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LMS/NEWTON ALGORITHM

Newton method does not follow the gradient. It goes directly in
the direction of the minimum.

vEwron W, = s\w.\» RV,

LMs W

—n bty

= S\—r +-N\=tm.-nx_h

steeper( Wion s Wom 4 Vi)
DEscen

| With m=1/2 we reach the minimum in one step. If m <1/2 we

take more steps, but follow always the direction of the mini-
- mum.

The requirements are that we need to know R and gradient
at each step. .
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What if we use the crude LMS estimate for the gradient?
We get what is called the LMS/Newton.
QT_ = - m.._.x_nl

/>\T.Zue<+ﬂ\>w.mx

Let us normalize M.t0 better compare the properties of the
LMS/N with the LMS.

When R is diagonal with equal weights
Ao R7= T

So if we want to have comparable \xm. we must substitute

Fon

and the algorithm becomes.

I/.M.\_A..: = 9[\-04. .N\_\f y.b.c. T-... m._n.xan.
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For convergence
O < \? < 1
Vf.z)i.
For one step iteration

. A
\Fuh Xave

It is the use of the information contained in R~ that makes the
algorithm much faster. We still do not know how to calculate it,
but assuming we know R, the LMS/N goes in a straight line to
the minimum, so it displays the fastest convergence. |
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__uJO_um_u._._mm OF LMS/NEWTON

Convergence

Convergence of the steepest descent is given by the slowest

: 2 == lwse
W: »\&.v.er Wese

In the LMS/N it is given by (just one time constant)

A

.. a 1..||...| I_l n I\_I!
ﬁ.:.t 2 Ao > Tas-t A\r Aaus

So the point is clear. LMS/N converges controlled by the |,

| So when eigenvalue spread is high it is much faster. If eigen-

value spread is one, same convergence.




- JOSE C. FRINCIPE

UNIVERSITY OF FLORIDA

EEL 6935- SPRING 90

904-392-2662

 principe@brain.ce.uf).edn

Page Sof 7

~Misadjustment

For the LMS/N, from the expression of the oo<_<&.

! Po..cx |>.l.. ¢ /
no<ﬁ<rgu \thaw\. .ans& Cov M‘Cr.u

we get

Fd

The gradient estimate has a cov[N]
o8]+ 4 B s

SO,

eov [V Je pe o B

A!\LVP.R

The excess MSE becomes

Lxcess HSE= mMc._. .>.<|.g A mM erx\.ﬁ
hﬁiv\\r .Ps_k %:.z
I\» .v:pc.n
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and for small m denominator is close to 1, so Cc << m.,.ysc

gxcess MSE h\x. th[ 1] rmr.r
and finally |

M= En(R]

‘Therefore, for the same misadjustment the LMS/N is faster

than the LMS by the ratio

)
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SEQUENTIAL REGRESSION ALGORITHM (SER)

The problem is to estimate R without making a Iot of compu-
tations.

There are methods of estimating R™! at each step without in-
verting R.

One of the most widely used is to use the matrix inversion lem-

ma
-1 -1

@:f _wnvan b.._..>..__wﬁvb.._w+0 ) DA

If we make -
A=Rw 3 B=Xe 5 C=t; D=Xw

NF..._u R, + X VAH AP._.mﬁ. U.v

Therefore,

W e RLX X R
W._n.z = M.NT . T .~
1+ X, R, X

1
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The bottom line is that we do not need to compute R™!. We
can compute it recursively from previous estimate.

It is obvious that the method zﬁ:_qmw a “good” starting value,
because otherwise the errors can propagate (recursive algo-
rithm).

Second we would like to frack’changes in the signal statistics.
Therefore we would like to give more weight to the recent esti-
mates of R™! than old estimates. A rectangualr window will not
the the job, however an exponential decay window will. More-
over, exponential windows can be recursively computed.

This is how the book amz,\_mm the SER algorithm:

It starts with a ML estimate of the autocorrelation function

. 4 T
R X X,

kvt oo
Then defines Q to give the short time memory feature

A e
s k-2 T
D_ﬁ M\ 6 Ko X,
Q=0
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where aipha is O< ot< 1
: A
QA Y LENGHT oFSTATL. X

For small values of o we can see that the estimate is basically
_:amvmzama of the initial oo:o__:o: S0 just make it easy

- YT
where vis a large uom=_<m constant (~100 times the power).

Notice also that there is an embedded recursive *o:::_m for Q
k.-

NE oL X XL 4 @Nxfx»x Q% ,,x_pxm

If we premultiply by Q,'and postmultiply by Q4 and X
-1
®r~n2® +@ XKQF.

Q! Xer QL Xy (o4 X By X
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Dividing by m._._m scalar factor in parenteses and multiply on the
. -1
rightby X. Q7.

o e @) (@ %)
© e o XE( 07, %)

This the iterative procedure to compute Q!
So let us see how we apply all this.

We would like to compute the optimal weights by

RW, = T

k L

P can also be estimated by

k.
A o0 _3
..Vr..v - MRr%mXA
buc

4~ om_n:
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k

Therefore, e 0
@NW W, = M.. X Xb X.ﬁ
t=0

Let us assume that we want to compute W, 1 from R m:a _u
(rather than W,).

DCCF._._.. OAN Ohﬁw avb%hXﬂ.‘.Qﬂ VA_n.

X8, _ér bl &= R@r-_+xx A Q XFXF v<C + A X
Since d, = mr+x“,.<<.n.

QWS\I._. = Qv Wit G K

S\W.._._n §F+ ®eﬂ m_n.xmﬁ

we get

which is equivalent to _._<_m_\z

o A-% R
A@rn 1 - o= rv
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RECURSIVE LEAST SQUARES
OVERVIEW OF BLOCK COMPUTATION
We saw that the MMSE solution gave the Wiener Hopf equa-

| tion g*ﬂ ﬁN.ramv

‘~N.u ma_ﬁx_..x.__p._:.w P= mhxfr%rn.—
This solution is algebraic, and assumes the computation done
in blocks.

For ergodic processes can substitute espected values by time
averages . o
& e—F N
— o0

and we further estimate the true time autocorrealtion function
with finite blocks of data. |
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Typically we divide the data in N samples blocks, and hop N
points. This procedure is sometimes cailed block least squares.

The most common of the LS ﬁmo:anr._mm use the autocorreal-
tion and covariance methods:

1. Find the time interval where data is approximately
stationary.

2. Define a rect. window of that length (M samples)
3. Compute either the auto or covariance.

3a. >Eomo:m_m=o: nte-t L
+L-1 |
=7 (k) = M _Tmm: Ns\.{@frxxu
Whnv Nn.aav \—Sﬂﬁ

Window is applied to the data prior to the calculation of the er-
ror:

Z
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Notice that data exists in 0->M-1, but due to the filtering, error
exists in 0-> M+L-1. This creates problems (error transients).
Can use windows to minimize this problem.

Here the error is windowed 0->M-1.
M-L-1

M- M=~} . .
2
= M. O N *ylnx.«&mt M S\aﬁx.m...rz
{=0

huc (T4

However, data outside the block is used (- _.V_mw_cmmn_. Same
data near the ends gets used twice. Now we do not have a
true autocorrelation because data segments are of different
length.

3¢. Pre-window method

The covariance method is used, but the samples with indeces
less than zero are set to zero value. (most widely used proce-
dure in recursive computations). |
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All of these methods compute
|
wh=R™ PP

The covariance method is much more time consuming (must
use the Cholesky decomposition to compute the equation in-
stead of the faster Durbin-Levinson algorithm).

Also, if the data statistics change in the middle of the interval
will get a bad estimation.

These methods require large precision because the solution is
computed algebraicaly.
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ESTIMATION OF THE AUTOCORRELATION FUNCTION

Window estimates
Recursive estimates

Window estimates are moving average (MA).

Recursive estimates are autoregressive (AR).
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_<__O<_ZQ AVERAGE
mmzsﬂ_o: is | z_o.. i
7
- Xw) =(m~p)
_ ﬁﬁﬁv No-p Wy

Notice that we can think of the estimation as the output of a
FIR filter (impulse response is a rectangle of length N).

It is unbiased

lts variance is > 2

Van3 R(Hf = 1~ R(»]
Np- P

so the estimator is CONSISTENT.
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RECURSIVE ESTIMATION

Now let us substitute the FIR filter by.an lIR filter, i.e. the esti-
mation will be computed using the previous value of the quanti-
ty (autocorrelation iin this case).

Simplist lIR is the first order lowpass filter
N\A‘SVH Xx{(m) .m-r.\mfl_v O< .Vﬁ )

This estimator is biased. Just try to estimate the mean value of
x(n) when it is a constant signal with added zero mean gauss-
ian noise with power G2.

X ()= M +R(m)

M+ Lo . _ _
Yhe. = m llilll..\”l .” -+ ,M..~ Tnkﬁf..mv ﬁvmo.vu.w 9n°\..
m ﬁgv = A 1- V.—P.S
o] o A2
QN - H A-b

o
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The block diagram of the estimator is Mn)=(1-8 YH(m-) + Sy

X?; S M (m)
If we define the time constant®
\
=b
which for b close to 1 leads to
g~ A =4
1-b 2
Now the power of the FIR estimator for the same m_osm_ gives
et
Yy ..\._zl D) xlw-) = m\ (> E O
0 C=o e Zo

~0N_m e 7.,04,

-

So comparing with the lIR, we can say that the recursive etima-
tor is equivalent to the _.._m whose width is twice the time con-
stant.
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RECURSIVE LEAST SQUARES

What if one uses a window that is infinite, but recursively gen-
erated, such as a decaying exponential. All data is considered,
but the recent past is weighted more.

In principle we could think that this would increase the compu-
tations. |

However, if we find a recursive ion this may change.Re-
cursive solution means that a new mmﬂ of coefficients and new

estimates are computed mlmbPamHmbbL

Advantages:
1. This procedure will @cmqmamm optimality at mmo: mﬁmv
2. We are using data more effectively.

At the end of M uo_:ﬁm we will have the same W* as the block
methods, which give better mmﬁ_amﬁom of W* than the iterative
procedures (no rattling).
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We want to find a mo_._w_#mo: of the error

' 2
Erel s \«N &.\mm Ah - .,Na . v
=0
and arrive at it by calculating it from the previous estiamate.

Assuming we know W*,, how can we calculate W*,_{?

£ "o N,r i \kﬁu%w\w

k
One possible solution is
1. Update R

\M_nt = NMF t XF XM.
2. Update P i

m.n: = m.. t A Vm,_...
3. Invert R

Bt

-1

4, Compute Wiy, ¢ Ree, Pren
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This is very time consuming ~ N2 + 2N? + N multiplications at
each step for a N length filter.

KALMAN/GODARD ALGORITHM

2

Assume an exponential decaying window @, - X

and the _uas_:aoé amz::_o: of the error

e
M_ o (Ag-Wexe)

The time m<mqmoma m:ﬁooo:m_m:o: function is
[
o o

:.n.zu _N.o... < 2. X, Xh.
and the crosscorrelation .
~” —hf.ﬂ .
ﬁ k= +? V NF * AM\ R x.h k.&

Therefore,
Wk R A
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As long as the window is recursively computed
A " _ T
D|_..;_._ = X Nw.‘. Xr. _ Xr..

-,

\MUFI = X N t men \/\?_

So >
_ mni : NF.I S\M:
Substituting

R, wS =x P W, +ee X
_ o,
= ﬁmk.zl*?l.kﬁr u:\r-.... &F\_XF

= *
Nrt S\.F u..\/\w.: ﬁ&? .. XTﬁ _\_\Fv

Defining 2, =4, - X.M W,

(notice that the error is calculated with old coefficients) tzrr

1 .- Y N ..1_
~wcireyingby R et

-
W, = S\*} les +¢ .Nn.. Xee

K+ te-
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This is *o::m_:\ equivalent to the LMS/Newton algorithm.

1. It is different from the block LS methods because here
estimates and coefficients are used gvery new sample.

2. Also the update of Wy is by the right amount.

We still need to invert efficiently R!. Using the inversion lem-
ma this is done easily.

"

- ~1! 7
We saw that N\L . R - KXo X R,
k+i T ~!

Now, if we subsitute this, ox_uammmo: in the weight update
equation, S\rﬂ - NM: P WITH 0¢=]
! +1

[ AN,

2, —» Frrer TNFORRATION VEcTor (EALMAN GAIN)

& - NIRMALIZED PoweEr
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If R and P are given as

N NDA x\nkk
mﬁ.n N RF:\Q«.«X&

Alpha is given by

~1/cencri oF STATIONARITY

A =2
with an effective averaging period of =

R, P become

;W\MR.I =

1
1 —oc

DAanN + 4 XFXF.N

anu RNN#* — Q«FKF.N

and the optimum weigth

w,* = S\r,..+ M&Lr.. .%.x. Z

=+ OA.TQ

and the updating of R

- R
b.W..__.. o< N

2, 2
X *+q
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Let us define:
Optimal weight at iteration k
W= R R
Filtered information vector (Kalman gain)
Z, - RX.

Apriori output .
| *
,w.q () = X e W

Normalized power

T
hw = XF Z.
Then the equation becomes
~
S\F.I = S\_rf.. Ze \K.n.q.. ~\_\_hf, + \_‘__..r mu_n. - \\L.F W fe.

1+9 1+9
= S\Ft.v ﬁ%«.ﬂ:V\MM nmhﬁ

\Ipw
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This equation embodies the RLS m_@oasa Let us interpret
the result.

We compute Wy, by using the previous value plus a correc-
tive term, which depends on x, and dy in three ways:

1. The apriori difference ( or apriori prediction error)

= 4y - .
which is the difference between the desired sample and the fil-

ter output using the present sample but the old filter coeffi-
cients.

y% is in fact the output estimate before x, is used to update W.

2. Z, is the filter imformation vector because R acts to
influence the direction and the length of the data vector.
Because it magnifies e’ it is called the Kalman gain.

3. q _m just a measure o* the input signal power, :o::m__Nma by
Ry
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What is the similiarity with LMS/Newton?

LMS/N -
S\r._rf_ = S\w...._. N\.f R & Xu

RLS

- -t
S\._- W, ¥ + .III..A € MNF X
&+ k &.TQ
- So when |
_ i * _ S
2 M —— = ",
\; *+h~ Aﬁyxrﬂ\mx.n

the _._<_.m\z becomes RLS.
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What is the similiarity with the normalized LMS?
CCF.._ = Wt N\xr.m.nx.r.

< O« M2
e = ;
_ .v\ t XT X_P _
When uu.f at least we see that the step size of the normalized
LMS and the RLS are equivalent, and the heuristic is theoreti-

cally justified.
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RLS algorithm

Get x; and d,. |

Form X, by bringing the new value X.
Compute the apriori output y°,.

Compute the apriori error €5

Compute the filtered information vector Z,.
Compute the normalized power q.
Compute the gain v=141+q).

Compute the normalized mxu v.Zy.

Update the optimal weight vector.

S\R.Iu. Wie + o NR
10.Update R, = R, -Z, Z%.

CoONSO~ WD -

Start the algorithm with Ry =100 x & xI.

An exponential window is recommended. With the window the
algorithm is the same except:
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COMPUTATION COMPLEXITY OF RLS
. -1
Straight computation of W r= R™ P

using Gaussian elimination for R requires L® multiplications.

"RLS

a) Step 4,7 simple O(1)

b) Step 3,6,8,9 (vector dot product,scalar/vector) OE.
c) Step 5,10 (matrix vector , vector outer product) O(L2).
Therefore, for each input sample

2L2+4L. multiplications (and equal amount of additions and one
division).

For a block of N points (effectively N-L+1 iterations)

Caps = (MLt 2L+ (N22) 4L
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We see that RLS is more expensive in terms of O(L?) and
O(L) terms. So when filter order is small compared with the
segment length, the RLS becomes worsethan BL.S!!!

So why use RLS?
1. Numerically better behaved.

2. RLS provides w* at every step, so better in nonstationary
environments.

.m._:mmams_oio_.oomﬁooa_ucﬁm:o:m_ﬁmoszscmmmcosmmﬁ:m
fast BRLS. |

Page 1T ol 17
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FAST RLS

RLS used the structure of the auto/cross correlation function to
decrease computation. But did nothing to take advantage of
the structure of X (X, is obtained from X, through the addi-
tion of one sample) and Z (4,4 could _om calculated from the
previous, avoiding the updating of Ry, ! and its multiplication by
X(k)). This is very important cmomcmm these steps are O(L?),
and without them the complexity would drop to O(L).

Let us start by defining a slightly different estimate of Mx.
Define V= E_H_.. A
as the difference between optimum weight vectors at time k+1
and k. *
._N.r: <<H+. : pf_ ﬁ Wt Vi) = Pey,
R S\ﬂ + Ry Vi =
Substituting the recursive definintions of R and P
“ ,
(R, + XX YWE 4 Ry, Vo= Bt duXie

Rowh = 1
w: MGE X, Wt
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Then we have

NF._._/\TN W&T -Nowrvw X

R,(K)= ALw) = Y,(%)
and also Viez 2,to m....:Xr

Z

V is the update to W that guarantees optimality. if we define Z
as le - =]
~ -\ ]
N.r = D._L._.X.o : w M. v»a Xh ‘*X k.
€= L=}
then we see that it only depends on the input sequence x(k).

In order to compute Z efficiently we have to use the concept of
backward By and foward prediction Ay.
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1. Compute the apriori forward prediction error
E(en) = Ry # )...r Xy

2. Update the forward prediction vector
\V/F.: = }.r.. N..»NOA_F._..V
3. Compute the posteriori prediction error
(k)= x(en)+ xyﬂﬁtx_n
4. Compute prediction cross power
N.Pf : N,L_.r.... Eler)kLetl)

5. Form the augmented vector

= m e(rt)/ 24 A ELEnest
T L Zer A, m?:v\MLI. A @csmenky
6. Partition F MCrsn L erenents
ﬂn ﬁ\.ﬁh.ﬁfv | | €eeEnsENT

7. Compute the apriori backward prediction error

oNeQi._ E xmr:?iv + WHX s
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8. Update the backward prediction vector B

.WF.: = ﬁ@rl I_I._ dofn:wl._\ﬁ 1=~k (et Aan_..:vl.ﬁ
9. Update Mr -
‘N\WT.:u :F.:J ~W_n..v_ .\_\’AF:M

| (For a proof see Messerschmitt)

Now knowing ..N.x we can state a fast algorithm for computing
W.

For each K:
1. Compute the apriori output
.M (lett)= VA ety />\

2. Form the apriori output prediction error

\moﬁnﬂ..‘.-w = &ﬁ-ﬂ*-vlr&.ﬁﬁrv*.v

3. Update At Zee
4. Compute the impulse response vector

*
g\”ﬁ - Er r 2oliet) N\FI
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Using this approach algorithms require about 7L multiply-adds
per sample( O(L)).

However, these algorithms have numerical problems. The fast-
est is the algorithm the less accurate it becomes. This is an
area of current research.




