.3 Finding the minimum error by trial and error  

Enter these values for the slope and bias by typing them in the respective Edit 

Boxes. Verify that with these values the error is the smallest. Change the values 

slightly (in either direction) and see that the MSE increases. Enter a negative slope 

and see how the error increases a lot. For the negative slope, what is the value of 
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the bias that gives the smallest error? Note that when one of the coefficients is 

wrong, the value of the other for best performance is also wrong, i.e. they are 

coupled. 

It is important to explore the NeuroSolutions breadboards. The best way to 

accomplish this is to open the Inspector associated with each icon. Select a 

component with the mouse. Then press the right mouse button, and select 

properties. The Inspector will appear in the screen. The Inspector has fields that 

allow us to configure the NeuroSolutions components, and tell us what are the 

settings being used. For instance, go to the input Axon and open the inspector. 

You will see that it has one input and one output and no weights (go to the soma 

level to look at the weights). If you do the same in the Synapse you will see that it 

also has a single input and output and one weight which happens to be our slope 

parameter. The BiasAxon has a single input and a single output and has a single 

weight that is our bias.  

The large barrel on the input Axon is a probe that collects data. Since the barrel is 

placed on the activity point, it is storing the 12 data samples that are injected into 

the network. This is exactly what gets displayed in the x axis of the ScatterPlot. 

The y axis is sent from the L2Criterion by the small barrel (a data transmitter). So 

the Scatter plot is effectively displaying the pairs of points (xi,di). Likewise it is 

also displaying the output of the system in blue, i.e. the pairs of points (xi,yi). 

If you want to know what the component is and what it does, just go to the control 

bar, select the arrow with the question mark, and click on the component that you 

want to know about (this is called context sensitive help).   

 NeuroSolutions Example 

3.1 Correlation Coefficient 
We have found a way to compute the regression equation, but we still do not have a 
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measure of how successfully the regression line represents the relationship between  x 

and d. The size of the Mean Square Error (J) can be used to determine which line best 

fits the data, but it doesn’t necessarily reflect whether a line fits the data at all because 

the MSE depends upon the magnitude of the data samples. For instance, by simply 

scaling the data, one can change the MSE without changing how well the data is fit by 

the regression line.  The correlation coefficient ® solves this problem by comparing the 

variance of the predicted value with the variance of the desired value variance .  The 

value r² represents the amount of variance in the data captured by the linear regression:   

( )
( )

r
y d

d d

i
i

i
i

2

2

2=
−

−

∑

∑
                  Equation 7 

If we substitute yi by the equation of the regression line and operate, we obtain Derivation 

of correlation coefficient  

( )( )

( ) ( )
r

x x d d

N

d d

N

x x

N

i i
i

i
i

i
i

=

− −

− −

∑

∑ ∑2 2

               Equation 8 

The numerator is the covariance of the two variables (see Appendix ), and the 

denominator is the product of the corresponding standard deviation . The correlation 

coefficient is confined to the range [-1,1]. When r =1 there is a perfect positive correlation 

between x and d, i.e. they covary which means that they vary by the same amount. When 

r=-1, there is a perfect negative correlation between x and d, i.e. they vary in opposite 

ways (i.e. when x increases, y decreases by the same amount). When r=0 there is no 

correlation between x and d, i.e. the variables are called uncorrelated. Intermediate 

values describe partial correlations. For our example r=0.88 which means that the fit of 

the linear model to the data is reasonably good. 
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The method of least squares is very powerful. Estimation theory says that the least 

square estimator is the “best linear unbiased estimator” (BLUE), since it has no bias and 

has minimal variance among all possible estimators. Least squares can be generalized to 

higher order polynomial curves such as quadratics, cubics, etc. (the generalized least 

squares). In this case nonlinear regression models are obtained. More coefficients need 

to be computed but the methodology still applies. Regression can also be extended to 

multiple variables (7. Regression for multiple variables). The dependent variable d in 

multiple variable regression is a function of a vector  , where T means 

the transpose. In this book vectors are denoted by bold letters. In this case the regression 

line becomes a hyperplane in the space x1,x2,...xp. This case will be studied later in the 

chapter. 

T
pxx ],...,[ 1=x

Go to Next Section  

4. Adaptive Linear Systems 
 

4.1. Least squares as a search for the parameters of a linear system 
The purpose of least squares is to find parameters (b, w) that minimize the difference 

between the system output yi and the desired response di. So, regression is effectively 

computing the optimal parameters of an interpolating system (linear in this case) which 

predicts the value of d from the value of x. 
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Figure 6. Regression as a linear system design problem 

Figure 6 shows graphically the operation of adapting the parameters of the linear system. 

The system output y is always a linear combination of the input x with the bias, so it has 

to lie on a straight line of equation y=wx+b. Changing b modifies the y intersect, while 

changing w modifies the slope. Therefore we conclude that the goal of linear regression 

is to adjust the position of the line such that the average square difference between the y 

values (on the line) and the cloud of points di i.e. the criterion J is minimized.  

The key point is to recognize that the error contains information that can be used to 

optimally place the line. Figure 6 shows this by including a subsystem that accepts the 

error as input and modifies the parameters of the system. Thus, the error εi is fed back to 

the system and indirectly affects the output through a change in the parameters (b,w). 

Effectively the system is made “aware” of its performance through the error. With the 

incorporation of the mechanism that automatically modifies the system parameters, a 

very powerful linear system can be built that will constantly seek optimal parameters. 

Such systems are called Neural and Adaptive systems, and are the focus of this book.  

4.2. Neural and Adaptive systems 
Before pursuing the study of adaptive systems, it is important to reflect briefly on the 

implications of neural and adaptive systems in Engineering design. System design 

usually begins with specifications. First the problem domain is studied and modeled, 
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specifications are established, and then a system is built to meet the specifications. The 

key point is that the system is built to meet the current specifications and will always use 

the designed set of parameters, even if the external conditions change.  

Here we are proposing a very different system design approach based on adaptation 

which has a biological flavor to it. In the beginning the system parameters may be way off, 

creating a large error. However, through the feedback from the error, the system can 

change its parameters to decrease the error as much as possible. The system’s  

“experience” with the data designs the best set of parameters. An adaptive system is 

more complex because it not only has to accomplish the desired task, but also has to be 

equipped with a subsystem that adapts its parameters. But notice that even if the data 

changes in the future, this design methodology will modify the system parameters such 

that the best possible performance is obtained. Additionally, the same system can be 

used for multiple problems.   

There are basically two ways to adapt the system parameters: supervised learning and 

unsupervised learning. The method described until now belongs to supervised learning 

because there is a desired response. Later on in the book we will find other methods that 

also adapt the system parameters, but using only an internal rule. Since there is no 

desired response these methods are called unsupervised. We will concentrate here on 

supervised learning methods. 

The ingredients to pursue adaptive system design are:  

• a system (linear in this case) with adaptive parameters;  

• the existence of a desired or target response d;  

• an optimality criterion (the MSE in this case) to be minimized;  

• a method (subsystem) to compute the optimal parameters.  

 
The method of least squares finds the optimal parameters (b,w) analytically. Our goal is 

to find alternate ways of computing the same parameters using a search procedure.  
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4.3. Analysis of the error in the space of the parameters - The 
performance surface.  

 
Let us analyze the mean square error (J) as we change the parameters of the system (w 

and b). Without loss of generality, we are going to assume that b=0 (or equivalently that 

the mean of x and d have been removed), such that J becomes a function of the single 

variable w  

( ) ( )J
N

d wx
N

x w d x w di i
i

i i i
i

= − = − +∑ ∑1
2

1
2

2
2 2 2 2

i
              Equation 9 

If w is treated as the variable and all other parameters are held constant, one can 

immediately see that J is quadratic on w with the coefficient of w² (e.g. xi²) being always 

positive. In the space of the possible w values, J is a parabola facing upwards (J is 

always positive since it is a sum of squares). The function J(w) is called the Performance 

surface for the regression problem (Figure 7). The performance surface is an important 

tool that helps us visualize how the adaptation of the weights affects the mean square 

error. 

J

Jmin

w* w

Performance
Surface

  
Figure 7. The performance surface for the regression problem 

NeuroSolutions    4 

1.4 Plotting the performance surface 
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The performance surface is just a plot of the error criterion (J) versus the value of 

the weights. So what we will do is to vary the Synapse weight (which corresponds 

to the slope parameter of the linear regressor) between two appropriate values 

during the simulation. We can imagine that the error will be minimum at an 

intermediate value of the weight, and it will increase for both lower values and 

higher values.  

In order to modify incrementally the Synapse weight we will attach a “linear 

scheduler” to the Synapse, and place the MatrixViewer on it so we can see how the 

weight is changing. In order to visualize the MSE we will bring another ScatterPlot 

to the L2 criterion component.  This will allow us to plot the cost versus weight 

(performance surface).  

  
Now, run the example and see how the slope parameter of the linear PE affects the 

mean square error of the linear regressor.  As we are going to see the input and 

desired signals affect tremendously the shape of the performance surface. But can 

you change the shape of the performance curve without touching the data files? 

Let us change the L2Criterion. Go to Palettes and open the ErrorCriteria. Click on 

the Lp criterion and bring the pointer to the breadoard. Notice that the pointer 

changed to a stamper. If you left click on the L2Criterion component, the L2 is 

substituted by the new component which computes a cost given by  

    
∑ε=

i

p
ip

J 1

  
By default the norm is p=5. Run the simulation again. What do you see? Does the 

location of the minimum change appreciably? What about the shape of the 
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performance surface? Do you understand now better the function of the cost?  

 NeuroSolutions Example 

Using the performance surface, we can develop a geometric method for finding the value 

of w, here denoted by w*, which minimizes the performance criterion. Previously, we 

computed w* by setting to zero the derivative of J with respect to w.   

The gradient of the performance surface is a vector (with the dimension of w) which 

always points towards the direction of maximum J change and with a magnitude equal to 

the slope of the tangent of the performance surface (Figure 8). If you visualize the 

performance surface as a hill-side, each point on the hill will have a gradient arrow which 

points in the direction of steepest ascent at that point, with larger magnitudes for steeper 

slopes.  Thus, a ball rolling down the hill will always attempt to roll in the opposite 

direction of the gradient arrow (steepest descent). The slope at the bottom is zero, so the 

gradient is also zero (that is the reason the ball stops there). 

In our special case the gradient has just one component along the weight axis w 

  given by  JJ w∇=∇

∇ =w J
J
w

∂
∂                Equation 10 

gradient definition and construction A graphical way to construct ∇ w J   at a point w0 is 

to first find the level curve (curve of constant J value) that passes through the point (also 

called the contour plot). Then take the tangent to the level curve at w0. The gradient 

component   is always perpendicular to the contour curve at w0, with a magnitude 

given by the partial derivative of J with respect to the weight w (Eq. 10). For one weight 

as in Figure 8 (1-Dimensional problem) the construction is simplified and we have to only 

find the direction of the gradient on the axis.  

∇ w J
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Figure 8.  Performance surface and its gradient 

At the bottom of the bowl, the gradient is zero, because the parabola has slope 0 at the 

vertex. So, for a parabolic performance surface, computing the gradient and equating it to 

zero finds the value of the coefficients that minimize the cost, just as we did in Eq.6 . The 

important observation is that the analytical solution found by the least squares coincides 

with the minimum of the performance surface. Substituting the value of w* into Eq.9 , the 

minimum value of the error (Jmin) can be computed. 

more derivation of performance surface   
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1.5 Comparison of performance curves for different data sets 

 

In this example, we will provide two sets of input files and two sets of output files.  

By changing the input data we will find that the minimum error, its location in the 

weight space (a weight line in this 1D example), as well as the shape of the 

performance surface changes. On the other hand, if we change the desired signal, 

only the minimum value of the performance and its location changes, but the 

overall shape remains de same. 

 NeuroSolutions Example 
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4.4. Search of the performance surface with steepest descent 

 
Since the performance surface is a paraboloid which has a single minimum, an alternate 

procedure to find the best value of the coefficient w is to search the performance surface 

instead of computing the best coefficient analytically by Eq.6 . The search for the 

minimum of a function can be done efficiently using a broad class of methods based on 

gradient information. The gradient has two main advantages for search.  

• The gradient can be computed locally. 

• The gradient always points in the direction of maximum change. 

  
If the goal is to reach the minimum, the search must be in the direction opposite to the 

gradient. So, the overall method of search can be stated in the following way: 

Start the search with an arbitrary initial weight w(0), where the iteration is denoted by the 

index in parenthesis. Then compute the gradient of the performance surface at w(0), and 

modify the initial weight proportionally to the negative of the gradient at w(0). This 

changes the operating point to w(1). Then compute the gradient at the new position w(1), 

and apply the same procedure again, i.e.  

w k w k J k( ) ( ) (+ = −1 )η∇                   Equation 11 

where η is a small constant and J∇  denotes the gradient of the performance surface at 

the kth iteration.  η is used to maintain stability in the search by ensuring that the 

operating point does not move too far along the performance surface. This search 

procedure is called the steepest descent method. Figure 9 illustrates the search 

procedure  
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Figure 9. The search using the gradient information 

If one traces the path of the weights from iteration to iteration, intuitively we see that if the 

constant η is small, eventually the best value for the coefficient w* will be found. 

Whenever w>w*, we decrease w, and whenever w<w*, we increase w. 

Goto Next Section  

5. Estimation of the gradient - the LMS algorithm 
 

An adaptive system can use the gradient to optimize its parameters.  The gradient, 

however, is usually not known analytically, and thus must be estimated. Traditionally, the 

difference operator  estimated the derivative as outlined in Figure 8.  A good estimate, 

however, requires many small perturbations to the operating point to obtain a robust 

estimation through averaging. The method is straight forward but not very practical.  

In the late 1960’s Widrow , proposed an extremely elegant algorithm to estimate the 

gradient that revolutionized the application of gradient descent procedures. His idea is 

very simple: Use the instantaneous value of the gradient as the estimator for the true 

quantity. This means to drop the summation in Eq.9 , and define the gradient estimate at 

step k as its instantaneous value. Substituting Eq. 4 into Eq.10 , removing the summation, 

and then taking the derivative with respect to w yields 
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  Equation 12 

What Eq. 12 tells us is that an instantaneous estimate of the gradient is simply the 

product of the input to the weight times the error at iteration k. The amazing thing is that 

the gradient can be estimated with one multiplication per weight. This is the gradient 

estimate that led to the famous Least Means Square (LMS) algorithm (or LMS rule). The 

estimate will be noisy, however, since the algorithm uses the error from a single sample 

instead of summing the error for each point in the data set (e.g. the MSE is estimated by 

the error for the current sample).  But remember that the adaptation process does not 

find the minimum in one step. Normally many iterations are required to find the minimum 

of the performance surface, and during this process the noise in the gradient is being 

averaged (or filtered) out.  

If the estimator of Eq.12 is substituted in Eq.11 , the steepest descent equation becomes 

w k w k k x k( ) ( ) ( ) ( )+ = +1 ηε           Equation 13 

This equation is the LMS algorithm. So, with the LMS rule one does not need to worry 

about perturbation and averaging to properly estimate the gradient at each iteration, it is 

the iterative process that is improving the gradient estimator. The small constant η is 

called the step size or the learning rate. 
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1.6 Adapting the linear PE with LMS 

Several things have to be added to the previous breadboard of the linear PE to 

make it learn automatically using the LMS algorithm. The methodology will be 

explained in more detail later.  However, the technique used in NeuroSolutions is 

called “backpropagation”.  In short, the algorithm passes the input data forward 

through the network and the error (desired - output) backwards through another 

network.  The error is propagated through a second layer which can be obtained 
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from the first with minor and well established modifications (more about this later).  

So at every component there is a local activity (the x) and a local error (the ε) such 

that the weights of the network can be modified by Eq. 13.  NeuroSolutions 

implements this technique by adding two additional layers to the network:  the 

backpropagation layer and the gradient search layer.  These two layers can be 

automatically added to the breadboard.  The backpropagation layer looks like a 

small version of the network which sits on top of the original network (in red 

instead of orange).  The gradient search layer sits on top of the backpropagation 

layer and uses the gradient search method to adjust the weights.  In our case, the 

gradient search layer is a simple “step” layer which implements the  gradient 

descent rule Eq.13 .  Notice that only the components which have adjustable 

weights (the synapse (w) and bias axon (bias)) have gradient search components. 

  
In addition to adding the two layers, we need an additional controller to manage 

the backpropagation layer.  This controller sits above the yellow controller from 

before. The backprop controller is where we set parameters like whether we use 

batch or on-line learning.  In this example, we will use batch learning, i.e. the 

system will compute all the weight updates for the training set add them up, and at 

 30 



the end of the epoch (one presentation of all the training data) update the weights 

according to Eq. 13. The initial value of the step size will be set at 0.01. Now we can 

click on the start button of the controller to initiate the simulation.  

When you run the network, watch the regression line move towards the optimum 

value in the ScatterPlot. When the network has finished, notice that the weight is 

approximately .139, the bias is approximately 1.33 and the error is approximately 

0.033 – all in excellent agreement with the optimal values we computed 

analytically. 

You should explore this breadboard by entering several values of the stepsize, and 

opening the Inspector to see how each component is configured.  

 NeuroSolutions Example 

5.1. Batch and sample by sample learning 

 
The LMS algorithm was presented in a form where the weight updates are computed for 

each input sample, and the weights modified after each sample. This procedure is called 

sample by sample learning or on-line training . As we have mentioned, the estimate of 

the gradient is going to be noisy, i.e. the direction towards the minimum is going to zigzag 

around the gradient direction.  

An alternative solution is to compute the weight update for each input sample, but store 

these values during one pass through the training set which is called an (epoch) . At the 

end of the epoch all the contributions are added, and only then the weights will be 

updated with the composite value. This method adapts the weights with a cumulative 

weight update, so it will follow the gradient more closely. It is called the batch training 

mode or batch learning. Batch learning is also an implementation of the steepest descent 

procedure. In fact, it provides an estimator for the gradient that is smoother than the LMS. 

We will see that the agreement between the analytical quantities that describe adaptation 
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and the ones obtained experimentally is excellent with the batch update.batch versus 

online learning  

In order to visualize the differences between these two update methods, we will plot the 

decrease of the error during adaptation (the learning curve) with both of them.  
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1.7 Batch versus online adaptation 

 

It is important to visualize the differences in adaptation for on-line and batch 

learning. Up to now we have been using the batch mode. In this example we will 

set the Backprop Controller to use on-line training. To display the learning curve, 

we have to introduce one new component – the Megascope.  The Megascope is a 

probe, similar to the Scatter Plot.  The Megascope acts just like an oscilloscope – 

it plots a continuous stream of inputs, using the iteration number as the x-axis.  

To create the learning curve, we simply place a data barrel over the L2 Criterion 

and then place a Megascope on top of the data barrel. 

  
We will see that the learning curve is not smooth anymore because we are 

updating the weights after each example.  Since the individual errors vary from 

sample to sample, our updates will make the learning curve noisy.  The learning 

curve will have a periodic component superimposed on a decaying exponential. 

The exponential tells us that we are approaching a better overall solution. The 

periodic features show the error obtained for each input sample. So the envelope 

is related to the learning curve for the batch mode. Note that the weights never 
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stabilize, otherwise the performance curve should be smooth and converge to a 

single final value.  Since there is more noise in on-line learning, we must decrease 

the step size to get smoother adaptation.  But the price paid is a longer adaptation 

time, i.e. the system needs more iterations to get to a predefined final error. 

Experiment with the learning rates to observe this behavior. 

 NeuroSolutions Example 

5.2. Robustness and system testing 

 
One of the interesting aspects of the LMS solution is its robustness. From the picture 

given, no matter what is the initial condition for the weights, the solution always 

converges to basically the same value. We can even add some noise to the desired 

response and find out that the linear regressor parameters are basically unchanged. This 

robustness is rather important for real world problems, where noise is omnipresent.  

The group of input samples and desired responses (shown in Table I) used to train the 

system are called collectively the training set for obvious reasons. It is with their 

information that the system parameters were adapted. But once the optimal parameters 

are found, the parameters can be fixed and the system can be utilized in new inputs 

never encountered before. It will produce for each input a response based on the 

parameters obtained during training which should resemble the value of the desired 

response for that particular input value.  

So we see that the system has the ability to extrapolate responses for new data. This is 

an important feature since in general the system will be deployed and one wishes that the 

performance obtained in the training set will also apply (generalize) to the new data. But 

due to the methodology utilized to derive the parameter values one can never be exactly 

sure of how well the system will respond to new data.  

For this reason it is a good methodology to use a test set to verify the system 
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performance before deploying it to the real world application. The test set consists of new 

data not used for training, but for which we still know the desired response. It is kind of 

the final rehearsal before the play’s inauguration. One should also compute the 

correlation coefficient in the test set. Normally we will find a slight decrease in 

performance from the training set. If the performance in the test set is not acceptable one 

has to go back to the drawing board. When this happens in regression the most common 

source is lack of data in the training or not an exhaustive coverage of experimental 

conditions. This point will be addressed in more depth in the following chapters.   
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1.8 Robustness of LMS to noise 

 

The LMS algorithm is very robust. It will work from any arbitrary location and even 

work well with noise added to the desired data. In order to demonstrate that the 

system works well even with noisy data, we will add one additional component to 

the breadboard from the previous example – the noise component.  The noise 

component allows uniform, Gaussian, or “user defined” noise to be added to the 

input or desired signals.  We will add the noise component to the desired signal 

and watch as the system moves close to the optimum location even with the noisy 

data. 

  

 NeuroSolutions Example 

 34 



5.3. Computing the correlation coefficient in adaptive systems 

 
The correlation coefficient, r, tells how much of the variance of d is captured by a linear 

regression on the independent variable x. As such, r is a very powerful quantifier of the 

modeling result. It has a great advantage with respect to the MSE (mean square error) 

because it is automatically normalized, while the MSE is not. However, the correlation 

coefficient is “blind” to differences in means because it is a ratio of variances (see Eq.7 ), 

that is, as long as the desired and output co-vary r will be small, in spite of the fact that 

they may be far apart in actual value. So one effectively needs both quantities (r and 

MSE) when testing the results of regression. 

Eq. 7 presents a simple way of computing the correlation coefficient requiring only 

knowledge of y and d. Note, however, that y changes during adaptation so one should 

wait until the system adapts to read the final correlation coefficient. During adaptation the 

numerator of Eq. 7 can be larger than the denominator giving a value for r larger than 1, 

which is meaningless. So we propose to compute a new parameter g that is a reasonable 

proxy to the correlation coefficient even during  adaptation. We subtract a term from the 

numerator of Eq. 7 that becomes zero at the optimal setting (i.e. 

  ) but limits g such that its value is always between -1 

and 1 even during adaptation. We can write computation of correlation coefficient  
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          Equation 14 

Note that all these quantities can be computed on line with the information of the error, 

the output and the desired response. Remember however that Eq. 14  measures the 

correlation coefficient  only when the adaline has been totally adapted to the data.  
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1.9 Estimating the correlation coefficient during learning 

 

NeuroSolutions does not include a component to compute the correlation 

coefficient.  It does, however, allow you to write your own components.  These 

custom components are called DLLs. A custom component looks just like the 

component it takes the place of, except that its icon has “DLL” printed on it.  In 

this example, we include a custom component to compute the correlation 

coefficient.  This component looks exactly like an L2 component except it has 

“DLL” printed on it. 

Plug in the values of the optimal weights and verify that the formula  Eq.14 gives 

the correct correlation coefficient. Slightly modify w to 0.120 and verify that the 

correlation coefficient decreases. If you plug in values for w and b that are very far 

away from the fitted regression, this estimation of r using Eq. 14 becomes less 

accurate, but still bound by -1 and 1. The example also uses LMS to adapt the 

coefficients.  Observe that the correlation coefficient is always between -1 and 1 

during adaptation and that the final value corresponds to the computed one.  

 NeuroSolutions Example 

Goto Next Section  

6. A Methodology for Stable Adaptation 
 

During adaptation, the learning algorithm automatically changes the system parameters 

by Eq.13 .  This adaptation algorithm has one parameter (e.g. the step size) that must 

be user selected.  In order to appropriately set the parameter, the user should have a 

good understanding of what is happening inside the system. In this section, we will 
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quantify the adaptation process and develop visualization tools that will help understand 

how well the system is learning.  

6.1. Learning curve 

 
As is readily apparent from Figure 9, when the weights approach the optimum value, the 

values of J(w(k)) (the MSE at iteration k) will also decrease, approaching its minimum 

value Jmin. One of the best ways to monitor the convergence of the adaptation process is 

to plot the error at each iteration. The plot of the MSE across iterations is called the 

learning curve (Figure 10). The learning curve is as important for adaptive systems as the 

thermometer is to check your health. It is an external, scalar, easy to compute indication 

of how well the system is learning. But similar to body temperature, it is unspecific, i.e. 

when the system is not learning it does not tell us why. 

Learning Curves

Number of Iterations

J

Jmin

increasing η

  
Figure 10. The learning curve 

Notice that the error approaches the minimum in an one sided manner (i.e. always larger 

than Jmin). As one can expect, the rate of decrease of the error depends on the value of 

the step size η. Larger step sizes will take less iterations to reach the neighborhood of 

the minimum provided the adaptation converges. However, too large a step size creates 

a divergent iterative process and the optimal solution is not obtained. It is interesting to 

note that we would like as large a step size as possible because this decreases the 

convergence time. However, if the step size is increased too much divergence will result. 
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So we must seek a way to find the largest possible step size that guarantees 

convergence.  
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1.10 The learning curve 

The goal of this example is to display the learning curve and show how the 

learning rate affects its shape. This will plot the Mean Squared Error over time 

which is the Learning Curve, the thermometer of learning.  

When you run the simulation, watch as the regression line moves towards the 

optimum location how the error moves towards zero.  You can also change the 

learning rates and watch how the regression line moves faster or slower towards 

the optimum location, thus causing the learning curve to be steeper or shallower. 

The visualization of the regression line contains more information about what the 

system is doing, but is very difficult to compute and display in higher dimensions.  

The learning curve, however, is an external, scalar quantity that can be easily 

measured with minimal overhead. 
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6.2. Weight tracks 

 
An adaptive system modifies its weights in an effort to find the best solution.  The plot of 

the value of a weight over time is called the weight track . Weight tracks are an important 

and direct measure of the adaptation process. The problem is that normally our system 

has many weights and we don’t know what their optimal values are. Nevertheless the 

dynamics of learning can be inferred and monitored from the weight tracks.  

In the gradient descent adaptation, adjustments to the weights are governed by two 

quantities Eq.11 : the step size η, and the value of the gradient at the point. Even for a 
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constant step size, the weight adjustments will become smaller and smaller as the 

adaptation approaches w*, since the slope of the quadratic performance surface is 

decreasing near the bottom of the performance surface. Thus, the weights approach their 

final values asymptotically (Figure 11). 

Three cases are depicted in Figure 11. If the step size is small, the weight converges 

monotonically to w*, and the number of iterations to reach the bottom of the bowl may be 

large. If the step size η is increased, the convergence will be faster but still monotonic. 

After a value called critically damped, the weight will approximate w* in an oscillatory 

fashion (η2>η1), i.e. it will overshoot and undershoot the final solution. The number of 

iterations necessary to reach the neighborhood of w* will increase again. If the step size 

is too large (η3>η2), the iterative process will diverge, i.e. instead of getting closer to the 

minimum, the search will visit points of larger and larger MSE, until there is a numeric 

overflow. We say that the learning diverged. 

w*• • • •w(0) w(1) w(k) w*
• •• •

w(0) w(1) w*• ••
w(0) 

w(k)
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∞→

small η1 η2>η1
too large η3>η2

w* w* w*

w(0) w(0)
w(0)

#iterations #iterations #iterations

weight tracks

  
Figure 11. Weight tracks and plots of the weight values across iteration for 3 values of η. 
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1.11 Weight tracks 

 

It is very instructive to observe the linear PE parameters during learning, and how 

they change as a function of the step size. Let us install a MegaScope over the 
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Synapse to visualize the slope parameter of the regressor, and over the BiasAxon 

to visualize the regressor bias. These are called weight tracks.  Run the 

simulation and watch how changing the step sizes affects the way the system 

approaches its final weights. 

The weight tracks are a finer display of how adaptation is progressing, but the 

problem is that in systems with many weights, it becomes impractical to observe 

all the weight tracks. Why do we say that weight tracks give us a better handle on 

the adaptation parameters? Enter 0.02 for the stepsize and see the weight tracks 

converge monotonically to their minimum value. Now enter 0.035. The weight 

tracks are oscillating towards the final value which means that the system is 

already in the underdamped regime (but the learning curve is still monotonically 

decreasing towards the minimum at a faster rate). We can expect divergence if we 

increase the weighs further. Try 0.038 and see it happen. Relate this behavior with 

Figure 11.  
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6.3. Largest step size for convergence 

 
As we have just discussed, the user would like to choose the largest step size possible 

for fastest convergence without creating an unstable system. Since adjustment to the 

weights is a product of the step size and the local gradient of the performance surface, it 

is clear that the largest step size depends upon the shape of the performance surface. 

We saw already that the shape of the performance surface is controlled by the input data 

Eq.54 . So we can conclude that the maximum step size will be dictated by the input data. 

But how?  

If we rewrite the equations which produce the weight values in terms of the first weight 

w(0), derivation of largest stepsize  
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we get  

w k w w wk( ) ( ) ( ( )* *+ = + − −1 1 0ηλ )         Equation 15 

where 

λ = ∑1 2

N
xi

i                Equation 16 

Since the term (1-ηλ)k is exponential, it must be less than or equal to one to guarantee 

weight convergence (and less than one to guarantee convergence to 0, giving 

w(k+1)=w*).  This implies that 

ρ ηλ η
λ

= − < ⇒ <1 1
2

         Equation 17 

where ρ is the geometric ratio of the iterative process. Hence, the value of the step size η 

must always be smaller than 2/λ. The fastest convergence is obtained with the critically 

damped step size of 1/λ. The closer η is to 1/λ the faster is the convergence, but faster 

convergence also means that the iterative process is closer to instability. We can 

visualize this in Figure 11. When η is increased, a monotonic (overdamped) convergence 

to w* is substituted by an alternating (underdamped) convergence that finally 

degenerates into divergence.  

There is a slight practical problem that must be solved. During batch learning the weight 

updates are added together during an epoch to obtain the new weight. This effectively 

includes a factor of N in the LMS weight update formula Eq.13 . In order to apply the 

analysis of the largest stepsize Eq.17 one has to use a normalized stepsize   

η
η

n N
=

                   Equation 18 

With this modification, even if the number of samples in our experiment changes, the 

stepsizes do not need to be modified. Note that for on-line learning (N=1) we get the LMS 

rule again. We will always use normalized stepsizes but to make the notation simpler, we 

will drop the subscript n in the normalized stepsize. An added advantage of using 
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normalized stepsizes is that we can switch between on-line updates and batch updates 

without having to change the stepsize in the simulations. 

This analysis of the largest stepsize Eq.17 also applies in the mean to the LMS algorithm. 

However, since the LMS uses an instantaneous (noisy) estimate of the gradient, even 

when η obeys Eq.17, instability may occur. When the iterative process diverges, the 

algorithm “forgets” its location in the performance surface, i.e. the values of the weights 

will change drastically. This means that all the iterations up to that point were wasted. 

Hence, with the LMS it is common to include a safety factor of 10 in the largest η 

(η=0.1/λ), or to use batch training.  
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1.12 Linear regression without bias 

The previous example solved the linear regression problem with one weight and 

one bias. In order to compare the equations given above (which are a function of a 

single parameter) with the simulations, we have to make a modification in the data 

set or in the simulation. Shortly we will see how to extend the analysis for multiple 

weights, but for the time being let us work with the simpler case.  

We will substitute the BiasAxon by an Axon, a component that simply adds its 

inputs, i.e. the regression solution becomes y=wx which has to pass through the 

origin. With this new breadboard we can compare the numerical results of the 

simulations directly with all the equations derived in this section since there is 

only a free parameter. Batch updates will be used throughout.  

The optimal value of the slope parameter is computed by Eq.6 , which gives 

w=0.30009, with an average error of 0.46. This solution is different from the value 

obtained previously (w= 0.139511) for the bias regressor because the regression 

line is now constrained to pass through the origin. It turns out that this 

constrained solution is worse than before as we can see by the error (0.23 versus 
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0.033). Observing in the scatter plot the output (red points) and the input samples 

(blue) shows clearly what we are describing.   

Computing λ Eq.16 yields 54. So, according to Eq.17 the maximum step size is 

η=3.6e-2. The critically damped solution is obtained with a step size of 1.8e-2, and 

adaptation with a stepsize below this value is overdamped.  When we run the 

simulator in the overdamped case, the weights approach the final value 

monotonically; for the critically damped case, they stabilize quite rapidly; while for 

the underdamped case they oscillate around the final value, and the convergence 

takes more iterations.  Notice also that the linear regressor “vibrates” around the 

final position, since the slope parameter is overshooting and undershooting the 

optimum value. 

According to Eq.19 for the critically damped stepsize τ=1, so the solution should 

stabilize in 4 updates (epochs). This stepsize yields the fastest convergence. Go to 

the Controller Inspector and use the epoch button to verify the number of samples 

until convergence.  
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6.4. Time constant of adaptation 

 
An alternative view of the adaptive process is to quantify the convergence of w(k) to w* in 

terms of an exponential decrease. We know that w(k) converges to w* as a geometric 

progression (Eq.15 ). The envelope of the geometric progression of weight values can be 

approximated by an exponential decay exp(-t/τ), where τ is the time constant of weight 

adaptation. A single iteration can be linked to a time unit. So one may want to 

approximately know how many iterations are needed until the weights converge. The 

time constant of weight adaptation can be written:  
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τ
ηλ

=
1

                Equation 19 

derivation of the time constant of weight adaptation  

which clearly shows that fast adaptation (small time constant τ) requires large step sizes. 

For all practical purposes the iterative process converges after 4 time constants. 

The steps used to derive the time constant of weight adaptation can be applied also to 

come up with a closed form solution to the decrease of the cost across iterations which is 

called the time constant of adaptation.  Eq.15 tells us how the weights converge to w*. If 

the equation for the weight recursion is substituted in the equation for the cost (Eq.55 ) 

we get 

J J w wk= + − −min
*( ) ( ( )λ ηλ1 02 2)    

which means that J also approximates Jmin in a geometric progression, with a ratio equal 

to ρ². Therefore the time constant of adaptation is 

     
τ

τ
mse =

2   
Since the geometric ratio is always positive, J approximates Jmin monotonically (i.e. an 

exponential decrease). The time constant of adaptation describes practically the learning 

time (in number of iterations) needed to adapt the system.  Notice that these 

expressions assume that the adaptation follows the gradient. With the instantaneous 

estimate used in the LMS, J may oscillate during adaptation since the estimate is noisy. 

But even in the LMS, J will approach Jmin in a one sided way (i.e. always greater than or 

equal to Jmin). 

6.5. Rattling 

 
Up to now our main focus was the speed of adaptation, i.e. how fast the weights 

approximate w*, or equivalently, how fast J approximates Jmin. Unfortunately, this is only 
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part of the story.  For fast convergence we need large step sizes (η). But, when the 

search is close to the minimum w*, where the gradient is small but not zero, the iterative 

process continues to wander around a neighborhood of the minimum solution without 

ever stabilizing. This phenomenon is called rattling (Figure 12), and the rattling basin 

increases proportionally to the step size η. This means that when the adaptive process is 

stopped by an external command (such as the number of iterations through the data), the 

weights may not be exactly at w*. We know they are in a neighborhood of this point, but 

not exactly at the optimum. 

 

Jm in

Jfina lw*
• •• ••w(0) w(1)w(2)

  
FIGURE 12. Rattling of the iteration procedure 

If we picture the performance surface (Figure 12), when the final weights are not at w* 

there will be a penalty in performance, i.e. the final MSE will be higher than Jmin. In the 

theory of adaptation, the difference between the final MSE and the Jmin (normalized by 

Jmin) is called the misadjustment M.  

M
J J

J
final=

− min

min                Equation 20 

This means that in search procedures that use gradient descent there is an intrinsic 

compromise between accuracy of the final solution (small misadjustment) and speed of 

convergence. The parameter that controls this compromise is the step size η. High η 

means fast convergence but also large misadjustment, while small η means slow 

convergence but little misadjustment. 

NeuroSolutions   13 
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1.13 Rattling 

We observed in Example 8 how noisy the learning curve became with the on-line 

update. This is an external indication that the weights were changing from sample 

to sample even after the system reached the neighborhood of the optimum. The 

implication of this random movement in the weights is a penalty in the final MSE. 

In this example we will exactly show and quantify the rattling.  

The rattling has important consequences for adaptation, since if one sets the 

stepsize large for fast convergence we pay a price of inaccurate coefficients, which 

is translated in an excess MSE. The rule of thumb for LMS is to use a stepsize that 

is 1/10 of the largest possible stepsize. If this is not done the regressor is basically 

unusable since the weights ever stabilize. Effectively we do not have a single 

regressor but a family of systems, each with a different parameter. We can see this 

in the ScatterPlot since the blue dots are no longer in a straight line. For stepsize 

close to the largest possible,  effectively the MSE for the epoch is smaller than the 

theoretical minimum, which is impossible. This happens because the parameters 

are changing so much with each update that the slope is being continuous 

changed with the present sample.  The problem is that when we stop the training 

we do not know if the final value of the weight is a good approximation to the 

theoretical regression line. 

This shows that for adaptive systems the final MSE is only part of the story. We 

have to make sure that the system coefficients have stabilized… It is interesting to 

note that with batch updates there is no rattling, so in the linear case the batch 

solution is more appropriate. Observe this in the simulations by displaying the 

MSE for large and small stepsizes. We are just paying a small price of storing the 

individual weight updates. For nonlinear systems the batch is unfortunately no 

longer always superior to the on-line update as we will see.  

 NeuroSolutions Example 
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This example shows that obtaining a small MSE is a necessary but not sufficient 

condition for stable adaptation. Adaptation also requires that the weights of the model 

settle onto stable values. This second condition is required because the system can be 

endlessly changing its parameters to fit the present sample. This will give always a small 

MSE, but from a modeling point of view it is a useless solution because no single model 

to fit the data set was found. 

6.6. Scheduling the step sizes 

 
As we saw in the latest examples, for fast convergence to the neighborhood of the 

minimum a large step size is desired. However, the solution with a large step size suffers 

from rattling. One attractive solution is to use a large learning rate in the beginning of 

training to move quickly towards the location of the optimum weights but then the learning 

rate should be decreased to obtain good accuracy on the final weight values. This is 

called learning rate scheduling . This simple idea can be implemented with a variable 

step size controlled by  

η η( ) ( )n n+ = −1 β           Equation 21 

where η(0)=η0 is the initial step size, and β is a small constant. Note that the step size is 

being linearly decreased at each iteration. If one has control of the number of iterations 

we can start with a large step size and decrease it to practically zero towards the end of 

training. The value of β needs to be experimentally determined. Alternatively, one can 

decrease slowly (in optimization this slow decrease is called annealing) the step size 

using either a linear, geometric, or logarithmic rule.  

more on scheduling stepsizes  
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1.14 Scheduling of stepsizes 
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In this demonstration we will use the scheduling component we used previously 

(to vary the weights and show the performance surface) to vary the step size.  The 

scheduler is a component that takes an initial value from the component beneath it 

and changes according to a predetermined rule. Here we use the linear rule, and 

since we want to decrease the stepsize the factor β is negative. We should set a 

maximum and a minimum value just to make sure that the parameters are always 

within the range we want. β should be set according to the number of iterations 

and the initial and final values (Initμ -βN=residualμ).  

Here the important parameter is the minimum (the residual stepsize is set at 0.001) 

because after scheduling we may want to let the system fine tune its parameters to 

the minimum. However, notice that this implies that the parameter is already in its 

neighborhood, and this depends upon a lot of unknowns. So if the scheduling is 

not right the adaptation may stall in positions far from the minimum.  

You should explore the breadboard by entering other values for b and the final 

value and see their impact on the final weight value. You can also bring the 

exponential or the logarithmic schedulers and see how they behave. Which one do 

you prefer for this case? 
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Goto Next Section  

7. Regression for multiple variables 
 

Assume that d is now a function of several inputs x1, x2,...xp (independent variables), and 

the goal is to find the best linear regressor of d on all the inputs (Figure 13). For p=2 this 

corresponds to fitting a plane through the N input samples, or a hyperplane in the general 

case of p dimensions.  
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FIGURE 13. Fitting a regression plane to a set of samples in 2D space. 

As an example, let us assume that we have two variables x1 (speed) and x2 (feed rate) 

that affect the surface roughness (d) of a machined workpiece. In abstract units the 

values of x1, x2, d for 15 workpieces are presented in Table II.  

x1 x2 d
1 2 2
2 5 1
2 3 2
2 2 2
3 4 1
3 5 3
4 6 2
5 5 3
5 6 4
5 7 3
6 8 4
7 6 2
8 4 4
8 9 3
9 8 4

  
The goal is to find how well one can “explain” the quality of machining by the two 

variables x1 and x2, and which is the most important parameter.  

As before, we will assume that the measurements x are noise free and that  d is 

contaminated by a noise vector ε with some properties (Gaussian distributed with 

components that are zero mean, equal variance σ2 and uncorrelated with the inputs). 
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The regression equation when p=2 is now: 

ε i i i id b w x w x= − + +( 1 1 2 2 )               Equation 22 

Where xi1 is the ith value of x1 (the ith workpiece in the training set). In the general case, 

we write the equation as: 

1...N=i      
0

∑∑
==

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=ε

p

k
ikki

p

ik
ikkii xwdxwbd

          Equation 23 

where we made w0=b and xi0=1 (compare with Eq.3 ). The goal of the regression problem 

is to find the coefficients w0, ….wp. To simplify the notation we will put all these values 

into a vector w = [w0, ….wp ] that minimizes the MSE of εi over the n samples. We will 

use bold letters for vectors. Figure 14 shows that the linear PE now has p inputs and one 

bias.  

∑

x1i

x2i

xpi

+1

w1

w2

wp

b

yi

di

+
- ε i

Regression System

  
FIGURE 14. Regression system for multiple inputs 

The mean square error (MSE) becomes for this case 

J
N

d w xi ik ik
k

p

i
= −

⎛

⎝
⎜

⎞

⎠
⎟

=
∑∑1

2 0

2

              Equation 24 

The solution to the extreme (minimum) of this equation can be found exactly in the same 

way as before, i.e. by taking the derivatives of J with respect to the unknowns (wk), and 

equating the result to zero. derivation of normal equations  

 50 



This solution is the famous normal matrix equation 

x d w x xij i
i

k
k

p

ik ij
i

∑ ∑ ∑=
=0

      j = 0,1,...p
             Equation 25 

The normal equations can be written much more compactly with matrix notation (see the 

Appendix ). Let us define  

R
N

x xkj ik ij
i

= ∑1

        Equation 26 

as the autocorrelation of the input samples for indices k, j. As you can see the 

autocorrelation measures similarity across the samples of the training set. When k=j, R is 

just the sum of the squares of the input samples (the variance in the data). When k differs 

from j, R measures the sum of the crossproducts for every possible combination of the 

indices. As we did for w, we will also put all these Rkj values into a matrix R, i.e. 

 . Thus one obtains pairwise information about the structure of 

the data set.  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

ppp

p

RR

RR
R

...
.........
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0

000

Let us call 

∑=
i

iijj dx
N

P 1

           Equation 27 

the crosscorrelation of the input x for index j and desired response d, which can be also 

put into a vector p of dimension p+1. As we can expect, Pj measures the similarity 

between the input x and the desired response d at shift j. Substituting these definitions in 

Eq.25 , the set of normal equations can be written simply  

p Rw w R p= −* *   or    1=              Equation 28 

where w is a vector with the p+1 weights wi. w* represents the value of the p+1 weights 
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for the optimum (minimum) solution. R-1 denotes the inverse of the autocorrelation matrix 

(see Appendix ). Eq. 28 states that the solution of the multiple regression problem can be 

computed analytically as the product of the inverse of the autocorrelation of the input 

samples multiplied by the crosscorrelation vector of the input and the desired response. 

The least square solution for this problem yields 

y x= x+ −1353480 0 286191 0 0041951 2. . .   
It is remarkable that we are able to write an equation that describes the relationship 

between the two variables when only measured data samples were given. This attests 

the power of linear regression. But as for the single variable case, we still do not know 

how accurately the equation fits the data, i.e. how much of the variance of the input is 

actually captured by the regression model.  The multiple correlation coefficient rm can 

also be defined in the multiple dimensional case for a single output, as multiple variable 

correlation coefficient  

r
Nd

Ndm

T
x

T=
−

−
w U d

d d

* 2

2
             Equation 29 

and measures the amount of variation explained by the linear regression, normalized by 

the variance of d. In this expression d is the vector built from the desired responses di, 

and U is a matrix whose columns are the input data vectors. For this case rm=0.68, so 

there is a large portion of the variability that is not explained by the linear regression 

(either the process is nonlinear, or there are more variables involved). We still can 

approximate the correlation coefficient for the multiple regression case by  Eq. 14 after 

the system has adapted.  
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1.15 Multivariable regression  

Moving to multiple dimensional inputs is very simple in NeuroSolutions.  You 

simply change the input and desired files (for the new input data) and change the 
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input axon to accept two inputs.  The rest is automatic.  In this example, we will 

do all this for you using macros.  Note that in the two dimensional case the 

regression line is now a regression plane.  There is currently not a good way of 

showing a plane in three dimensions in NeuroSolutions so we will not have our 

regression line plot.  When we run the network, we will see that the learning curve 

(one of our only indications of whether the network is training correctly) decreases 

steadily and that the weights eventually approach the theoretical optimum weights.  

The amazing thing about the adaptive system’s methodology is that we changed 

the problem, but the solution did not change that much. It is true that we have to 

dimension the system properly, choose new values for the stepsize, but the 

fundamental aspects of the methodology did not change at all.... 
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7.1. Setting the problem as a search procedure 

 
All the concepts previously mentioned for linear regression can be extended to the 

multiple regression case. The performance surface concept can be extended to p 

dimensions, making J a paraboloid in p+1 dimensions, facing upwards (Figure 15 depicts 

the two weight case).  J involves now matrix computations, but it remains a scalar 

qunatity that is a quadratic function of the weights 

⎥
⎦

⎤
⎢
⎣

⎡
+−= ∑

i

iTT

N
d

J
2

5.0
2

wpRww
                          Equation 30 

where the superscript T means the transpose.  
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FIGURE 15. The performance surface for 2 dimensions and its contour plot. 

The coefficients that minimize the solution are  

∇ = = − = −J 0 1Rw p w R p* *     or                Equation 31 

which gives exactly the same solution as Eq.28 Derivation of Optimal Solution . In the 

space (w1,w2),  J is a parabola facing upwards. performance surface properties  

Summarizing, the autocorrelation of the input ® completely specifies the shape of the 

performance surface Eq.69 . However, the location of the performance surface in the 

space of the weights Eq.31 and its minimum value Eq.68 depend also on the desired 

response.  

NeuroSolutions    16 

1.16 Checking the LMS solution with the optimal weights 

Let us consider first a least square solution with only two weights w1, and w2, since 

we can still compute it easily by hand. For the data set of Table II, the 

autocorrelation matrix is Eq.26   Eq.63  

  
R =

⎡

⎣
⎢

⎤

⎦
⎥

1
15

416 429
429 490    

To determine the eigenvalues, we solve the equation 

   [ ]det R I− =λ 0   
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which yields λ1=59 and λ2=1.5. From these results we can immediately see that the 

eigenvalue spread is roughly 40, so the performance surface paraboloid is very 

skewed (i.e. much narrower in one direction). The performance surface is shown in 

the following figure.  Notice how it is very steep in one direction and very shallow 

in the other.  Thus, if we train the network with gradient descent, we would expect 

it to move very quickly down the steep slope at first and then move slowly down 

the valley towards the optimum. 

  
To compute the optimum solution, we first need to compute the crosscorrelation 

vector Eq.27 , Eq.65 is 

   
P =

⎡

⎣
⎢

⎤

⎦
⎥

1
15

212
229   

For the two dimensional case it is still easy to solve for w1 and w2, by writing Eq.28  

     

416 429 212
429 490 229

1 2

1 2

w w
w w

+ =
+ =

⎧
⎨
⎩

which gives for optimal weights w1=0.2848 and w2=0.2180. The minimum J is 0.390 

Eq.68 .  When we run the simulator with the BiasAxon substituted by the Axon (no 

bias), the network  weights will eventually approach the optimum.  
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7.2. Steepest descent for multiple weights 

 
Gradient techniques can also be used to find the minimum of the performance surface, 

but now the gradient is a vector with p+1 components 

∇ =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

J
∂

∂
∂

∂
J

w
J

wp

T

0
,...,

                 Equation 32 

The extension of Eq.11 is 

w w J( ) ( ) ( )k k+ = −1 η∇ k

Rw

            Equation 33 

where all quantities are vectors, i.e.  . In order to calculate 

the largest step size η, we again rewrite the update equation in the form of  

w( ) [ ( ),... ( )]k w k w kp
T= 0

w I R w( ) ( ) ( ) *k k+ = − +1 η η              Equation 34 

where I is the identity matrix, R is the input autocorrelation matrix and 

 . The solution of this equation is cross coupled, i.e. the 

way w converges to w* depends on the behavior of the geometric progression in all the 

p+1 directions. So, the simple picture of having w(k+1) converge to w* with a single 

geometric ratio as in the unidimensional case has to be modified. One can show that the 

weights converge with different time constants, each  related to an eigenvalue of R. 

convergence for multiple weights case  

w* * *( ) [ ( ),... ( )]k w k w kp
T= 0

7.3 Stepzise Control 
As we have seen, the set of values taken by the weight during adaptation is called the 

weight track. The weight moves in the opposite direction of the gradient at each point, so 

the weight track depicts the gradient direction at each point of the performance surface 

visited during adaptation. Therefore, the gradient direction tells us about the performance 
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surface shape. In particular we can construct the contour plot of J since the gradient has 

to be perpendicular to the lines that link points with the same J value. It is important to 

provide a graphical construction for the gradient at each point assuming we know the 

contour plot.  

Given a point in a contour, we take the tangent of the contour at the point. The gradient is 

perpendicular to the tangent, so the weights will move along the gradient line and 

pointing in the opposite direction. Likewise if we run the adaptation algorithm with several 

initial conditions and we record the value of J at each point, we can determine the 

contour plots by taking ellipses that pass through the points of equal cost and are 

perpendicular to the weight tracks.  

When the eigenvalues of R are the same (see Appendix ), the contour plots are circular 

and the gradient always points to the center, i.e. to the minimum. In this case the gradient 

descent only has a single time constant as in the 1-D case. But this is an exceptional 

condition. In general the eigenvalues of R will be different. When the eigenvalues are 

different, the weight track bends because it follows the direction of the gradient at each 

point, which is perpendicular to the contours (Figure 17). So the gradient direction does 

not point to the minimum, which means that the weight tracks will not be straight lines to 

the minimum. The adaptation will take longer for two reasons: first a longer path to the 

minimum will be taken. Secondly, the stepsize must be decreased compared with the 

circular case. Let us address the stepsize aspect further.  
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FIGURE 17. Weight track towards the minimum. First is the case of equal eigenvalues.  

For guaranteed convergence, the learning rate in each principal direction of the 

performance surface must be 

iλ
<η<

20
          Equation 35 

where λi is the corresponding eigenvalue. The worst case condition to guarantee 

convergence to the optimum w* in all directions is therefore,  

max

2
λ

<η
         Equation 36 

i.e., the step size η must be smaller than the inverse of the largest eigenvalue of the 

correlation matrix. Otherwise the iteration will diverge in one (or more) directions. Since 
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the adaptation is coupled, divergence in one direction will cause the entire system to 

diverge.  

In the early stages of adaptation, the convergence is primarily along the direction of the 

largest eigenvalue since the weight update along this direction will be bigger. On the 

other hand, towards the end of adaptation, the algorithm will adapt basically only the 

weight associated with the smallest eigenvalue (which correspond to the smallest time 

constant). The time constant of adaptation is therefore 

min

1
ηλ

=τ
         Equation 37 

An implication of this analysis is that when the eigenvalue spread of R is large, there will 

be very different time constants of adaptation in each direction. This reasoning gives a 

clear picture of the fundamental constraint of adapting the weights using gradient descent 

with a single step size η: the speed of adaptation is controlled by the smallest eigenvalue, 

while the largest step size is constrained by the inverse of the largest eigenvalue. This 

means that if the eigenvalue spread is large, the convergence will be intrinsically slow. 

There is no way around it when only a single stepsize is used in the steepest descent. 

The learning curve will approach Jmin in a geometric progression as before. However, 

there will be many different time constants of adaptation, one per each direction. Initially 

the learning curve will decrease at the rate of the largest eigenvalue, but towards the end 

of adaptation the rate of decrease of J is controlled by the time constant of the smallest 

eigenvalue.estimation of eigenvalue spread  
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1.17 Visualizing the weight tracks and speed of adaptation 

According to our previous calculations, the largest stepsize for convergence is 

Eq.36 3.3e-2. The critically damped mode along the largest eigenvector should be 

1.6e-2. The time constant of adaptation for the largest stepsize is around 20 
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iterations (epochs for batch), i.e. the convergence should take 80 epochs with this 

stepsize.  

When we run the simulations, the algorithm converges first along the direction of 

the largest eigenvalue (largest eigenvector direction), and then along the direction 

of the smallest eigenvector. Since the eigenvalue spread is 40, the steps are much 

bigger along the largest eigenvector direction. If we look at the figure below, we 

can see that the weights converge perpendicular to the contour plots since this is 

the steepest descent path. As we will see, there are two distinct regions in the 

learning curve: in the beginning it is controlled by the geometric ratio along the 

largest eigenvector, while towards the end it is controlled by the geometric ratio of 

the smallest eigenvector.  

  
After running this example and observing the weight tracks let us change the input 

data file such that the eigenvalue spread is smaller. Mouse down on the input file 

icon and bring up its inspector by clicking  the mouse right button. Remove the 

present input file, and add the file regression2a.asc from the 

NSBook/chapter1/NS30Examples/1. 17 MR weight tracks folder.   
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The modification was only made in the variable x2, all the rest is the same. 

Respond to the panel Associate by clicking on the close button. In the Costumize 

panel skip the desired signal, and click on close. You have just modified the input 

data to this example. This new file has a much smaller eigenvalue spread, so we 

can expect that the weight tracks are basically straight lines to the minimum. 

Compute the new eigenvalue spread, and adjust the learning rates such that the 

convergence is as fast as possible.  

 NeuroSolutions Example 

7.4. The LMS algorithm for multiple weights 

 
It is straight forward to extend the gradient estimation given by the LMS algorithm from 

one dimension to many dimensions. We just apply the instantaneous gradient estimate 

Eq.12 to each element of Eq.33 . The LMS for multiple dimensions reads 

w w x( ) ( ) ( ) ( )k k k+ = +1 ηε k

i

            Equation 38 

What is interesting is that the LMS adaptation rule still uses local computations, i.e. we 

can write for the ith weight  

w k w k k x ki i( ) ( ) ( ) ( )+ = +1 ηε          Equation 39 

Note that although the analysis of the gradient descent techniques is complex, the LMS 

algorithm itself is still very simple. This is one reason why the LMS is so widely used. But, 

since the LMS is a steepest descent algorithm, the analysis and discussions concerning 

the largest step size for convergence and coupling of modes also apply to the LMS 

algorithm. 
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1.18 Visualizing weight tracks with on-line learning 
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In this example, we will switch the backprop controller to on-line learning to 

implement the LMS algorithm. Notice that the weight tracks follow basically the 

same path as before, but now the path is much more irregular due to the sample by 

sample update of the weights. When the eigenvalue spread is very large (the 

performance surface is very steep in one direction and shallow in others), the 

problem is difficult for LMS to solve. Any small perturbation in the smallest 

eigenvector direction gets amplified by the large eigenvalue spread. 

  NeuroSolutions Example 

7.5. Multiple regression with bias 

 
Up to now we have implemented and solved analytically the multiple regression problem 

without bias. The reason for that is only based on simplicity. With two weights we can still 

easily solve the multiple regression case by hand, however if the bias is added, we must 

do the computations with three parameters. The simulations are transparent to these 

difficulties since one just substitutes the Axon by a BiasAxon. Note that the largest 

stepsize between the two cases will differ since the input data was effectively changed if 

one interprets the bias as a weight connected to an extra constant input of one. Hence 

the autocorrelation function changed, and likewise its eigenvalue spread. 

We should state that the use of a bias is called the full least square solution and it is the 

recommended way to apply least squares. The reason can be understood easily: when a 

bias is utilized in the PE the regression line is not restricted to pass through the origin of 

the space, and normally smaller errors are achieved. There are two equivalent ways to 

set up the full least squares solution for N input variables: 

• • The input and desired responses need to be modified such that they 

become zero mean variables (this is called the deviation or z scores ). In this case a N 

weight regression will effectively solve the original problem. The bias b is computed 
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indirectly by  

     
∑

=

−=
N

i
ii xwdb

1   

      where wi  are the optimal weights and the bars represent mean values.  

• • Alternatively, the input matrix has to be extended with an extra column of 1s (the 

first column). This transforms R into a (N+1)x(N+1) matrix, which introduces an 

N+1 weight in the solution (the bias).  
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1.19 Linear regression without bias 

We will now substitute the a BiasAxon for the Axon in the previous breadboard. 

This will effectively provide the regression solution without constraining the 

regression plane to pass through the origin. We see that the weight tracks are very 

similar in the beginning but that the error continues to drop, and the weights 

advancing towards the w1=0 line. This means that the optimal solution changed. 

We now have a better solution than before, but with increased complexity of the 

performance surface (4 dimensional instead of 3) and an increased number of 

adjustable parameters in our system (2 weights and a bias). 

 NeuroSolutions Example 

7.6. The LMS algorithm in practice 

 
One can use some rules of thumb to choose the step size in the LMS algorithm. The step 

size should be normalized by the variance of the input data estimated by the trace of R.  

η
η

= 0

tr( )R          Equation 40 

 63



where η0= 0.5 to 0.01. This normalization by the input variance was the original rule 

proposed by Widrow to adapt the adaline. We can expect the algorithm to converge in a 

number of iterations k given by  

k ≈
1

4ηλ min        Equation 41 

The LMS algorithm has a misadjustment that is basically the trace of R times η 

M tr R= η ( )         Equation 42 

So with the LMS algorithm, selecting η such that it produces 10% misadjustment means 

a training duration in iterations of 10 times the number of inputs.  

Go to next section  

8. Newton’s method 
 

If you are familiar with numerical analysis, you may be asking why aren’t we using 

Newton’s method for the search? Newton’s method is known to find the roots of quadratic 

equations in one iteration. The minimum of the performance surface can be equated to 

finding the root of the gradient equation Eq.32 , as is outlined by Eq.31 . Hence Newton’s 

method can also be used in search. The adaptive weight equation using the Newton’s 

method is Newton’s Derivation  

)()()1( 1 kkk JRww ∇−=+ −
            Equation 43 

Comparing with Eq.33 note that the gradient information is weighted by the inverse of the 

correlation matrix of the input, and η is equal to one. This means that Newton’s method 

corrects the direction of the search such that it always points to the minimum, while the 

gradient descent points to the maximum direction of change. These two directions may or 

may not coincide (Figure 18).  
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FIGURE 18. Directions of the steepest descent and newton’s method 

They coincide when the contour plots are circles, i.e. when the largest and the smallest 

eigenvalue of the correlation matrix are the same. When the ratio of the largest to the 

smallest eigenvalue (the eigenvalue spread) increases, the slope of the performance 

surface in the two direction differs more and more. So for large eigenvalue spreads, the 

optimization path taken by gradient descent is normally much longer than the path taken 

by Newton’s method. This implies that Newton’s method will be faster than LMS when 

the input data correlation matrix has a large eigenvalue spread.  

Another advantage of Newton’s method versus the steepest descent is in terms of 

geometric ratios or time constant of adaptation. When the gradient is multiplied by R −1
  

not only the direction of the gradient is being changed but also  the different eigenvalues 

in each direction are being equalized. What this means is that Newton’s method is 

correcting automatically the time constant of adaptation for each direction such that all 

the weights converge at the same rate. Hence, Newton’s method has a single time 

constant of adaptation, unlike the steepest descent method.  

These advantages of the Newton’s method should not come as a surprise, because 

Newton’s method uses much more information about the performance surface (the 

curvature). In fact, to implement Newton’s method one needs to compute the inverse of 

the correlation matrix, which takes significantly longer than the single multiplication 

required by the LMS method and also requires global information. Newton’s method is 

 65



also brittle, i.e. if the surface is not exactly quadratic, the method may diverge. This is the 

reason Newton’s method is normally modified to have also a small step size η instead of 

using η=1 as in Eq.40 .  

w w R x( ) ( ) ( ) ( )k k k+ = + −1 1η ε k       Equation 44 

Note that x(k) is a vector and R −1
  is a matrix, so the update for one weight influences 

all the other inputs in the system. This is the reason the computations are no longer local 

to each weight. However they are not difficult if one assumes that the inverse of R is 

known a priori. The case where R −1
  has to be estimated on-line is much more 

involved and leads to the recursive least squares (RLS) algorithm.  

Alternatively, to improve convergence speed with the LMS, we can implement an 

orthogonalizing transformation of the input correlation function followed by an 

equalization of the eigenvalues which is called a whitening transformation. (see 

Appendix ). Since the Newton’s method coincides with the steepest descent for 

performance surfaces that are symmetric, this preprocessing will make the LMS perform 

as Newton. 
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1.20 Newton’s method 

In this example, we implement Newton’s method with a custom DLL.  For this 

example, we must compute R −1
  and apply Eq.41 to the simulator. The 

autocorrelation function for this example is 

    
R =

⎡

⎣
⎢

⎤

⎦
⎥

1
15

416 429
429 490   

so R −1
  becomes (see Appendix) 
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R − =

−
−

⎡

⎣
⎢

⎤

⎦
⎥

1 15
0 0247 0 0217
0 0217 0 0210
. .
. .

By applying Newton’s method to the learning algorithm, we have essentially 

compensated the eigenvalue spread.  This means that the Newton’s method 

behaves as the steepest descent for a circular performance surface where the 

steepest descent direction always points directly to the optimal value.  Thus, 

although the calculations are more complicated and more demanding (we need to 

know R −1
 ), the convergence is much faster (in fact, you can converge in one 

epoch!).  When we run the simulator, notice that no matter where we start, we 

always head directly towards the optimum. 

 NeuroSolutions Example 

. 

Go to next section  

9. Analytic versus Iterative solutions 
 

Selecting a search procedure to find the optimal weights is a drastic conceptual change 

from the analytic least square solution, albeit equivalent. In learning systems the iterative 

solution is the most utilized for several reasons: 

When working with learning systems the interest is very often in on-line solutions, i.e. 

solutions that can be implemented sample by sample. The analytic solution requires data 

to be available before hand to compute the correlation matrix R and crosscorrelation 

vector p. Fast computers are required to crank out the solution (inverse of R and product 

with p). The method produces a value that immediately gives the best possible 

performance. But several problems may surface when applying the analytic approach, 

because if the matrix R is ill-conditioned , the computation of R −1
 may not be very 
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accurate. Moreover, the analytic solution also requires lots of computation time 

(computation of a matrix inverse is proportional to the square of the number of columns N 

of the matrix. In the big O notation this means O(N²)).  

The iterative solution is not free from shortcomings. We already saw that there is no 

guarantee that the solution is close to the optimal weight w* when all the input samples 

are used by the algorithm. This depends on the data and upon a judicious selection of the 

step size η. The accuracy of the iterative solution is not directly dependent upon the 

condition number of R, but matrices with large eigenvalue spread produce slow 

convergence because the gradient descent adaptation is coupled. As we said previously, 

the slowest mode controls the speed of adaptation, while the largest stepsize is 

constrained by the largest eigenvalue.  

The great appeal of the iterative approach to optimization is that very efficient algorithms 

exist to estimate the gradient (e.g. the LMS algorithm). Only two multiplications per 

weight are necessary, so the computation scales proportional to the number of weights N 

(i.e. O(N) time). Moreover, the method can be readily extended to nonlinear systems, 

while the analytic approach for most of the cases of practical relevance can not be 

computed.  

Go to the next section  

 

10. The Linear Regression Model 
 

We started this chapter by pointing out the advantages of building models from 

experimental data. In the previous sections we developed a set of techniques that adapt 

the parameters of a linear system (the adaline) to fit as well as possible the relationship 

between the input (x) and the desired data (d). This is our first model and it “explains” the 

relationship f(x,d) as a hyperplane that minimizes the square distance of the residuals. 
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We will have the opportunity to study other (nonlinear) models in later chapters.  

It is instructive to stop and ask the question: How can we use the newly developed 

regression model? One interesting aspect of model building that we mentioned previously 

is the ability to predict the behavior of the experimental system. Basically what this 

means is that once the adaline is trained, we can “forecast” the value of d when x is 

available. We do this by computing the adaline output y and assume that the error ε is 

small (Eq.3 ). You can now understand why we want to minimize the square of the error, 

since if the square of the error is small than d is going to be close to y in the training data. 

Figure 19 shows a productive way of looking at the input-output pairs that we used to 

train the adaline. 

  

unknown system
x1
x2
...
xN

d1
d2
...
dN

y1
y2
..
yN

ADALINE
_ +

  
Figure 19. A view of the desired response as the output of an unknown model 

We assume that the experimental system produces the desired response d for each input 

x according to a rule that we do not know. The purpose of building the model is to 

approximate as well as possible this hidden relationship.  

We expect also that even for x values that the system did not use for training, y is going 

to be close to the corresponding unknown value d. Our intuition tells us that if: 

• the data used for training covered well all the possible cases, 

• if we had enough training data,  
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• and the correlation coefficient is close to one,  

then in fact y should be close to the unknown value d. However, this is an inductive 

principle, which has no guarantee of being true. The ability to extrapolate the good 

performance from the training set to the test set is called generalization. Generalization is 

a central issue in the adaptive systems’ approach since it is the only guarantee that the 

model will perform well in the future data that will be presented to the system while in 

operation.   

Remember that in the test mode the system parameters must be kept constant, i.e. the 

learning algorithm MUST be disabled. In the next section we will familiarize ourselves 

with training and using the linear model.    

10.1 Regression Project 

Getting real world data 
We will end Chapter I by giving you a flavor of the power of linear regression to solve real 

life problems. We will go to the World Wide Web and seek real data sets, import them 

into NeuroSolutions and solve regression problems. We will adopt the breadboard from 

Example 7.  

The first thing is to decide what data we will work with. There are many interesting Web 

sites to visit in the search for data. We suggest the following sites: 

climate data: http://ferret.wrc.noaa.gov/fbin/climate_server

Center for Biomedical Modeling Research (CBMR) 

http://www.scs.unr.edu/~cbmr/research/data.html   

or Dr. B’s WWW Data site 

http://seamonkey.ed.asu.edu/~behrens/teach/WWW_data.html  

These sites have plenty of data (some duplicated). We assume that you know how to get 

connected to the Web and how to download data. You should get the data in ASCII and 

store it in column format with one of the variables (the independent variable) in the input 
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file and the dependent variable in the output file. Alternatively we have provided sample 

data on the CD-ROM under the Chapter1\data directory. Read the readme file to choose 

the data sets that interest you. 

NeuroSolutions Project 
The fundamental question is to find out how well a linear relation “explains” the 

dependence between the input data and the desired data.  We will exemplify the project 

with a single dimensional set of input data, but the multidimensional case is similar.  

The first thing to do is to modify the NeuroSolutions breadboard such that it will be able to 

work with the data you downloaded. The data should be stored in an ASCII file and 

formatted in columns. Right click on the input file icon and select properties. The 

Inspector will appear on the screen. Remove the present file (click the remove button) 

and click on the add button. The Windows 95 file inspector will appear and you have to 

open the file that contains the input data, i.e. the input to your linear model.  

In NeuroSolutions, the Associate panel appears which you can close ( we assume that 

the input file has ASCII data in column format). The next panel that pops open is the 

Customize panel. Here you select the columns that you want to use (for those columns 

that you do not want select the column label and click on the skip button), and then click 

on the close button. The input file is now open and ready to be used by NeuroSolutions. 

You should repeat the procedure for the desired file. Make sure that the number of 

samples of the input and desired files are the same.  

Another thing that we should do is to normalize the data. Sometimes the input and 

desired variables have very different ranges so one should always normalize between 0 

(or -1) and 1 both the desired and input data files. To do this go to the Stream page (click 

on the Stream tab) of the Inspector to access the normalization panel. Click the normalize 

check box and set the normalization range (don’t forget to go to the DataSet level of the 

inspector to translate the data again and make the normalization effective).  

We always recommend that you visually check the data either with a plotting program or 
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the Scatter plot in NeuroSolutions to ensure that there aren’t any outlier present in the 

data. When outliers exist, they may distort any possible linear relationship that may exist. 

Once the data sets are open, we can effectively start the adaptation of the linear 

regressor. The first important consideration is the largest stepsize that can be used for 

convergence. When the data is normalized one can always guess an initial value of 0.1. 

By plotting the learning curve, or the weight tracks (if the problem has few input channels) 

we can judge how appropriate this value might be.  Alternatively we can compute the 

eigenvalues and find the exact largest possible stepsize, but this is rarely done. The trial 

and error method is OK for small problems.  

If the problem takes a long time to converge and increasing the step size creates 

instability, then the eigenvalue spread is large, and there is little we can do short of using 

Newton’s method.  

After the algorithm converges (the error stabilizes) one should bring the correlation 

coefficient DLL to estimate the correlation coefficient. Note that it is always possible to 

pass an hyperplane through some data points, but the real issue is does the hyperplane 

provide a good model? To answer this question one needs to estimate the correlation 

coefficient.  

For the multiple variable regression case the relative weight magnitude tells us about the 

relative importance of the each variable in the regression equation. So it is rather 

important to read the values of the regression weights including the bias. Remember that 

if the data is normalized, the displayed weight values must be “unnormalized” in order to 

compare them with the original data.  You can find the values NeuroSolutions used to 

normalize the data by going to the DataSet page of the inspector and opening the 

normalization file.  Neurosolutions multiplies the data set by the first value in the 

normalization file (range) and adds the second value in the normalization file (offset).  To 

reverse this process, you must subtract the second value and then divide by the first 

value.  
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Remember that the parameters of the regression equation can be used to predict desired 

responses when the input is known. We can do this by testing the system with another 

data file for which we do not have a desired response. To do this in NeuroSolutions, you 

should go to the Controller (the yellow dial) Inspector and turn off the “learning” check 

box (this fixes the weights).  

No problem is finalized without a critical assessment of the results obtained. You should 

start with a hypothesis about the data relationship, and confirm your hypothesis with 

NeuroSolutions results. If there is a discrepancy between what you expect and the results, 

you must explain it. This is where the NeuroSolutions probes are very effective. You 

should verify that the data is being properly read, if the input and output files are 

synchronized, if the system is converging (weight tracks, learning curve), etc. Computers 

are great tools, but they are very susceptible to the “garbage-in garbage-out syndrome” 

so it is the user responsibility to check the inputs and the methodology of data analysis.   
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1.21 Linear regression Project 

We will illustrate the project with a regression between two time series, the sea 

temperature and atmospheric pressure downloaded from the NOAA site 

(atmospheric data base).  We will start with the breadboard from Example 7. We 

will replace the input with the file containing the sea temperature and desired 

response data with the file containing the pressure data. NeuroSolutions 

automatically sets the number of inputs from the file (verify this in the file 

Inspector), and the number of exemplars in an epoch. Verify this in the Controller 

Inspector. We also have to decide how many iterations we need. In the Controller 

Inspector enter 1,000 in the Epochs/Run. This number may be too large, but when 

the coefficients do not change we can always interrupt the simulation. Experiment 

with everything we have learned in this chapter.  
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 NeuroSolutions Example 

Go to next section  

11. Conclusions 
In this first Chapter we introduced very important ideas for the rest of the book. Probably 

the most important was the concept of adaptive systems. Instead of designing the system 

through specifications, we let the system learn from the input data. In order to achieve 

this the system has to be augmented with an external cost criterion to measure 

“goodness of fit” and an algorithm that will adapt the system parameters such the 

minimum of the cost can be reached. This idea will be with us until the end of the book.  

But we covered much more in this chapter. We described an extremely simple and 

elegant algorithm that is able to minimize the external cost function by using local 

information available to the system parameters. The principle is to search the 

performance surface in the opposite direction of the gradient. The name of the algorithm 

is LMS (least means squares) and in just 2 multiplications per weight and data sample it 

is able to put the system parameters in the neighborhood of the optimal values. Gradient 

descent is a powerful concept that we will hear constantly until the end of the book.  

When we applied the LMS to the linear network we end up with a system that can fit 

hyperplanes to data, and which is called the linear regressor. The solution is identical to 

least squares. 

We quantified the properties of the LMS algorithm, and we showed the fundamental 

trade-off of adaptation: the compromise between speed of adaptation and precision in the 

final solution. We defined the learning curve, which we called the thermometer of learning. 

This will also be with us until the end of the book. Therefore, this chapter covers the basic 

concepts for the intriguing adventure of designing systems that learn directly from data.  

We have also provided a project to help you understand the power of adaptive systems. 

The applications of the adaline are bounded by our imagination and the data we can find 
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to train it. So knowing how to get data from the Web and how to use it in NeuroSolutions 

is of great value.  

NeuroSolutions Examples 

1.1 The Linear Processing Element in NeuroSolutions  

1.2 Computing the MSE for the linear PE  

1.3 Finding the minimum error by trial and error  

1.4 Plotting the performance surface  

1.5 Comparison of performance curves for different data sets 1.6 Adapting the linear PE with LMS  

1.7 Batch versus online adaptation  

1.8 Robustness of LMS to noise  

1.9 Estimating the correlation coefficient during learning  

1.10 The learning curve  

1.11 Weight tracks  

1.12 Linear regression without bias  

1.13 Rattling  

1.14 Scheduling of stepsizes  

1.15 Multivariable regression  

1.16 Checking the LMS solution with the optimal weights  

1.17 Visualizing the weight tracks and speed of adaptation  

1.18 Visualizing weight tracks with on-line learning  

1.19 Linear regression without bias  

1.20 Newton’s method  
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1.21 Linear regression Project  

 

 

Concept Map for Chapter I 
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least squares derivation 
From Eq.5 we can work out the derivatives to obtain  
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We will demonstrate this for the derivative with respect to w, i.e. 
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which gives the second equation in Eq.6 . The set of Eq.45 is called the normal equations. 

The solution of this set of equations is 

 78 



b
x d x x d

x
x

N

i
i

i
i

i
i

i i
i

i
i

i
i

=
−

−

⎛

⎝
⎜

⎞

⎠
⎟

∑ ∑ ∑ ∑

∑
∑

2

2

2

   

w
x d

x d

N

x
x

N

i i
i

i
i

i
i

i
i

i
i

=
−

−

⎛
⎝
⎜

⎞
⎠
⎟

∑
∑ ∑

∑
∑

2

2

           

Equation 47 

which provides the coefficients for the regression line of d on x. The summations run over 

the input output data pairs. In order to solve Eq. 45, one just needs to get the value of b 

from the first equation and substitute it in the second equation to obtain w as a function of 

x and d. Continue by substituting the value of w in the first equation to finally obtain b as 

a function of x and d (variable elimination). It is easy to prove that the regression line 

passes through the point 
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Equation 48 

which is called the centroid of the observations. The denominator of the slope parameter 

of w and b is the corrected (for the mean) sum of squares of the input. 

Return to Text  

 

 

variance 
Data collected from experiments is normally very complex and difficult to describe by few 

parameters.  The mean and the variance are statistical descriptors of data clusters 

which are normally utilized in such cases. 

The mean of N samples is defined as  
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x
N

xi
i

N

=
=
∑1

1   
A physical interpretation for the mean is the center of mass of a body made up of 

samples of the same mass. It is the first moment of the probability density function (pdf).  

We can have very different data distributions with the same mean, so the mean is not 

that powerful descriptor. Another descriptor very often used is the variance, which is 

defined as 

σ2 2

1

1
= −

=
∑N

x xi
i

N

( )
  

The variance is the second moment around the mean and it measures the dispersion of 

samples around the mean. The square root of the variance is called the standard 

deviation. Mean and variance are much better descriptors of data clusters. In fact they 

define univocally Gaussian distributions, which are very good models for lots of real world 

phenomena. 

Go back to text  

Derivation of correlation coefficient 

Note that ( ) ( )d d y d d yi i i− = − + − i   which leads to  

( ) ( ) ( )d d y d d yi
i

i
i

i i
i

− = − + −∑ ∑ ∑2 2 2

          Equation 49 

when the optimal solution is obtained (the cross terms are zero for the optimal solution 

because the error is orthogonal to the output y). 

The first term measures the dispersion (square difference) of the predicted values with 

respect to the mean, while the second term measures the mismatch between the 

observed values and the result of the regression. Hence, the first term measures the 

dispersion contained in the regression model, and the second measures the dispersion 

that was not modeled by the linear model (the variance of ε). If we normalize the first term 
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of the equation by the variance of d we get an index of how much the variability of d is 

captured by the regression model,  

                             

( )
( )

r
y d

d d

i
i

i
i

2

2

2=
−

−

∑

∑
          Equation 50 

We can now substitute the regression equation for y=w*x and the definition of d   and 

w* to obtain the equation in the text. 

Return to text  

 

computation of correlation coefficient 
The important thing to note is that with optimal coefficients the error samples interpreted 

as a vector is perpendicular to the adaline output y. This condition is called the 

orthogonality condition. In fact from the figure below it is easy to see that the smallest 

error is obtained when the projection of d on y is the orthogonal projection.  

ε.y

ε

d εmin

y

  
During adaptation the error will always be larger than εmin, meaning that y can be larger 

than d. So Eq.7 may be larger than one, which is misleading since |r|<1. Using the fact 

that the minimum error is perpendicular to y, one can compute the dot product of ε with y 

and subtract it to the numerator of Eq. 7. We can prove that the numerator is always 

smaller than d and the extra term is zero at the optimal solution, so will not affect the final 
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value of the correlation coefficient. This is exactly what is done in Eq. 14 .  

Return to text  

batch versus online learning 
The on-line and batch modes are equivalent for parabolic performance surfaces.  

Note that the number of weight updates of the two methods for the same number of data 

presentations is very different. The on-line method (LMS) does an update each sample, 

while batch does an update each epoch, i.e.  

LMS updates =(batch updates) x(# samples in training set).  

Return to text  

more derivation of performance surface  
So, for a quadratic performance surface Eq.9 , computing the gradient and equating it to 

zero finds the value of the coefficients that minimize the cost, i.e. 

∇ = = = − +
⎛
⎝
⎜

⎞
⎠
⎟∑ ∑J

J
w N

d x w xi i
i

i
i

∂
∂

0
1 2

           Equation 51           

or 

                                            

w
x d

x

i i
i

i
i

* =
∑
∑ 2

                    
Equation 52 

This solution is fundamentally the same as found in Eq.6 (b=0 is equivalent to assuming 

that the average value of x and d are zero). So, the very important observation is that the 

analytical solution found by the least squares coincides with the minimum of the 

performance surface. Substituting this value of w* into Eq.9 , the minimum value of the 

error becomes  
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Equation 53 

Eq.9 can be re-written in the form  

J J
N

w w x w wi
i

= + − −∑min
* *( ) ( )

1
2

2

             Equation 54  

To verify this just operate Eq. 54 and substitute Eq. 52 for w* and Eq. 53 for Jmin. This is 

another important conclusion. Notice that: 

• the minimum value of the error Jmin Eq.53 depends on both the input signal (xi), and the 
desired signal (di) 

• the location in coefficient space where the minimum w* occurs Eq.52 also depends on 
both xi, di. 

• the performance surface shape Eq.54 depends only on the input signal (xi)  

 
Return to text  

 

more on derivation of largest stepsize 
The best way to find the upper bound for η is to write the equation that produces the 

weight values. Let us rewrite the ideal performance surface Eq.54 as 

                                                      
J J w w= + −min

*( )
λ
2

2

              
Equation 55 

where 

                                                              
λ = ∑1 2

N
xi

i                
Equation 56 

By computing the gradient of J Eq.55 , we get 
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∇ = −J w wλ( * )

*

             Equation 57 

so the iteration that produces the weight updates Eq.11 can be written as 

                                                    w k w k w( ) ( ) ( )+ = − +1 1 ηλ ηλ            
Equation 58 

This is a first order linear constant coefficient difference equation which can be solved by 

induction. Start with a solution w(0).  

   ( )

w w w
w w w

w w w

( ) ( ) ( ) *
( ) ( ) ( ) *[( ) ]

( ) ( ) ( ) *[ ( ) ]

1 1 0 2
2 1 0 2 1 1

3 1 0 2 1 1 1

2

3 2

= − +
= − + − +

= − + − + − +

ηλ ηλ
ηλ ηλ ηλ

ηλ ηλ ηλ ηλ   
which provides by induction the equation  

 
 

w k w w w wk n

n

k
k

k

( ) ( ) ( ) * ( ) ( ) ( ) *
( )
( )

= − + − = − +
− −
− −=

−

∑1 0 1 1 0
1 1
1 10

1

ηλ ηλ ηλ ηλ ηλ
ηλ
ηλ   

This equation can be rewritten as in the text. 

Return to text  

 

 

derivation of the time constant of adaptation 
Writing exp(-1/τ)= ρ and expanding the exponential in Taylor series,  

ρ
τ τ τ

= − = − + −exp( )
!

....
1

1
1 1

2 2
  

we get approximately ρ~1-1/τ. We saw that geometric ratio of the gradient descent is 

Eq.17 so we get  

τ
ηλ

=
1

  

 
Return to text  
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more on scheduling stepsizes 
If the initial value of η0 is set too high, the learning can diverge. The selection of β can be 

even tricker than the selection of η because it highly dependent on the performance 

surface. If β is too large, the weights may not move quickly enough to the minimum and 

the adaptation may stall. If β is too small, then the search may reach the global minimum 

quickly and must wait a long time before the learning rate decreases enough to minimize 

the rattling.  There are other (more automatic) methods for adapting the learning rate 

which we will discuss later in the book.  

Return to text  

 

derivation of normal equations 
When the derivative of J with respect to the unknown quantities (the weights) is taken, we 

end up with a set of p+1 equations in p+1 unknowns 

∂
∂

J
w N

x d w x
j

ij i k ik
k

p

i
= − −

⎛
⎝
⎜

⎞
⎠
⎟ =

=
∑∑1

0
0

      for j = 0... p
          Equation 59 

Notice that these equations are linear in the unknowns (the wj), so they can be easily 

solved. The solution is the famous normal matrix equation 

x d w x xij i
i

k
k

p

ik ij
i

∑ ∑ ∑=
=0

      j = 0,1,...p
               Equation 60 

or expanding  
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                   Equation 61 

Let us define  

R
N

x xkj ik ij
i

= ∑1

           Equation 62          

as the autocorrelation of the input samples for indices k, j. The autocorrelation matrix R of 

dimension (p+1)(p+1) can be created with entries Rkj, 

R =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

R R R
R R R

R R R

p

p

P p pp

00 01 0

10 11 1

0 1

...

...
... ... ... ...

...
                  Equation 63 

This matrix is square and  symmetric (but not necessarily Toeplitz). Let us call 

P
N

x dj i
i

= ∑1
j i

=

               Equation 64 

the crosscorrelation of the input x for index j and desired response y, which can be also 

put into a vector p of dimension p+1.  

                     Equation 65 

p =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

P
P

Pp

0

1

...

Substituting these definitions in Eq.25 , the set of normal equations can be written simply 

p Rw w R p= −* *   or    1
        Equation 66 

where w is a vector with the p+1 weights wi.  
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                Equation 67 

w =

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

w
w

wp

0

1

...

w* represents the value of the vector for the optimum (minimum) solution.  

We used here the statistical definition for R and p. Let us clarify that when estimating 

these quantities from real data the properties only approximately apply . 

Return to text 

 

 

 

 

performance surface properties 
The minimum value of the error can be obtained by substituting the optimal weight Eq.31 

into the cost equation Eq.30 , yielding 

J
d
N
i T

i
min

*= −
⎡

⎣
⎢

⎤

⎦
⎥∑1

2

2

p w
                Equation 68 

We can re-write the performance surface in terms of its minimum value and w* as 

J J T= + − −min
* *( ) ( )

1
2

w w R w w
                 Equation 69 

For the one dimensional case, this equation is the same as Eq.54 (R becomes a scalar 

equal to the variance of the input). In the space (w1,w2) J is now a parabola facing 

upwards. The shape of J is again solely dependent upon the input data (through its 

autocorrelation function). One can show that the principal axes of the performance 

surface contours (surfaces of equal error) correspond to the eigenvectors of the input 
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correlation matrix R, (see Appendix ) while the eigenvalues of R give the rate of change 

of the gradient along the principal axis of the surface contours of J (Figure 15).  

direction of 
smallest eigenvector
of R

direction of largest
eigenvector of R

{

{

{

{

difference is smallest 
difference is
largest eigenvalue
of R eigenvalue of R

w1

w2

w1*

w2*

contour plots of J

  
FIGURE 15. Contour plots of the performance surface with two weights 

The eigenvectors and eigenvalues of the input autocorrelation matrix are all what matters 

to understand convergence of the gradient descent in multiple dimensions. The 

eigenvectors represent the natural (orthogonal) coordinate system to study the properties 

of R. In fact in this coordinate system the convergence of the algorithm can be studied as 

a joint adaptation of several (one for each dimension of the space) unidimensional 

algorithms. Along each eigenvector direction the algorithm behaves just like the one 

variable case that we studied in the beginning of this chapter. The eigenvalue becomes 

the projection of the data onto that direction just like λ in  Eq.55 is the projection of the 

data on the weight direction.. 

The location of the performance surface in weight space depends upon both the input 

and desired response Eq.31 . The minimum error is also dependent upon both data 

Eq.68 . Multiple regression finds the location of the minimum of a paraboloid placed in an 

unknown position in weight space. The input distribution defines the shape of the 

performance surface. The input distribution and its relation with the desired response 

distribution define both the value of the minimum of the error and the location in 

coefficient space where that minimum occurs.  

Return to text  
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multiple variable correlation coefficient 
The idea of the correlation coefficient is the same for 1D or multiple dimensions. The 

equations get a little more complicated since we are working now with an ensemble of 

input vectors. So the nice form of  Eq.7  has to be modified. An ensemble of vectors is 

better described as a matrix, so we are going to define a new matrix U as 

U X

N

p p
N

x x

x x
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
1

1

1

....
... ... ...

...
  

where each column is one of the input samples. Likewise we are going to define a 

column vector d with all the desired responses (this is a vector for the single output 

regression, otherwise also becomes a matrix) 

d =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

d

d N

1

...

  
The total error variance can be written as 

ε εT T T
x= −d d w U d*

  
where w* is the set of optimal coefficients. This expression can be easily derived if the 

output of the regressor is substituted in the left side of the equation Linear Models . The 

part of the error  that is explained by the linear model is the second term. This equation 

keeps the same form if we express it in terms of variance instead of error variance (just 

subtract the mean of the desired signal). So if we normalize this equation by the variance 

of the desired response we get  

r
Nd

Nd

T
x

T
2

2

2=
−

−
w U d

d d

*

   
which leads to the correlation coefficient for the multivariate case.  
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Return to text  

convergence for multiple weights case 
One can show that the condition to guarantee converge Widrow and Stearns is  

lim ( )
k

k

→∞
− =I ηΛ 0

               Equation 70 

where Λ is the eigenvalue matrix,  

Λ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

λ

λ

0 0

0

...
... ... ...

... p                 Equation 71 

which means that in every principal direction of the performance surface (given by the 

eigenvectors of the input correlation matrix R) one must have 

0
2

< <η
λ i                 Equation 72 

where λi is the corresponding eigenvalue. This equation also means that with a single η 

each weight wi(k) is approaching its optimal value wi* with a different time constant 

(“speed”). So the weight tracks bend and the path is no longer a straight line towards the 

minimum. 

This is the mathematical description that we said earlier that the gradient descent 

algorithm behaves as many one dimensional univariable algorithms along the 

eigenvector directions. Notice that Eq. 71 is diagonal so there is no cross-coupling 

between time constants along the eigenvector directions. 

In any other direction of the space, there will be coupling. However, we can still 

decompose the overall weight tract as a combination of weight tracts along each 

eigendirection as we did in Figure 16.  Eq. 72 shows that he stepsize along each 

direction  obeys the same rule as the unidimensional case (Eq.17 ).  
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Return to text  

 

estimation of eigenvalue spread 
The eigenvalue spread can be computed by an eigendecomposition of R, but this is a 

time consuming operation and hardly ever is performed. An estimate of the eigenvalue 

spread is the ratio between the maximum and the minimum of the magnitude of the 

Fourier transform of the input data.  

Alternatively, the simple inspection of the correlation matrix of the input can provide an 

estimation of the time to find a solution. The best possible case is when R is diagonal 

with equal values in the diagonal, because in this case the eigenvalue spread is 1 and 

the gradient descent goes in a straight line to the minimum. One can not have a faster 

convergence than this even when second order methods (such as the Newton’s method 

studied later is used). When R is diagonal but with different values, the ratio of the largest 

number over the smallest is a good approximation to the eigenvalue spread. When R is 

fully populated, the analysis becomes much more difficult. However, if the non-diagonal 

terms have values comparable to the diagonal terms, one can expect a long training time.  

Return to text  

Casti Reference 
Casti, J.L., Alternate Realities: Mathematical models of nature and man, Wiley, 1989. 

Processing Element 
The fundamental computational block in the system. In neural networks PEs are also 

called neurons or units.  

Epoch 
One complete  presentation of the input data to the network being trained 
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linear regression 
is the process of fitting (minimization of the sum of the square of the deviations) a cloud 

of samples by a linear model 

 

mean square error 
is the average of the square difference between the desired response and the actual 

system output (the error) 

 

least squares 
is an analytic procedure that minimizes the MSE in linear optimization problems (i.e. 

problems that are linear in the unknowns) 

 

correlation coefficient 
correlation coefficient is the ratio of the variance of the linear regressor over the variance 

of the desired response 

 

Adaptive systems 
Systems that change their parameters (through algorithms) in order to meet a 

pre-specified function, which is either an input-output map or an internal constraint. 

 

Performance surface 
is the total error surface plotted in the space of the system coefficients (weights)  
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Supervised learning 
learning or adaptation is supervised when there is a desired response that can be used 

by the system to guide the learning 

 

Unsupervised learning 
learning is unsupervised when the system parameters are adapted using only the 

information of the input and are constrained by pre-specified internal rules 

 

gradient 
is a vector that always points to the direction of maximum change, with a magnitude 

equal to the slope of the tangent to the curve at the point.  

steepest descent 
is a search procedure that seeks the next operating point in the direction opposite to the 

gradient 

 

Least Mean Square 
or LMS is a steepest descent search algorithm that uses a very efficient estimate of the 

gradient (the product of the error times the input) 

step size 
or learning rate is the constant that scales the gradient to correct the old weights 
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on-line training 
is a learning procedure that modifies the weights after the presentation of every sample 

 

epoch 
one complete presentation of the training data. 

 

batch training 
is the adaptation of the weight based on an epoch update 

 

training set 
is the ensemble of input/desired response pairs used to train the system 

 

test set 
is the ensemble of input/desired response data used to verify the performance of the 

trained system. This data is NOT used for training 

 

learning curve 
is a plot of the MSE across iterations 

 

weight track 
is a weight space plot of the weight locations during adaptation 
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geometric ratio 
is the ratio of two consecutive terms in a geometric progression 

 

time constant of adaptation 
is the exponent of the exponentially fitted envelop of the weight’s geometric progression 

 

rattling 
is the perturbation around the optimal weight value produced by a nonzero learning rate 

 

misadjustment 
is the normalized excess MSE produced by the rattling 

 

learning rate scheduling 
is the choice of a variable stepsize, which starts large in the begining of training and 

decreases progressively towards the end of adaptation 

 

eigenvalue spread 
is the ratio of the largest over the smallest eigenvalue 

 

normalized LMS 
is the LMS algorithm with a stepsize normalized by an estimate of the input data variance 
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big O notation 
is an approximate way to express the complexity of a computer algorithm, where only the 

largest factor is shown. Normally we are interested in multiplications since they are the 

most time consuming to execute in general purpose computers 

adaline  
Bernard Widrow called the linear processing element ADALINE for adaptive linear 

element 
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Eq.9 
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Eq.11 
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Eq.16 
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EQ.69 
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Eq.32 
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Eq.52 

w
x d

x

i i
i

i
i

* =
∑
∑ 2

   
 

Eq.55 

 
J J w w= + −min

*( )
λ
2

2

  
 

Eq.30 

J W RW P W
d
N

T T i

i
= − +

⎡

⎣
⎢

⎤

⎦
⎥∑2

2

   
 

Eq.26 

 
R

N
x xkj ik ij

i
= ∑1

  
 

Eq.63 

R

R R R
R R R

R R R

p

p

P p pp

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

00 01 0

10 11 1

0 1

...

...
... ... ... ...

...    
 

Eq.40 
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Widrow 
Bernard Widrow was one of the first researchers that explored engineering applications 

of adaptive systems. We are going to hear a lot about him in this book. 

 

Eq.7 
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Widrow and Stearns 
Adaptive Signal Processing, Prentice Hall, 1985 (Chapter 4). 

Linear Models 
Consult for instance the textbook Intro. to Linear Models by Dunteman, Sage Publications, 

1984.   

Eq.49 
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i
− = − + −∑ ∑ ∑2 2 2

  
 

outlier 
is a noisy point that does not follow the characteristics of the input (or desired response) 

data. 
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RLS 
is an on-line algorithm to compute the optimal weights (as opposed to the batch process 

to solve the least squares). Unfortunately it is also much more computational intensive 

than the LMS. To know more please consult 

Adaptive Filter Theory by Haykin, Prentice Hall, 1996 

 

Gauss 
Karl Friedrich Gauss (1777-1855) was a mathematical genius who proposed the use of 

least squares to solve sets of linear equations. He realized that in optimization problems 

involving Gaussian distribution models, a quadratic equation was obtained (after taking 

the logarithm), which leads to an easy solution for the optimum.  

 

covariance 
is the sum of the crossproducts of the two variables with the means removed.  

 

standard deviation 
is the square root of the variance. The variance is the second moment of the data with 

respect to the mean.  

 

Estimation theory  
see for instance  
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autocorrelation 
is a measure of similarity of the samples’ distribution, which is computed by the sum of 

the crossproducts between the data set and its shifted versions. The autocorrelation is a 

function of the shift.  

 

crosscorrelation 
measures the similarity between two different data sets, and it is computed by the sum of 

the crossproducts between the two data sets at different lags (it is a function of the lag).  

Derivation of Solution 
Let us just take the derivative of J with respect to the weights, using the matrix 

operations.  

pRwpwRRwpRwRw
w
J TT 2222 −=−+=−+=

∂
∂

  
since the transpose of R is equal to itself (Toeplitz). If we equate this to zero we obtain 

the optimal weights, i.e.  

pRw 1* −=   
which is the equation in the text 

Return to Text  

 

Contour 
is a curve linking all the points with the same value of J (J=constant). The contour plot for 

J is formed by concentric ellipsoids ( ellipses for the 2D case).  

 

 104 



eigenvalues 
are the scaling constants in the eigenvalue equation of a matrix. Here the matrix is the 

input autocorrelation matrix. Eigenvalues can be considered as the projections of the 

data along the eigenvectors.  

 

Z scores 
is a statistical terminology that means that all the variables are zero mean variables. 

See ??????? 

Newton’s Derivation 
The equation can be easily proved if we recall the gradient of the performance surface 

pRwJ −=∇   

left multiply by 
1−R   to obtain  

JRwpR ∇−= −− 11
  

and then substitute in the optimal solution Eq. 28 to obtain 

JRww ∇−= −1*   
From this equation we can derive the incremental equation presented in the text 

Return to Text  

 

 

ill-conditioned 
A matrix is ill-conditioned when the determinant is almost zero. See the appendix. 

gradient definition and construction 
The gradient is formally defined in terms of partial derivatives of a function f(x,y). Let us 
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consider a function f(x,y) that has partial derivatives at x0,y0. The gradient of f at x0,y0 is 

defined by 

yyxx uyxfuyxfyxfyxgradf ),(),(),(),( 00000000 +=∇=   

where  are the unit vectors along x and y and   are the partial derivatives 

of f along the x and y directions respectively, which are given by  

yx uu , yx ff ,

y
yxff

x
yxff yx ∂

∂
=

∂
∂

=
),(,),(

   
The gradient is associated with the concept of a directional derivative of a function. Let us 

assume we have a direction yx buauu +=
 . The directional derivative of f at x0,y0 

along u is 

h
yxfhbyhaxf

yxfD
hu

),(),(
lim),( 0000

000
−++

=
→   

So the gradient can be defined as a function of the ordered derivatives as 

uyxgradfyxfD u ⋅= )),((),( 0000   

where the operation is the dot product of two vectors (for yx ducuv +=
  

 ). bdacuv +=⋅

This expression means that the maximum value of the directional derivative as a function 

of the direction u is given by the size of the gradient and it occurs exactly when the 

direction u coincides with the gradient direction.  

Moreover, we can also find this direction pretty easily. Let us consider the curve C(x,y) 

defined as the line in the x,y plane where the function f has a constant value (this line is 

called the level curve or the contour of f). At a point x0,y0 in C the rate of change of f in 

the direction of the unit vector u tangent to C must be zero (see the definition above), i.e.  

0)),((),( 0000 =⋅= uyxgradfyxfD u   
But this implies that the gradient vector is perpendicular to the tangent vector u of the 

level curve at x0,y0. This explains the graphical construction outlined in the text.  
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Return to Text  

development of the phone system 
A good example is the telephone system. Long and meticulous research was conducted 

at Bell Laboratories on human perception of speech. This created the specification for the 

required bandwidth and noise level for speech intelligibility. Then engineers perfected the 

microphone that would translate the pressure waves into electrical waves to meet the 

specification. Then these electrical waves where transmitted through copper wires over 

long distances to a similar device, still preserving the required specification. For 

increased functionality the freedom of reaching any other telephone was added to the 

system. So switching of calls had to be implemented. This created the phone system. 

Initially, the switching among lines was done by operators. Then we invented a machine 

that would automatically switch the calls. Operators were still used for special services 

such as directory assistance. But now that the fundamental engineering aspects are 

stable, we are asking machines to automatically recognize speech and directly assist 

callers.  

The development of the phone system is an excellent example of engineering design. 

Once we have a vision we try to understand the principles at work, create specifications 

and a system architecture. The fundamental principles at work are found by applying the 

scientific method. The phenomenon under analysis is first studied with physics or 

mathematics. The importance of models is that they translate general principles and 

through deduction we can apply them to particular cases like the ones we are interested 

in. These disciplines create approximate models of the external world using the principle 

of divide-and-conquer. First the problem is divided in manageable pieces, each is studied 

independently of the others and protocols among the pieces are drawn such that the 

system can work as a whole, meeting the specifications drawn a priori. This is what 

engineering design is today.  

Return to the Text  
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Mars’ pathfinder mission 
When the machines have to autonomously interact with the environment, or have to 

operate near the optimum set point, we can not specify all the functions a priori and in a 

deterministic way. Take for instance the Mars Pathfinder mission. It was totally 

impossible to specify all the possible conditions that the rover Sojourner would face, even 

if remotely controlled from Earth. So the problem could not be solved by a sequence of 

instructions determined a priori in JPL’s laboratory on Earth. The vehicle was given high 

level instructions (way points) and was equipped with cameras and laser sensors that 

would see the terrain. The information from the sensors was analyzed and catalogued in 

general classes. For each class a procedure was designed to accomplish the goal of 

moving from point A to point B. This is the type of engineering systems that we will be 

building more and more in the future.  

The big difference from the initial machines and Sojourner is that the environment is 

intrinsically in the loop of the machine function. This brings a very different set of 

problems, because as we said earlier, the environment is complex and unpredictable. If 

our physical model does not capture the essentials of the environment, then errors 

accumulate over time and the solution becomes impractical. So we do not have anymore 

the luxury of dictating the rules of the game, as we did for the early machine building era.  

It turns out that animals and humans do Sojourner type of tasks effortlessly.  

Return to the Text  
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