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IIR ADAPTIVE FILTERING

lIR filters have one big advantage with. respect to FIR designs.
They are much more efficient, i.e. a given frequency domain
characteristic is obtained with a much smaller filter order.

One of the problems with FIR filters is that the length of the im-
pulse response is coupled to the filter order.

Example:

Suppose we would like to identify a plant that can be modeled
by a 3rd order system, but has an impulse response that ex-
tends to 100 samples. (The extension is related to the location
of the poles and zeros of the plant).

With an FIR design we will have to choose a 100 order filter
for perfect identification (an order larger than 3 for a reason-

able performance).

When doing so we create several problems for the identifica
tion: |
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1- If the signal is noisy, since the FIR has a large number of de-
grees of freedom, we will be mamnzsm to noise.

2- The convergence process becomes much slower, because
we are searching a high dimensionality surface, and the shape
of the performance surface may have slowly rolling slopes and
steep ridges, which slow down the search.

It is obvious that if we could use an IR filter (of order 3 for the
example), the problem would become one of choosing the ap-
propriate pole/zero locations.

Problem with IIR adaptation
1- During adaptation poles may move outside the unit circle.
2- Performance surfaces are generally nonquadratic

3- Gradient search algorithms become computationally more
complex.
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Recursive Adaptive Filters- equation error formulation

Consider the :o:%oEm?m equation

! .
Mru M_ h:w_?ﬁ + M.L vskx-x\
Ly

o

It is a two input, single output filter, that does not have feed-
back. The output is a LINEAR function of the coefficients.




JOSE C, PRINCIPE

UNMIVERSITY OF FLORIDA

EEL 6935- SPRING %0

904-392-2662

peincipe@brain eo.ufl.edu

Page 4 of 13

The coefficients of A(n) will be copied to the denominator of
the block at left. This makes the equation error formulation IIR.

The appeal of this technique is that the error defined by
\Qa?i = 4 (w) ...NQTSV

is also a linear function of the coefficients. Therefore the MSE
is a quadratic function with a single minima just like the FIR
case. We can expect similar convergence properties.

Stability is easily checked by monitoring the zeros of 1-A(z). If
not, projection of the roots to the inside of the unit circle is per-
formed (mirror position method is often utilized).

If we define the vectors

T
CFu _eruvms: P ixr:_. ,gri ? :-.&u;ru _

4
2F“HDOT-D:~..“||tlwﬂﬁl—hr_ﬂ.v-l|- eru

Then the LMS formulation follows.
g =d - W, U

e
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But RLS can also be utilized, as well as others (maximum likeli-
hood, maximum a posteriori.

The major problem with this approach is that the solution may
be BIASED. It can be shown that only when A(n) is zero the
bias will be zero. The bias comes from the fact that the poles
are being estimated in a all -zero form where the eventual in-
put noise plays also a role in the minimization.
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RECURSIVE ADAPTIVE _u__u._.mhﬂ- Output error

Jw- N,._ Ay, Xy . M w.:__\,«ase

Define new vectors W and U r
g\f\l = ﬁhoﬂ-g:ﬂu. o Dﬁﬁﬂuk-ﬂu.l.- va_l.N

T
c =3 X, X - -
k ﬁ ket g . Xr&vkﬁa:.-..\réu_

Notice that U now contains past values of y,, The output be-
comes a nonlinear function of the coefficients (sometimes the
output of the filter is called pseudo linear regression). Notice
that the equation error is a filtered version of the output error.

Both methods coincide if A(n).

bﬁ?vnM_ - b?‘.v@ &mm.sv
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Due to the fact that y,, is a nonlinear function of the weights,
the error defined as e =4 - Yoo < A - W Uy

- Y

will also be a nonlinear function of the weights. The error func-
tion is NOT quadratic in the weights. It may contain local mini-
ma, which means that gradient descent procedures are not
guaranteed to converge (search may be caught in local mini-
ma).

However the output error formulation is UNBIASED.

It has been shown that for system identification if the adaptive
fiter has enough degrees of freedom, the input noise is white
and the order of the numerator exceeds the order of the plant
denominator, there will be NO local minima.

The search may be dependent in the initial conditions. The
convergence is much slower than the equation formulation.

It is believed that the error formualtion is THE approach for lIR
adaptive filtering.
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LMS GRADIENT (recursive prediction error)

@ = Wlmlu.ﬂ = 2 & v..W.lml =
v M%? WS\..F

ﬁ
=2 PT? 1 | e, O g

3 3 ?

2a, wbr_n ww&n ob

Lle

+
ket

Problem now is to compute the qu_,wzém. Using (1)
0, 2=

oL, o e o 4 by 290

WD._\.r,

L
n~ K -a t M .
= YN @.h RF___?..A.
1= .
FA

,f,mgw*
ﬁw .w_uaa V._n...:. «Mu._ ml.m..mr_x,a.m

Notice that these are now ORDERED derivatives (i.e. to com-
pute the component for order |, must first compute for order |-
1). There is an approximation involved

‘ri.m . .w,m_?,o_ — DERIVATIVES CAM RBE

?an Dene A MabEe RECURSUS.

.rJ_._n
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The gradient becomes

\/

Qﬂn -2 WFHRE«. y ot s o.mr_n..v \w:nv .-..\wPF.HN

[

_C/\T..._.___ = ;\.F.I 3 ¢~n‘

Notice now that the computation of the gradient is no longer
O(L). For each term o, and B« we need L. multiplications.
mm:omm we have L elements the computation of the gradient is
O(L7).

Of course if we approximate the gradient by the first terms,
then the computation is again O(L). This sometimes is called
the approximate gradient or simplified RPE.

Then we can write,
Y

where M is a diagonal matrix of step sizes, one for each a and
b weights.
2t O
M= .\.rr.c

1

o U
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HR LMS
T

Yot We Ue
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-
Q_p i m_n M 9\0Kv. e b\P_n.&w._nu T .\wﬁ,ﬂnN

=1

g...ﬂ+_ = ET - K.Aw_n...

The calculation of the gradient terms can be put into a block di-
agram form, if we write it in the Z domain (X, y inputs, o, B out-

puts). .
,W_,OJ" 2 Exw.h
1=3

et —Mll...& A @3_.5
1-B 2
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In block diagram form Ao

ALz 7 x . :.L_




JOSE C, PRINCIPE

UNIVERSITY OF FLORIDA

EEL 6935- SPRING 90

904-392-2662

principe @brain ce.vfl eda

Page 12 0f 15

Simplified RPE algorithms

Just approximate the gradient by the first terms
oy o T X
K -y

AW?..___n s V\ﬂﬁ\..{r

Then each component of the gradient is just the delayed ver-
sion of the input or output.

e, # }Fﬁ.m.d ' \—p . ._‘\..P.

{x

This is normally done in practice, with small degradation.
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SHARF (simplest hyperstable adaptive recursive filter)

The idea of HARF methods is to smoaoth the error g, to guaran-
tee convergence. SHARF is a special case where the truncat-
ed gradient is used.

The gradient can be approximated by the signal vector U. This
is also sometimes called pseudolinear regression because the
output is still a nonlinear function of the coefficients but the gra-
dient ignores dependence on the coefficients.

W ..ud(f.,ﬁ.zc_nm_n

I+

This algorithm becomes <02 similar to the RLS implementa-
tion of the equation error formuiation.

The problem is that the algorithm may not converge, unless
the denominator polynomial is strictly positive. Therefore, one
normally filter the error to ensure this condition.

Omwu
Re( 1 v A >0
¢ Ai.ﬁwhmJ o
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Filtered error algorithm o..m:bm_...

Y = ir.,. U
mwun.nxw_n S
Vy = & + mh Cu€hon
\ 2
dw.:.. 2V, M.x:.. ERa SN A .\.«-PN !
c<r+_u S\F- H ¢F L_n
() _ Agcty »\FJIV +
T | 4

“ (& ) w moﬁw.v

Vw

The problem is to set ¢, in general. The filter should be time
varying but coefficients are normally set to constant values.
Convergence has only been proven for special cases. Algo-
rithm has been utilized in echo cancelling and noise cancelling.
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Stability Monitoring

If poles go outside the unit circle (due to the noisy gradient)
the filter becomes unstable. The stability triangle is usually uti-
lized for 2nd order structures.

Instability can be monitored by testing if the sum of the denomi-
nator coefficients are less than 1. Jury’s test is less restrictive,
but more complex. Any method does not tell which coefficient
causes the problem (must factor the polynomial).

Parallel structrues may be the answer, or lattice.
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LATTICE STRUCTURES

Are motivated by similar analog structures called ladder net-

R L
works |k,\<<|“_| T
HV — C —_

, [ =

.

which are known to have very good properties (insensitive to
parameter drift). They require more hardware to realize a giv-
en transfer function.

This can be translated into the general ladder network.

1 U

_ | f

Porc + 2ERp
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For symmetric networks k=p.We will restrict our attention to
feedfoward lattice structures. Theblock diagram becomes
o7 . _ — fir

b, T
We can see that these structures propagate a forward and
backward signal
: = 1. - ey b (=)
._w.._fh.s %un.f _.J..._ J

T.:._h.mv .. ﬁu.b h.ﬁl_v .l _ﬂ.mz .ﬂb m.mv
k; are known as the partial correlation coefficients (PARCOR)
oq reflection coefficients. We can go from a direct structure to
a lattice structure (book pp 169).
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PROPERTIES

o Lattice structures require more operations.
» They are stable if the k; are less than 1.

® They produce a stage-by-stage orthogonalization of the input
signal.

# They model wave propagation in stratified medium.

Most important characteristic for adaptive signal processing is
the step by step orthogonalization of the input.The b; (1) corre-
sponds to a Gram-Schmidt orthogonalization of the am_m<ma
version of the input signal.
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WHY?

In adaptation using LMS, we are adapting at each step. How-
ever the error of the gradient estimate may be correlated near
adaptation and produce rattling.

In the lattice this does not happen because we are adapting
(changing the k) at each stage with the information locally
available. So the residual error that is propagated through the
structure is uncoupled (uncorrelated) with the input and previ-
ous input stages.

In the case of the lattice structure the mse is minimized stage-
by-stage because k; depends on quantities that are orthogonal
between stages.

This does not happen with the linear combiner where the error

IS .w. .
L
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COMPUTATION OF THE PREDICTOR COEFFICIENTS

For a predictor of order p, the data sample at time 1, i.e. the
next x(t) is approximated by a linear combination of the p previ-
ous samples (forward prediction) x(t-1),...x(t-p).

Iﬁﬂ-ﬁ-ﬁv" M— Qe X ﬁ.ﬂlm- Ap= )

To minimize the error, the coefficients are such that the error
is orthogonal to the data,i.e.

m_., Lreo. x(t-)| =0 0% )%p

A backward predicition _ouﬁ 1) will similarly _uaa_oﬁ X(t-p-1) us-
ing the samples x(t-1) ....x({t- Eo

T. Ce-) = M._ Cex (=) Cga= !
Wl_
_:oqmmm_:o ﬁ:m prediction to order p+1 will make x(t) dependent

upon x(t-1),.....x(t-p) and x(t-p-1). Notice however that the
NEW information x(t-p-1) is contained in by(t-1).

mm Twhﬁl_v.xhﬁ!@.vwﬂﬁ .NQNT
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where _Aui.. must be determined satisfying the orthogonality
condition of the error.

E] fulorx ()] =0 1 I % b

The only constraint not immediatly satisfied involves x(t-p-1).
Writing it as a function of the recursion

E m %?m 6. x(t- T_MTo HV E T.bs .xQ:Nv.._M_... w_w.m ?.«?.L.
and noting that R x(t-pf=0
mM, WQ‘....V .Xh.m..v.._uu =E hN. c: x( m:Cw X ?..T.._v\./ﬁ = ﬁ.n.\”VAnm.T.oX\TT

then we have, noting that xﬁ-_mmv is the predicted by(t-1).

el et bpe- 15[« e, e b )
Similarly,

*AT = mﬁ%vﬁév _Um.mé..._qw

i m:m?w

Page 28 of 34
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Extending the prediction o order p+2 requires calculation of 2
more prediction terms f,,1 and by,,1. We are constructing the
optimization step by step.. When signal is statjonary, k' and
ke are equal (the final k is a combination of kfand K.

In the tapped delay line, the w; would ALL change if the order
of the filter was changed.

We can also see why the k are called partial correlation coeffi-
cients. The correlation between x(t) and x(t-p-1) after their lin-
ear dependence is removed is E(fi(t) b.(t)). When this quantity
is normalized by the variance of f.and b,, we get the pth order

um:_m_oo:m_m:o:.._.:_mmm mxmoﬁ_v\mjm mxvammmoio_. _»Mm:a x__m

The backward prediction error are often used as a Gram-
Schmidt orthogonalization of the delayed versions of the input.
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SAMPLE DATA ESTIMATION OF THE REFLECTION COEF-
FICIENTS

Assume stationarity so,
Fintors £50t0- Ky by (o)
bin Co= by (4=~ £5()
BLOCK ESTIMATES

One of the first estimates was proposed by Iltakura and Saito
and follows closely the Durbin algorithm of the BLS. It is the
normalized conditional correiation coefficient between x(t) and
x(t-]-1) given the intervening samples

Ki, © <= 5 (6 by ¢

Jh t

/\4N .ﬁ (._..M.J . M_ _u.w 1)
t= <=1
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Another very well known estimate is the harmonic mean of k
and k (Burg maximum m::oms. It is much simpler to compute.

B g .@Qv. T@mmn_v

had wmrl MM_ m %,.MQI mw mﬁ:_vv
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GRADIENT ESTIMATES

Here only the prediction error at the preceding time instant is
needed for the gradient. The simplest algorithm uses the for-
ward and backward prediction errors weighted by a constant
(Griffiths)

_Au (t+1) = _n (4> *_Xw(ﬁ () mv T.iui,qm._ (4. b, QJLM

"This estimate can be improved if alpha is normalized by the

power (accumulated square of f and b ). This correspondds to
the LMS algorithm. |

The book ( Ch 8, 1¥3) uses a different notation
nﬂ —> < t—k

R

| | Also coefficients start at O not at 1.

7 _ -
w‘?._..r = A+ A4, - ?hs b?vl K; wu:. Y

<=

/ . 4 (t)= _UT,..._ IF
of:_n.. x{h\whx..,r \:..n.._ ,_:

yit

I'

)
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The book defines the statistics of the forward/backward predic-

tion errors as _
P m = nm\:wﬁ con )

SA (w)= & _H\:w. Ay, _i,su

6 ()= E M\V:P \vﬁ._r.-.fu

With E.m notation x is given by

v - m: (tr.b(¢-1 @ $,(1) }K;
mM TN_U:TCM ﬂmov &maw
(Compare with 8.100). Now if we take the LMS gradient esti-
mate, and use the steepest descent formalism,
0 by ok
L& (o v - < h.: e

L)

.m.., L, & \u h =~
Notice that this the Griffiths equation with alpha substituted by -
-2|L.

ke 2 - g
a_._n.: T.:n \.\'» \wa e \w\@._nn.
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The convergence of the lattice filters is much faster than the di-
rect Il structures (tapped delay line). The lattice orthogonalizes
the input signal to each stage, so coefficient estimates are un-

coupled, which implies not very sensitive to eigenvalue spread.

(see book).

The SER algorithm can also be applied to these structures.
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The Generalized Feedforward Model (1)

‘A General Memory Model: The Convolution neural model

x(n) = Qh:Wso€A:I§vaA§vw+:5 ,

where w(n) = 0 forn < 0.

Consider the memory mechanism

net(n) = W. w(n—m)x(m).
m=0

Dimensionality grows linearly with time.

Computational Neuro-engineering Laboratory, University of Florida page 8
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The Generalized Feedforward Model (2)
Simplify by decomposition assumption (Wiener, 1949!)-

T

K
w(n) = Mmﬁ%li. | (1)

This system has fixed (K) dimensionality,but generation of g,(n)
poses problems.

Computational Neuro-engineering Laboratory, University of Florida page 9
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The Generalized Feedforward Model (3

Fundamental Assumption:
Assume an additive network structure for the generation of g, (n).

In this study, recursive generation by
G.(2) = G(2)G_ (2), (2)
where G, (z2) =Z{g, (n) }.

The Decomposition and Recursive Generation assumption
reduces the convolution model to a new structure -

The Generalized Feedforward Filter (GFF)

Computational Neuro-engineering Laboratory, University of Florida page 10




Linear Memory Filter

Definitions.

A sequence g(t) 1s the impulse response of a memory filter if the
following two conditions hold:

* g(t) is causal, that is, g(2)=0 for ¢ < 0.
* g(t) is normalized such that ' °_ g (1| = 1.

Memory depth: The center of mass of the last tap.

Memory Resolution: The number of taps per unit time.

A memory filter is BIBO stable. (}.7_ g (1) <)

Computational NeuroEngineering Laboratory, U. of Florida page 8
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The Generalized Feedforward Filter

G(z) 1s the Generalized Delay Operator, an additive linear network.
K |
NET (2) = 3w, X, (2),
1

X (z) =G6G()X,_,(2). (3)

Computational Neuro-engineering Laboratory, University of Florida page 11




The Tapped Delay Line

in

vi(t) Vo(t) Vk-1(2) ve(?) \

Delay Operator G (z) = 7 .
Memory Depth D, =Y'"_ 15, (1) =K,

. K
Resolution R, = D; = 1
Notes. General applications; high resolution, # weights
proportional to depth!

Computational NeuroEngineering Laboratory, U. of Florida page 10




The Leaky Integrator

o s e

(t)

1l
z—(1—pu)

memory Depth D =Y " te(t) = w :

Delay Operator G (z) =

Resolution R=1/D=p .

Notes. Also called context units, memory neurons. Apply to
problems where deep memory with low resolution is needed.
Stable for 0<p<2.

Computational NeuroEngineering Laboratory, U. of Florida page 11




Hrm QmEEm ZmEoZ Filter

u(t)

delay operator G (z) = H

depth D ==X
resolution R = K/ (=4 v

Notes. Gamma filter generalizes ﬁ%@oa a&@ line and leaky
integrator into a single structure (order, ).

Computational NeuroEngineering Laboratory, U. of Florida page 12




ADALINE (1) or Gamma Filter

The gamma filter just extends the adaptive linear network with
a variable pole, adapted to the input signal statistics.

= R

||||||

Learning equations:
D:\.wﬁ:v = sﬁmhﬁ:v x.(n) k=0,..L

Ap(n) = stMom (n) w0 (n)

where 1) is step size, e(n) the error and o, (n) = %ﬂxw (n)

Computational NeuroEngineering Laboratory, U, of Florida page 13




Structure of the gamma space

In continuous time the gamma space is a rigid hyperplane when
W varies. Thus, when the mse is minimized, L works as an extra
degree of freedom that changes the angle between the desired
signal and the hyperplane.

()

16

Problem is that the adaptation of [ is non-convex.
The gamma kernel is complete in L,.

Computational NeuroEngineering Laboratory, U. of Florida page 14
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Memory Review Revisited

Trivial
o<u<?2

O(K)

Un-coupled

Computational Neuro-engineering Laboratory, University of Florida

page 17
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A System Identification Experiment

0.0563 — 0.0009z ! - 0.0009z % + 0.05637">

H(z) =

-1 )

—0.54357°

1-2.12917z +1.78347

Computational Neuro-engineering Laboratory, University of Florida page 18
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Just Another Set of Time Basis Functions?

Prediction of EEG momB_oE.
Architecture: N;,=1, K;, and n parameter, N;;;=5, N,,=1, # pred.
steps =5.

eeg segment

Computational Nevro-engineering Laboratory, University of Florida page 19




Other TLRN -Laguerre

The Laguerre filters are an orthogonal span of the Gamma space.

~ 0, 2.

Computational NeuroEngineering Laboratory, U. of Florida page 16




Other TLRN -The Gamma II

u(t)

This structure is parametrized by i and v. It implements a
general frequency dependent delay.

Llz—(1-p)]
[z2— (1-p) 1% +op?

Delay operator G, (z) =

Computational NeuroEngineering Laboratory, U. of Florida page 15




Most General TLRN- Kautz Memory

The Kautz functions implement general linear systems.

[~ Kauiz memory

¥ uflt) ¥ g1} Bxlthy

This BoE_oQ has L poles of multiplicity K

L

. J(z, |) ENL..ClF.v*
F(zp) = ~ K(z ) = =1

L Mi-(-pyz

1=1

It 1s basically a vector Laguerre filter with complex poles. F(z)
is a set of bandpass filters, and K(z) a set of allpass functions.

Computational NeuroEngineering Laboratory, U. of Florida page 7




Multi-Dimensional Gamma

Can be considered an extension of radial basis functions.

172

05G=1) [ @(n) —c;)?
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They are a compromise between local and global approximators.
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