EEL 6935- SPRING 90

LMS/NEWTON ALGORITHM

the direction of the minimum. Newton method does not follow the gradient. It goes directly in

take more steps, but follow always the direction of the mini-With m=1/2 we reach the minimum in one step. If m <1/2 we mum.

at each step. The requirements are that we need to know R⁻¹ and gradient

ESL 6935- SPRING 90

What if we use the crude LMS estimate for the gradient?

We get what is called the LMS/Newton.

Let us normalize to better compare the properties of the LMS/N with the LMS.

When R is diagonal with equal weights

So if we want to have comparable Ms, we must substitute

and the algorithm becomes.

JOSE C. PRINCIPE
UNIVERSITY OF FLORIDA
EEL 6935- SPRING 90

principe@brain.ee.uil.edu

904-392-2662

For convergence

For one step iteration

algorithm much faster. We still do not know how to calculate it, the minimum, so it displays the fastest convergence. but assuming we know R, the LMS/N goes in a straight line to It is the use of the information contained in R⁻¹ that makes the

904-392-2662

EEL 6935- SPRING 90

principe@brain.oc.ufl.och

PROPERTIES OF LMS/NEWTON

Convergence

mode Convergence of the steepest descent is given by the slowest

In the LMS/N it is given by (just one time constant)

So the point is clear. LMS/N converges controlled by the lavg.

So when eigenvalue spread is high it is much faster. If eigenvalue spread is one, same convergence.

EEL 6935- SPRING 90

Misadjustment

For the LMS/N, from the expression of the cov[Vk],

$$cov\left[V_{k}^{\prime}\right] = \frac{h \lambda_{am}(\Lambda^{-1})^{2}}{4(1-\mu \lambda_{am})} cov\left[N_{k}^{\prime}\right]$$

we get

The gradient estimate has a cov[N_k]

SO

The excess MSE becomes

Trass MSE =
$$E[v_t^{F} \Lambda v'] = \sum_{u \in v}^{L} \lambda_u E[v_{uu}^{F}]$$

$$= (L+1) \mu \lambda_{au} \xi_{min}$$

Page 5 of 7

UNIVERSITY OF FLORIDA
EFL 6935- SPRING 90

principe@brain.ee.afl.edu

904-392-2662

and for small m denominator is close to 1, so $(\nu <<\frac{1}{2})$

and finally

Therefore, for the same misadjustment the LMS/N is faster than the LMS by the ratio

Page 6 of 7

EEL 6935- SPRUNG 90

SEQUENTIAL REGRESSION ALGORITHM (SER)

tations The problem is to estimate R-1 without making a lot of compu-

verting R. There are methods of estimating R⁻¹ at each step without in-

One of the most widely used is to use the matrix inversion lem-

If we make

Therefore,

EEL 6935- SPRING 90

principe@brain.ee.ull.ech

can compute it recursively from previous estimate The bottom line is that we do not need to compute R⁻¹. We

because otherwise the errors can propagate (recursive algo-It is obvious that the method requires a "good" starting value,

over, exponential windows can be recursively computed. Second we would like to 'track' changes in the signal statistics. the the job, however an exponential decay window will. Moremates of R⁻¹ than old estimates. A rectangualr window will not Therefore we would like to give more weight to the recent esti-

This is how the book derives the SER algorithm:

It starts with a ML estimate of the autocorrelation function

Then defines Q to give the short time memory feature

EEL 6935- SPRING 90

where alpha is

independent of the initial condition. So just make it easy For small values of α we can see that the estimate is basically

where γ is a large positive constant (~100 times the power).

Notice also that there is an embedded recursive formula for Q

If we premultiply by Q_{k-1}^{-1} and postmultiply by Q_{k-1}^{-1} and X_{k}

$$Q_{k-1}^{-1} \times_{k} = Q_{k}^{-1} \times_{k} (\alpha + \times_{k} X_{k} X_{k} A_{k-1}^{-1} \times_{k})$$

EEL 6935- SPRING 90

Dividing by the scalar factor in parenteses and multiply on the right by $X_{\mathbf{k}}^{\mathbf{r}} Q_{\mathbf{k}}^{-1}$

$$Q_{\kappa}^{-1} = \frac{1}{2} \left[Q_{\kappa_{-1}}^{-1} - (Q_{\kappa_{-1}}^{-1} \times_{\kappa}) (Q_{\kappa_{-1}}^{-1} \times_{\kappa})^{T} Q_{\kappa_{-1}}^{-1} \times_{\kappa} (Q_{\kappa_{-1}}^{-1} \times_{\kappa})^{T} \right]$$

This the iterative procedure to compute Q⁻¹

So let us see how we apply all this.

We would like to compute the optimal weights by

P can also be estimated by

EEL 6935- SPRING 90

principe@brain.ee.ufl.ed

Therefore,

Qx Wx = S x do X

Let us assume that we want to compute W_{k+1} from \hat{R} and \hat{P} . (rather than W_k).

(rather than
$$W_k$$
).

$$Q_k W_{k+1} = \propto \sum_{k=1}^{k-1} \alpha^{(k-1)-k} d_k \times_k + d_k \times_k$$

$$\alpha Q_{k-1} W_k \text{ bot } Q_k = \alpha Q_{k-1} \times_k \times_k = (Q_k - \chi_k \chi_k^T) W_k + d_k \times_k$$

Since dk = Ek+XkWK

we get

which is equivalent to LMS/N

Page 11 of 11

RECURSIVE LEAST SQUARES

OVERVIEW OF BLOCK COMPUTATION

We saw that the MMSE solution gave the Wiener Hopf equa-

in blocks. This solution is algebraic, and assumes the computation done

averages For ergodic processes can substitute espected values by time

and we further estimate the true time autocorrealtion function with finite blocks of data.

EEL 6935- SPRING 90

points. This procedure is sometimes called block least squares Typically we divide the data in N samples blocks, and hop N

tion and covariance methods: The most common of the LS techniques use the autocorreal-

- Find the time interval where data is approximately stationary.
- 2. Define a rect. window of that length (M samples)
- Compute either the auto or covariance

3a. Autocorrelation
$$nti$$
-
$$\mathcal{E} = \sum_{\ell=0}^{\infty} e_{\eta}^{\ell}(\ell) = \sum_{\ell=0}^{\infty} \left[a_{\ell} d_{\ell} - \sum_{m=1}^{\infty} W_{m} a_{\ell-m+1}^{2} \times_{\ell} \right]$$

Window is applied to the data prior to the calculation of the er-

EFL 6935- SPRING 90

Can use windows to minimize this problem. exists in 0-> M+L-1. This creates problems (error transients). Notice that data exists in 0->M-1, but due to the filtering, error

3b. Covariance method

Here the error is windowed 0->M-1.

$$\mathcal{E} = \sum_{l=0}^{M-1} \{ e(l) = \sum_{l=0}^{M-1} \left[a_l d_l - \sum_{m=-L}^{M-L-1} W_m x_{l-m+1} \right]$$

length. true autocorrelation because data segments are of different data near the ends gets used twice. Now we do not have a However, data outside the block is used (- L) is used. Same

3c. Pre-window method

dure in recursive computations). less than zero are set to zero value. (most widely used proce-The covariance method is used, but the samples with indeces

All of these methods compute

stead of the faster Durbin-Levinson algorithm). use the Cholesky decomposition to compute the equation in-The covariance method is much more time consuming (must

will get a bad estimation. Also, if the data statistics change in the middle of the interval

computed algebraicaly. These methods require large precision because the solution is

principe@brain.co.ufl.odu

ESTIMATION OF THE AUTOCORRELATION FUNCTION

- Window estimates
- Recursive estimates

Window estimates are moving average (MA).

Recursive estimates are autoregressive (AR).

EZI, 6935- SPRING 90

MOVING AVERAGE

Estimation is

ation is
$$R(p) = \frac{1}{N_{0}-p} \sum_{n=1}^{N_{0}-p} \times (n) \times (n-p)$$

Notice that we can think of the estimation as the output of a FIR filter (impulse response is a rectangle of length N).

It is unbiased

Its variance is

$$Van \{R(p)\} \simeq \left[1 - R(p)\right]^2$$

so the estimator is CONSISTENT.

904-392-2662

RECURSIVE ESTIMATION

ty (autocorrelation iin this case). Now let us substitute the FIR filter by an IIR filter, i.e. the estimation will be computed using the previous value of the quanti-

Simplist IIR is the first order lowpass filter

x(n) when it is a constant signal with added zero mean gaussian noise with power G2. This estimator is biased. Just try to estimate the mean value of

$$y(n) = m \frac{1 - b^{n+1}}{1 - b} + \sum_{i=0}^{n} b^{i} a(n-i) \qquad (y(n) = 0 \ u < 0)$$

$$E[y(n)] = m \frac{1 - b^{n+1}}{1 - b} + \sum_{i=0}^{n} b^{i} a(n-i) \qquad (y(n) = 0 \ u < 0)$$

$$G_{0}^{2} = G_{2}^{2} \frac{1 - b}{1 + b}$$

$$G_{0}^{3} = G_{2}^{2} \frac{1 - b}{1 + b}$$

TAKING

b = 1-8

904-392-2662

The block diagram of the estimator is

M(n)=(1-6) M(n-1)+8 K(n)

If we define the time constant &

which for b close to 1 leads to $6 \approx \frac{1}{1-b} \approx \frac{1}{8}$

Now the power of the FIR estimator for the same signal gives 80× No

So comparing with the IIR, we can say that the recursive etimastant. tor is equivalent to the FIR whose width is twice the time con-

JOSE C. PRINCIPE

UNIVERSITY OF FLORIDA
EEL 6935- SPRING 90

904-392-2662

principe@brain.ee.ufl.edu

RECURSIVE LEAST SQUARES

but the recent past is weighted more. erated, such as a decaying exponential. All data is considered, What if one uses a window that is infinite, but recursively gen-

In principle we could think that this would increase the compu-

estimates are computed every data point cursive solution means that a new set of coefficients and new However, if we find a <u>recursive solution</u> this may change.Re-

Advantages:

- This procedure will guarantee optimality at each step.
- We are using data more effectively.

methods, which give better estimates of W* than the iterative At the end of M points we will have the same W* as the block procedures (no rattling).

904-392-2662 ESL 6935- SPRING 90

We want to find a solution of the error

principe@brain.es.ufl.edt

$$\mathcal{E}_{k+1} = \sum_{\ell=0}^{\infty} \alpha_{\ell} (\alpha_{\ell} - y_{\ell})^2$$
 and arrive at it by calculating it from the previous estiamate.

Assuming we know W*k, how can we calculate W*k+1? Ekt = Ekt / dk-yk/2

 Update R One possible solution is

- Rk+1 = Rk + XKXE
- 3. Invert 2. Update P PK+1 = PK+ 1KXK
- Compute WK+1 = RK+1 PK+1

904-392-2667

EFL 6935- SPRING 90

principe@brain.ee.ufl.edu

each step for a N length filter. This is very time consuming $\sim N^3 + 2N^2 + N$ multiplications at

KALMAN/GODARD ALGORITHM

Assume an exponential decaying window a_{ℓ}

and the prewindow definition of the error

The time averaged autocorrelation function is

$$(\kappa + 1) \mathcal{R}_{\kappa} = \sum_{k=0}^{\kappa} \mathcal{R}^{\kappa - k} \times_{k} \times_{k}^{\tau}$$

and the crosscorrelation

Therefore,

EFL 6935- SPRING 90

As long as the window is recursively computed

$$\begin{cases}
\hat{R}_{k+1} = \alpha \hat{R}_k + \chi_k \chi_k^T \\
\hat{P}_{k+1} = \alpha \hat{P}_k + d_k \chi_k
\end{cases}$$

TK+1 = RK+1 WK+1

Substituting

Defining

(notice that the error is calculated with old coefficients) LEFT

-HULTIPLYING by R -1

EFL 6935- SPRING 90

This is formally equivalent to the LMS/Newton algorithm.

- It is different from the block LS methods because here estimates and coefficients are used every new sample
- Also the update of W_k is by the right amount.

We still need to invert efficiently R_k⁻¹. Using the inversion lemma this is done easily.

We saw that

Now, if we substitute this expression in the weight update equation, $W_{k+1}^* = \mathcal{R}_{k+1}^{-1} \mathcal{P}_{k+1} \qquad \mathcal{N}^{TH} \propto 1$

$$W_{k+1}^{+} = \left\{ R_{k}^{-1} - \frac{R_{k}^{-1} X_{k} X_{k}^{-1} R_{k}^{-1}}{1 + X_{k}^{-1} R_{k}^{-1} X_{k}} \right\} \neq P_{k} + d_{k} X_{k}$$

ZK -> FILTER IN FORMATION VECTOR (KALMANGAIN) NORMALIZED FOWER

904-392-2662

If R and P are given as
$$R_{k} = \sum_{k=1}^{\infty} \alpha_{k} x_{k} x_{k}^{T}$$

$$P_{\kappa} = \sum_{o} \kappa \kappa^{-1} d_{o} \times e$$

en by

Alpha is given by

with an effective averaging period of $\frac{1}{2} \frac{1}{1-\kappa}$

R, P become

and the optimum weigth

and the updating of R⁻¹

Page 15 of 17

904-392-2662 principe@brain.ee.ufl.edt EFL 6935- SPRING 90

Let us define:

Optimal weight at iteration k
$$W_{k}^{*} = R_{k}^{-1} P_{k}$$

Filtered information vector (Kalman gain)

Apriori output

Normalized power 9 = Xx Zx

Then the equation becomes
$$W_{k+1}^{\dagger} = W_{k}^{\dagger} - \frac{2_{k} X_{k}^{\top} W_{k}^{\dagger} + A_{k} Z_{k}^{\top} - A_{k} q Z_{k}^{\top}}{1+q}$$

$$= W_{k}^{\dagger} + \left[A_{k} - Y_{k}^{\dagger}\right] Z_{k}$$

principe@brain.ee.ufl.edt

the result. This equation embodies the RLS algorithm. Let us interpret

tive term, which depends on x_k and d_k in three ways: We compute W_{k+1} by using the previous value plus a correc-

The apriori difference (or apriori prediction error)

which is the difference between the desired sample and the filter output using the present sample but the old filter coeffi-

 y_k^0 is in fact the output estimate before x_k is used to update W.

- 2. Z_k is the filter imformation vector because R⁻¹ acts to influence the direction and the length of the data vector. Because it magnifies e⁰k it is called the Kalman gain.
- q is just a measure of the input signal power, normalized by

EFL 6935- SPRING 90

904-392-2662

principo@brain.ee.ufl.edu

What is the similiarity with LMS/Newton?

LMS/N

RLS

So when

the LMS/N becomes RLS.

904-392-2662

principe@brain.ee.ufl.edu

What is the similiarity with the normalized LMS?

When
$$\delta=1$$
, at least we see that the step size of the normalized

cally justified. LMS and the RLS are equivalent, and the heuristic is theoreti-

904-392-2662

EFL 6935- SPRING 90

principe@brain.ee.ufl.edu

RLS algorithm

- 1. Get x_k and d_k.
- 2. Form X_k by bringing the new value x_k.
- 3. Compute the apriori output y_k.
- 4. Compute the apriori error e⁰_k.
- Compute the filtered information vector Z_k.
- Compute the normalized power q.
- 7. Compute the gain v=1/(1+g).
- 8. Compute the normalized $Z_k = v.Z_k$.
- Update the optimal weight vector.

10.Update $R^{-1}_{k+1} = R^{-1}_{k} - \widetilde{Z}_{k} Z_{k}^{T}$.

Start the algorithm with $R^{-1}_{0} = 100 \times \sigma \times I$.

algorithm is the same except: An exponential window is recommended. With the window the

EEL 6935- SPRING 90

:

principe@brain.co.ufl.eds

COMPUTATION COMPLEXITY OF RLS

Straight computation of W = R'P

using Gaussian elimination for R-1 requires L3 multiplications.

a) Step 4,7 simple O(1)

RLS

b) Step 3,6,8,9 (vector dot product, scalar/vector) O(L).

c) Step 5,10 (matrix vector, vector outer product) O(L²). Therefore, for each input sample

2L²+4L multiplications (and equal amount of additions and one division).

For a block of N points (effectively N-L+1 iterations)

JOSE C. PRINCIPE

UNIVERSITY OF FLORIDA

904-392-2662

EEL 6935- SPRING 90

principe@brain.ee.ufl.edu

For the straight block LS with same filter length and block size

segment length, the RLS becomes worsethan BLS!!! We see that RLS is more expensive in terms of $O(L^2)$ and O(L) terms. So when filter order is small compared with the

So why use RLS?

- Numerically better behaved.
- RLS provides w* at every step, so better in nonstationary environments
- It leads to lower cost computational techniques such as the fast RLS

EFL 6935- SPRING 90

FAST RLS

tion of one sample) and Z (Z_{k+1} could be calculated from the the structure of X ($X_{k=1}$ is obtained from X_k through the addiand without them the complexity would drop to O(L). decrease computation. But did nothing to take advantage of X(k)). This is very important because these steps are O(L^2), previous, avoiding the updating of R_k-1 and its multiplication by RLS used the structure of the auto/cross correlation function to

Let us start by defining a slightly different estimate of \widetilde{Z}_k .

e Vr= W+-W+

as the difference between optimum weight vectors at time k+1

RK+1 W* = RK+1 (W*+VE) = PK+1
= RK+1 W* + RK+1 VE -

Substituting the recursive definintions of R and P

EFL 6935- SPRING 90

Then we have

RK+1VK= {dr->(+) {Xx

P₀(k)= d(k)->₀(k) V_k= P₀(k) R_{k+1}×_k

V is the update to W that guarantees optimality. If we define Z Z = R -1 X = } Z × x X } X x

backward B_k and foward prediction A_k. then we see that it only depends on the input sequence x(k). In order to compute Z efficiently we have to use the concept of

- Compute the apriori forward prediction error Eo(Kt) = XKtI + AKXK
- 2. Update the forward prediction vector

- 3. Compute the posteriori prediction error
- E (k+i) = x(k+i) + A k+i X k
 Compute prediction cross power
- $\sum_{|c+1|} = \sum_{k} + \varepsilon(k+1) \varepsilon_{k}(k+1)$ 5. Form the augmented vector
- [E(KH)/ SI KH) (ZK+AK+1 E(K+1)/ SK+1-AL GLEHENAS 4 ELEMENT
- Partition F F= [M(k+1)] 4 ELEMENTS I GLEMENT
- Compute the apriori backward prediction error %(k+1)= x(k-b+1)+B,Xk+1

904-392-2662 principe@brain.cc.ufl.cd

8. Update the backward prediction vector B
$$\mathcal{B}_{\kappa+1} = \left[\mathcal{B}_{\kappa} - \mathcal{M}_{\kappa+1} \, \eta_{\sigma}(\kappa+1) \right] / \left[1 - \mu (\kappa+1) \, \eta_{\sigma}(\kappa+1) \right]$$
9. Update \widetilde{Z}_{κ}

(For a proof see Messerschmitt)

Now knowing \tilde{Z}_k we can state a fast algorithm for computing

For each K:

- 1. Compute the apriori output 40(12+1)= X 12+1 Wx
- 2. Form the apriori output prediction error

3. Update $\widetilde{\mathcal{Z}}_{k}$ to \mathcal{Z}_{k+1} Compute the impulse response vector

EEL 6935- SPRING 90

principe@brain.ee.nfl.edu

per sample(O(L)). Using this approach algorithms require about 7L multiply-adds

area of current research. est is the algorithm the less accurate it becomes. This is an However, these algorithms have numerical problems. The fast-