Analysis of Short Term Memory Structures for Neural Networks

Jose C. Principe, Hui-H. Hsu, Jyh-M. Kuo

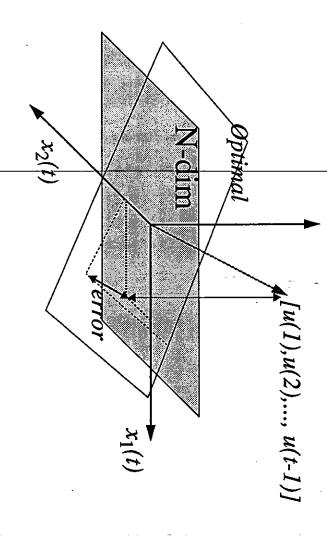
Electrical Engineering Dept, University of Florida Computational NeuroEngineering Laboratory Gainesville, FL 32611

<u>Outline</u>

- . Temporal processing; Time-Lagged Recurrent Networks (TLRN)
- 2. Memory filters, definition and properties.
- 3. Examples of memory filters.
- 4. Memory Filters in Nonlinear Prediction
- 5. Conclusions.

Problem

dimensional state vector $[x_1(t), x_2(t), ..., x_N(t)]$? How do we store a growing input history [u(1),...,u(t-1)] in a N-



temporal vector spaces (u(t)) and how well it spans an optimal decision space ($min\ E$). (u(t) --> x(t) --> E). The usefulness of x(t) depends on how well it spans large

Memory Architectures

1. memory by feedforward delay

basis vectors $\delta(t-k)$, k=0,1,2,...| (# weights ~

memory depth)

2. memory by linear feedback (IIR filters)

basis vectors a_0^t , ta_1^t , $t^2a_2^t$, ..., where a_i are functions of the system parameters.

⇒ adaptive vector space!

Hence, recurrent networks allow for optimizing the temporal basis vectors with respect to the performance criterion.

Recurrent Network Design

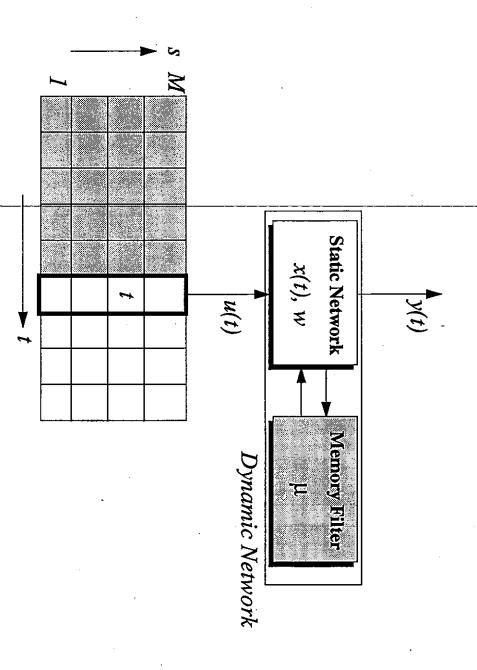
Formal design:

1982) leads to stable networks Design by Lyapunov functions (stability methods, Johnson,

Heuristic design:

fully recurrent nets, Giles' 2nd-order recurrent nets, and several net, local-recurrent-global-feedforward net, Williams and Zipser, others. Restricted architectures such as Jordan net, Elman net, Mozer

The sheer amount of different architectures for the same task indicates a rather ad hoc design method



Linear Memory Filter

Definitions.

following two conditions hold: A sequence g(t) is the impulse response of a memory filter if the

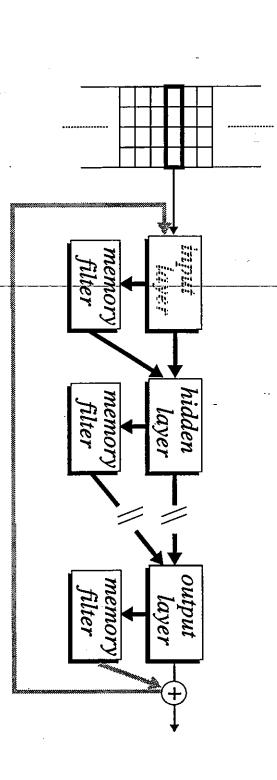
- g(t) is <u>causal</u>, that is, g(t)=0 for t < 0.
- g(t) is <u>normalized</u> such that $\sum_{t=0}^{\infty} |g(t)| = 1$.

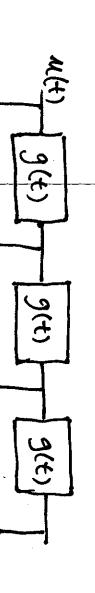
Memory depth: The center of mass of the last tap.

Memory Resolution: The number of taps per unit time

A memory filter is BIBO stable. $(\sum_{t=0}^{\infty} g(t) < \infty)$

Architecture of TLRN networks





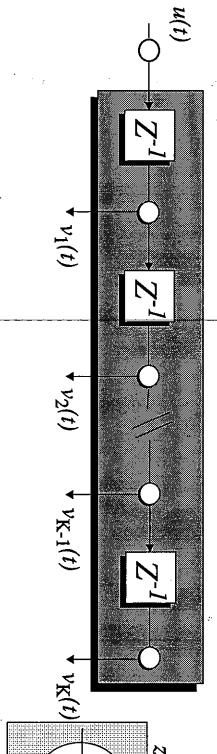
TLRN= Time-Lagged, Recurrent Networks

(+) P

gz(t)

92(4)

The Tapped Delay Line



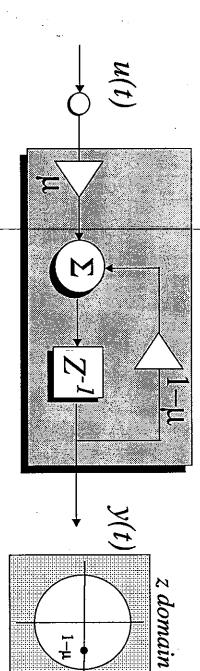
z domain

Delay Operator $G(z) = z^{-1}$. Memory Depth $D_k = \sum_{t=0}^{\infty} tg_k(t) = K$,

Resolution $R_k \equiv \frac{K}{D_k} = 1$.

proportional to depth! Notes. General applications; high resolution, # weights

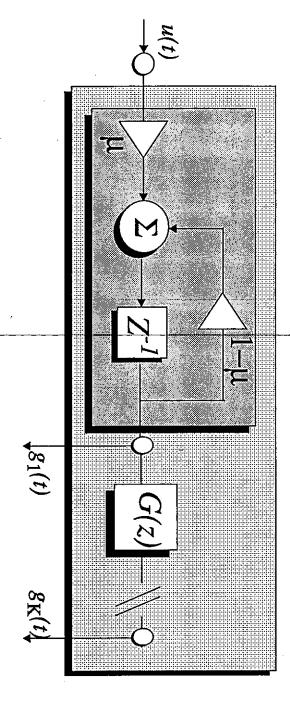
The Leaky Integrator

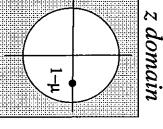


Delay Operator
$$G(z) = \frac{\mu}{z - (1 - \mu)}$$
 . memory Depth $D = \sum_{t=0}^{\infty} tg(t) = \frac{1}{\mu}$. Resolution $R = 1/D = \mu$.

Stable for $0 < \mu < 2$. problems where deep memory with low resolution is needed. Notes. Also called context units, memory neurons. Apply to

The Gamma Memory Filter





delay operator $G(z) = \frac{\mu}{z - (1 - \mu)}$

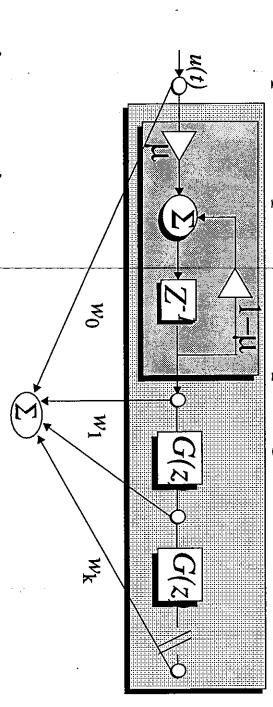
depth
$$D_k = \frac{K}{\mu}$$
,

resolution
$$R = K/(\frac{K}{1-\mu}) = \mu$$
.

integrator into a single structure (order, μ). Notes. Gamma filter generalizes tapped delay line and leaky

ADALINE (μ) or Gamma Filter

a variable pole, adapted to the input signal statistics The gamma filter just extends the adaptive linear network with



Learning equations:

$$\Delta w_k(n) = \eta_1 \frac{e}{L}(n) x_k(n) \quad k = 0, ..., L$$

 $\Delta \mu(n) = \eta_2 \sum_{k=0}^{\infty} e(n) w_k \alpha_k(n)$

where η is step size, e(n) the error and $\alpha_k(n) = \frac{\partial}{\partial \mu} x_k(n)$

Calculation of the gradient

Gamma filter equations $(x_0(n)=x(n))$

$$y(n) = \sum_{k=0}^{K} w_k x_k(n)$$
$$x_k(n) = (1 - \mu) x_k(n-1) + \mu x_{k-1}(n-1)$$

Gradients are

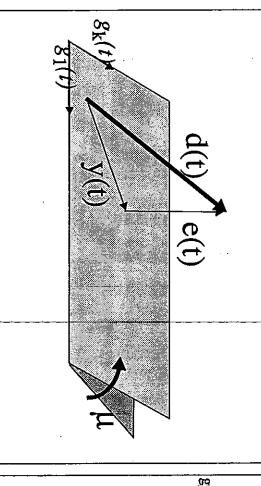
$$\Delta w_k = -\frac{\partial J}{\partial w_k} = \eta_1 \sum_{n=0}^T e(n) x_k(n)$$
$$\Delta \mu = -\frac{\partial J}{\partial \mu} = \eta_2 \sum_{n=0}^T e(n) \sum_{k=0}^K w_k \alpha_k(n)$$

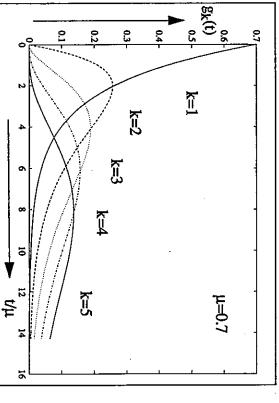
And the gradient variable is computed as $(\alpha_0(n)=0)$

$$\alpha_k(n) = (1 - \mu)\alpha_k(n - 1) + \mu\alpha_{k-1}(n - 1) + x_{k-1}(n - 1) - x_k(n - 1)$$

Structure of the gamma space

signal and the hyperplane degree of freedom that changes the angle between the desired μ varies. Thus, when the mse is minimized, μ works as an extra In continuous time the gamma space is a rigid hyperplane when

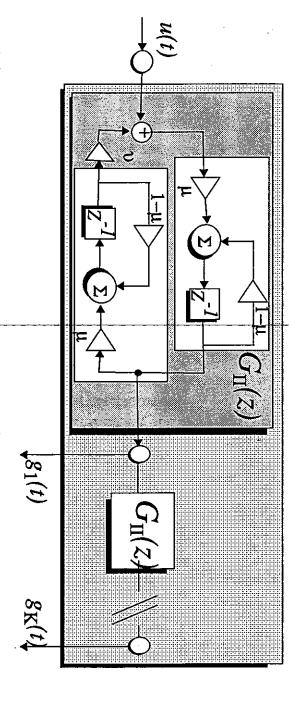




Problem is that the adaptation of μ is non-convex The gamma kernel is complete in L_2 .

Other TLRN -The Gamma II

Gamma Filter can be extended to complex poles.



z domain

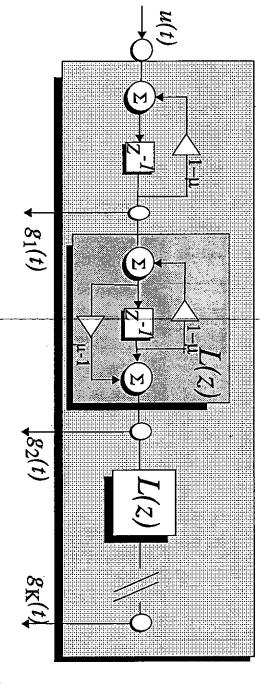
μ./δ

general frequency dependent delay This structure is parametrized by μ and ν . It implements a

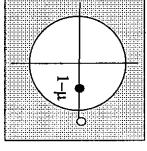
Delay operator
$$G_{II}(z) = \frac{\mu [z - (1 - \mu)]}{[z - (1 - \mu)]^2 + \vartheta \mu^2}$$

Other TLRN -Laguerre

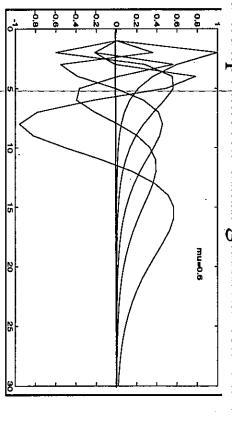
The Laguerre filters are an orthogonal span of the Gamma space.



z domain



Laguerre should adapt faster than gamma for values of $\mu \sim 0$, 2.



Multi-Dimensional Gamma

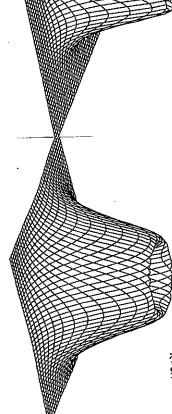
Can be considered an extension of radial basis functions.

$$g_{j}(\|\bar{x}(n) - c_{i}\|) = \frac{\mu^{j}}{(j-1)!} \left[(\bar{x}(n) - c_{i})^{2} \right]^{0.5(j-1)} e^{-\mu \left[(\bar{x}(n) - c_{i})^{2} \right]^{1/2}}$$

2-D Radially Symmetric Gamma Kernel - 1st Order (Normalized)

2-D Radially Symmetric Gamma Kernel - 3rd Order (Normalized)
2-0.7

2-D Radially Symmetric Gamma Kernel - 6th Order (Normalized)



They are a compromise between local and global approximators.