
following sequential learning rule

fi = fi−1 + Gain(i)e(i) (1–23)

where fi denotes the estimate of the mapping at time i and Gain(i) is a function in

general. This sequential learning, first studied by Goodwin and Sin [1984] for linear filters,

is very attractive in practice since the current estimate consists of two additive parts,

namely, the previous estimate and a correction term proportional to the prediction error

on new data. This unique incremental nature distinguishes our methods from all the

others. Although (1–23) appears very simple, the algorithm can in fact be motivated by

many different objective functions. Also, depending on the precise meanings of Gain(i)

and e(i), the algorithm can take many different forms. We explore this in detail in the

subsequent chapters. This amazing feature is achieved with the underlying linear structure

of the reproducing kernel Hilbert space where the algorithms exist, as discussed next.

1.4 Reproducing Kernel Hilbert Spaces

A pre-Hilbert space is an inner-product space which has an orthonormal basis {xk}∞k=1.

Let H be the largest and most inclusive space of vectors for which the infinite set

{xk}∞k=1 is a basis. Then, vectors not necessarily lying in the original inner-product

space represented in the form

x =
∞∑

k=1

akxk

are said to be spanned by the basis {xk}∞k=1; the ak are the coefficients of the representation.

Define the new vector

yn =
n∑

k=1

akxk

15

Another vector ym may be similarly defined. For n > m, we may express the squared

Euclidean distance between the vectors yn and ym as

||yn − ym||2 = ||
n∑

k=1

akxk −
m∑

k=1

akxk||2

= ||
n∑

k=m+1

akxk||2

=
n∑

k=m+1

a2
k

where, in the last line, we invoked the orthonormality condition. Therefore, to make the

definition of x meaningful, we need the following to hold:

1.
∑n

k=m+1 a2
k → 0 as both n, m → ∞.

2.
∑m

k=1 a2
k < ∞

In other words, a sequence of vectors {yk}∞k=1 so defined is a Cauchy sequence. Consequently,

a vector x can be expanded on the basis {xk}∞k=1 if, and only if, x is a linear combination

of the basis vectors and the associated coefficients {ak}∞k=1 are square summable. From

this discussion, it is apparent that the space H is more “complete” than the starting

inner-product space. We may therefore make the following important statement:

An inner-product space H is complete if every Cauchy sequence of vectors

taken from the space H converges to a limit in H; a complete inner-product

space is called a Hilbert space.

A Mercer kernel [Aronszajn, 1950] is a continuous, symmetric, positive-definite

function κ : U × U → R. U is the input domain, a subset of RL. The commonly used

kernels include the Gaussian kernel (1–24) and the polynomial kernel (1–25):

κ(u,u′) = exp(−a||u− u′||2) (1–24)

κ(u,u′) = (uTu′ + 1)p (1–25)

16

Let H be any vector space of all real-valued functions of u that are generated by the

kernel κ(u, ·). Suppose now two functions h(·) and g(·) are picked from the space H that

are respectively represented by

h =
l∑

i=1

aiκ(ci, ·)

and

g =
m∑

j=1

bjκ(c̃j, ·)

where the ai and the bj are expansion coefficients and both ci and c̃j ∈ U for all i and j.

The bilinear form defined as

< h, g >=
l∑

i=1

m∑
j=1

aiκ(ci, c̃j)bj

satisfies the following properties:

1. Symmetry
< h, g >=< g, h >

2. Scaling and distributive property

< (cf + dg), h >= c < f, h > +d < g, h >

3. Squared norm
||f ||2 =< f, f >≥ 0

By virtue of these facts, the bilinear term < h, g > is indeed an inner product. There

is one additional property that follows directly. Specifically, setting g(·) = κ(u, ·), we

obtain

< h, κ(u, ·) > =
l∑

i=1

aiκ(ci,u)

= h(u)

This property is known as the reproducing property. The kernel κ(u,u′), representing a

function of the two vectors u, u′ ∈ U, is called a reproducing kernel of the vector space H

if it satisfies the following two conditions:

17

1. For every u ∈ U, κ(u,u′) as a function of the vector u′ belongs to H.

2. It satisfies the reproducing property.

These two conditions are indeed satisfied by the Mercer kernel, thereby endowing it

with the designation “reproducing kernel”. If the inner-product space H, in which the

reproducing kernel space is defined, is also complete, then it is called a reproducing kernel

Hilbert space, for which we use the acronym RKHS hereafter.

The analytic power of RKHS is expressed in an important theorem called the Mercer

theorem. The Mercer theorem [Aronszajn, 1950, Burges, 1998] states that any reproducing

kernel κ(u,u′) can be expanded as follows:

κ(u,u′) =
∞∑
i=1

ςiφi(u)φi(u
′) (1–26)

where ςi and φi are the eigenvalues and the eigenfunctions respectively. The eigenvalues

are non-negative. Therefore, a mapping ϕ can be constructed as

ϕ : U→ F

ϕ(u) = [
√

ς1φ1(u),
√

ς2φ2(u), ...]

(1–27)

By construction, the dimensionality of F is determined by the number of strictly

positive eigenvalues, which can be infinite in the Gaussian kernel case.

In the machine learning literature, ϕ is usually treated as the feature mapping and

ϕ(u) is the transformed feature vector lying in the feature space F (which is an inner

product space). By doing so, an important implication is

ϕ(u)T ϕ(u′) = κ(u,u′) (1–28)

It is easy to check that F is essentially the same as the RKHS induced by the kernel

by identifying ϕ(u) = κ(u, ·), which are the bases of the two spaces respectively. By

slightly abusing the notation, we do not distinguish F and H in this book if no confusion is

involved.

18

A concrete example helps here. Let [Cherkassky and Mulier, 1998]

κ(u, c) = (1 + uTc)2 (1–29)

with u = [u1, u2]
T and c = [c1, c2]

T . By expressing the polynomial kernel in terms of

monomials of various orders, we have

κ(u, c) = 1 + u2
1c

2
1 + 2u1u2c1c2 + u2

2c
2
2 + 2u1c1 + 2u2c2

Therefore, the image of the input vector u in the feature space may be written as

ϕ(u) = [1, u2
1,
√

2u1u2, u
2
2,
√

2u1,
√

2u2]
T

And similarly we have

ϕ(c) = [1, c2
1,
√

2c1c2, c
2
2,
√

2c1,
√

2c2]
T

It is easy to verify that

ϕ(u)T ϕ(c) = κ(u, c)

However, it is hard in general to explicitly express ϕ even for simple polynomial

kernels, because the dimensionality of ϕ scales with O(Lp) where L is the dimension of

input vectors and p is the order of the polynomial kernel.

()ϕ •

u
()uϕ

Figure 1-4. Nonlinear map ϕ(·) from the input space to the feature space

19

1.5 Kernel Adaptive Filters

Kernel method is a powerful nonparametric modeling tool. The main idea can be

summarized as follows: transform the input data into a high-dimensional feature space

via a reproducing kernel such that the inner product operation in the feature space can

be computed efficiently through the kernel evaluation (1–28). Then appropriate linear

methods are subsequently applied on the transformed data. As long as an algorithm

can be formulated in terms of inner products (or equivalent kernel evaluation), there

is no need to perform computations in the high dimensional feature space. While this

methodology is called the “kernel trick”, we have to point out that the underlying

reproducing kernel Hilbert space plays a central role to provide linearity, convexity,

and universal approximation capability. Successful examples of this methodology include

support vector machines, kernel principal component analysis, Fisher discriminant

analysis, and many others8.

We start by an example to show why projecting the input into a feature space helps

in learning. Consider the target function of a two dimensional input u = [u1, u2]
T .

f(u1, u2) = a1u1 + a2u2 + a3u
2
1 + a4u

2
2 (1–30)

where a1, a2, a3, a4 are some constant coefficients. Apparently a linear system trying to

approximate f by a linear combination of u1 and u2 could not exactly model it as written.

However, by using the kernel (1–29) and its mapping ϕ, we have a new representation of

the input

(u1, u2)
ϕ7→ (x1, x2, x3, x4, x5, x6) = (1, u2

1,
√

2u1u2, u
2
2,
√

2u1,
√

2u2)

Now f can be represented by a linear system of (x1, x2, x3, x4, x5, x6)

f(x1, x2, x3, x4, x5, x6) = 0 · x1 + a3x2 + 0 · x3 + a4x4 +
a1√
2
x5 +

a2√
2
x6

20

The fact that mapping the input into a feature space can simplify the learning task

has been well known for a long time in machine learning as exemplified by polynomial

regression9 and Volterra series. The problem is really how to construct this mapping.

One may be tempted to add as many features as possible since it is more likely the target

functions can be represented using a standard learning algorithm in high dimensional

feature spaces, but this may run into the danger of overfitting. Overfitting is a phenomenon

where a good fit to the training data is achieved but the over-learned system performs

badly when making test predictions. The difficulties with high dimensional feature spaces

are mainly:

1. the computational complexity explodes with the dimensionality;

2. the generalization performance degrades as the dimensionality increases.

There are two approaches to overcome the problem. One is called feature selec-

tion where only useful features are selected and other features are pruned so that the

dimensionality of the feature space is constrained. In our previous example, apparently x1

and x3 are two redundant features which should be pruned. The other workaround is the

kernel method. Since the features are only implicitly constructed and we don’t need to

work directly in the feature space, the explosion of computational complexity is avoided.

And the overfitting problem is taken care of by the use of regularization. These properties

will become clear when we develop the kernel adaptive filters in the subsequent chapters.

It has been proved [Steinwart, 2001] that in the case of the Gaussian kernel, for any

continuous input-output mapping f : U→ R and any ς > 0, there exist parameters {ci}m
i=1

in U and real numbers {ai}m
i=1 such that

||f −
m∑

i=1

aiκ(·, ci)||2 < ς (1–31)

If we denote a vector ω in F as

ω =
m∑

i=1

aiϕ(ci)

21

then by (1–28) and (1–31), we have

||f − ωT ϕ||2 < ς

This equation implies that the linear model in F has the universal approximation property.

Clearly, this property is established from the viewpoint of strict function approximation.

Furthermore, if our problem is to minimize a regularized cost function over a finite

data set {(u(i), d(i))}N
i=1, we write

min
f

J(f) =
N∑

i=1

(d(i)− f(u(i)))2 + λ||f ||22

It has been shown that the optimal solution can be expressed as

f =
N∑

i=1

aiκ(·,u(i))

for suitable ai. This result is called the representer theorem [Schölkopf et al., 2001].

In other words, although we did consider functions which were expansions in terms of

arbitrary points ci (see (1–31)), it turns out that we can always express the solution in

terms of the training points u(i) only. Hence the optimization problem over an arbitrarily

large number of variables is transformed into one over N variables, where N is the number

of training points.

Recently it has also been shown that Volterra series and Wiener series can be treated

just as a special case of a kernel regression framework [Franz and Schölkopf, 2006]. By

formulating the Volterra and Wiener series as a linear regression in RKHS, the complexity

is now independent of the input dimensionality and the order of nonlinearity.

Based on these advantages and arguments, our strategy is clear: to formulate the

classic adaptive filters in RKHS such that we are iteratively solving a convex least-squares

problem there. As long as we can formulate these algorithms in terms of inner products

we obtain nonlinear adaptive filters which have the universal approximation property and

22

convexity at the same time. Convexity is a very important feature which prevents the

algorithms from being stuck in local minima. (See Table 1-1)

Table 1-1. Comparison of different nonlinear adaptive filters

Algorithms Modeling capacity Convexity Complexity
Linear adaptive filters Linear only Yes Very simple
Hammerstein, Wiener models Limited nonlinearity No Simple
Volterra, Wiener series Universal Yes Very high
Time-lagged neural networks Universal No Modest
Recurrent neural networks Universal No High
Kernel adaptive filters Universal Yes Modest
Recursive Bayesian estimation Universal No Very high

In recent years, there have been many efforts of “kernelizing” adaptive filters in

the literature. T.-T.Frieb and Harrison [1999] first used this idea to derive the kernel

ADALINE, which is formulated as a deterministic gradient method based on all the

training data (not online). Then, Kivinen et al. [2004] proposed an algorithm called

NORMA by directly differentiating a regularized functional cost to get the stochastic

gradient. While the derivation involves advanced mathematics, the results are actually

equivalent to a kernel version of the leaky least-mean-square algorithm. At almost the

same time, Engel et al. [2004] studied the case of kernel recursive least squares by utilizing

the matrix inversion lemma. Later on, Liu et al. [2008] investigated the kernel least

mean square algorithm and pointed out that the algorithm possesses a self-regularization

property. Kernel affine projection algorithms were studied from different perspectives by

Liu and Pŕıncipe [2008b], Slavakis and Theodoridis [2008] and Richard et al. [2009]. More

recently, the extended kernel recursive least squares algorithm was presented in [Liu et al.,

2009], which studied the general state estimate problem in RKHS. After a decade of efforts

from many researchers, kernel adaptive filtering is rapidly evolving into an important field

of signal processing. This book serves to address previous works and investigate them

in a unifying framework (see Figure 1-5). We present, in detail, the kernel least mean

square algorithm, the kernel affine projection algorithms, the kernel recursive least squares

algorithm and the extended kernel recursive least squares algorithm. Relations among

23

these algorithms, illustrated in Figure 1-5, will become clear when we present them in the

subsequent chapters.

Affine-projection

algorithm (APA)
Newton APALeaky APA

Least-mean-

square (LMS)

Normalized

LMS
Leaky LMS

K
=

1

K
=

1

K
=

1

Recursive

Least-Squares

(RLS)

K
=

i
Extended RLS Weighted RLS

Kalman filter

Figure 1-5. Relation between different adaptive filtering algorithms

Kernel adaptive filters provide a generalization of linear adaptive filters since these

become a special case of the former when expressed in the dual space. Kernel adaptive

filters exhibit a growing memory structure embedded in the filter weights. They naturally

24

create a growing radial-basis function network, learning the network topology and

adapting the free parameters directly from data at the same time. The learning rule is a

beautiful combination of the error-correction and memory-based learning, and potentially

will have a deep impact on our understanding about the essence of kernel-learning theory.

Historically, most of the kernel methods use block adaptation and are computationally

very expensive using a large Gram matrix of dimensionality given by the number of data

points; therefore, the efficient online algorithms provide the useful flexibility for trading off

performance with complexity. And in nonstationary environments, the tracking ability of

online algorithms provides an extra advantage.

The combination of sequential learning and memory-based learning requires, and

at the same time, enables the network to select informative training examples instead

of treating all examples equally. Empirical evidence shows that selecting informative

examples can drastically reduce the training time and produce much more compact

networks with equivalent accuracy. Therefore, in the case of a large and redundant data

set, performing kernel online learning algorithms provides a big edge over batch mode

methods in terms of efficiency.

The widely used active data selection methods for kernel adaptive filters include the

novelty criterion [Platt, 1991] and approximate linear dependency test [Engel et al., 2004].

Both are based on heuristic distance functions while we present a principled and unifying

approach. Our criterion is based on a subjective information measure called surprise. It

quantifies how informative the candidate exemplar is relative to the knowledge of the

learning system. It turns out that the approximate linear dependency test is a special case

and the novelty criterion is some approximation in this information theoretic framework.

1.6 Summarizing Remarks

To put the introductory material covered in this Chapter into a historical context,

it is noteworthy that in a classic paper on the separability of patterns published in 1965,

Cover proved that, given a nonlinearly separable pattern-classification problem, there

25

