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Adaptive Filtering in Feature Space
Can we learn nonlinear structure using 
knowledge of linear adaptive filtering?knowledge of linear adaptive filtering?
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How do we choose the mappings?



Kernel Methods
 Moore-Aronszajn theorem

 Every symmetric positive definite function of two real variables has a y y p
unique Reproducing Kernel Hilbert Space (RKHS).

)exp(),( 2yxhyx −−=κ
 Mercer’s theorem

 Let κ(x,y) symmetric positive definite. The kernel can be expanded 
in the series
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Kernel Methods

Representer Theorem: The optimal filter exists in 
the span of input data!

parameters to learn



Kernel Least Mean Square (KLMS)
 Least-mean-square )()()( 110 ieuwwuwidiew iiii
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 Transform data into a high dimensional feature space F
 Compute error and weight 
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 Compute output at a new sample u as
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Energy Conservation Relation

 Energy conservation in RKHS
Energy conservation relation holds in RKHS!  
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 Upper bound on step size for mean square convergence
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 Steady-state mean square performance
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 Steady-state mean square performance
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Challenges in Implementation
Curbing network growth 

RBF Centers are the samples, and Weights are the errors!

Choosing kernel size



Basic Sparsification Criteria
• Novelty Criterion (NC)
NC first computes the distance of u(i + 1) to the present dictionary 
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If dis1 < δ1, u(i+1) will not be added into the dictionary. Otherwise, 

the prediction error is computed and only if |e(i + 1)| > δ2, u(i + 1) 
will be accepted as a new center δ and δ are two user-specified
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will be accepted as a new center. δ1 and δ2 are two user-specified 
parameters.

• Approximate Linear Dependency (ALD)
Test the distance of the new input to the linear span of the present 

dictionary in the feature space.
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This criterion is computational demanding but the needed values are 
already available in the KRLS algorithm. For KLMS it can be 
simplified and defaults to δ for RBFs
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Basic Sparsification Criteria
• Surprise, a new criterion based on 

Information TheoryInformation Theory

Definition: Surprise ST(u;d) is a subjective information measure of an 
exemplar (u;d) with respective to a learning system T . It is defined as 
the negative log likelihood of the exemplar given the the learning 
system’s hypothesis on the data distribution:
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where p(u;d|T) is the subjective probability of (u;d) hypothesized byT .
According to this measure, we can classify the new exemplar into 3
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According to this measure, we can classify the new exemplar into 3 
categories:

• Abnormal: ST(u,d) > T1.           throw away or control training
• Learnable: T1 >ST(u,d) >T2.    train
• Redundant: ST (u,d) < T2.       throw away



Basic Sparsification Criteria
• Evaluation of Surprise

In order to evaluate surprise the posterior distribution must be 
l d W d G i h d ievaluated. We used Gaussian processes theory and estimate as
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Surprise is 
• Proportional to the prediction error square
• Proportional to the prediction variance if the magnitude of the errorProportional to the prediction variance if the magnitude of the error 

is small
• Very high if the prediction error is large and the prediction variance 

is smallis small.
• Larger for rare data occurrences (for filtering) 
• For KLMS use the simplified equation 
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Quantization Approach
• A common drawback of the previous 

sparsification methods: the redundant input p p
data are purely discarded! Actually the 
redundant data are very useful and can be, for 
example utilized to update the coefficients ofexample, utilized to update the coefficients of 
the current network, although they are not so 
important for structure update (adding a new 
center)center). 

• Quantization approach: the input space is 
quantized, if the current quantized input hasquantized, if the current quantized input has 
already been assigned a center, we don’t need 
to add a new, but update the coefficient of that 
center !center !



Quantization Approach

Partition of the Input SpacePartition of the Input Space
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Quantized KLMS

0

1

0
( ) ( ) ( ( ))i

f
e i d i f i

 =
 = − u

Quantization operator

[ ]( )
1

1

( ) ( ) ( ( ))

( ) ( ) ,
i

i i

f

f f e i Q iη κ
−

−


 = + u .

Close centers 
d d tare redundant



Online Vector Quantization
• The key problem is the vector quantization (VQ):     

Information Theory? Information Bottleneck? ……
• There are many VQ methods in literature. Most of the 

existing VQ algorithms, however, are not suitable for 
online implementation because the codebook must beonline implementation because the codebook must be 
supplied in advance (which is usually trained on an 
offline data set), and the computational burden is rather 
hheavy. 

• A simple online VQ method:



Online Vector Quantization



Convergence Analysis
• Quantized Energy Conservation Relation
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• Sufficient Condition for MS Convergence 
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• Steady-state Mean Square Performance
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QKLMS

• Short Term Lorenz Time Series Prediction
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QKLMS (cont)

• Short Term Lorenz Time Series PredictionShort Term Lorenz Time Series Prediction
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