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Abstract: A comparison is made between three 
architectural models used for edge detection in ;Init- 
log VLSI early vision systems. In analog VLSI com- 
putational networks, signal strength is a paramount 
issue due to the need to overcome circuit limitations 
such as offsets, noise, and finite gain. Therefore 
algorithms mapped into silicon networks must take 
full advantage of available signal strengths to masi- 
mize signal-to-noise ratios. It will be shown that ii 
discrete Differenced Gaussian algorithm retains ;I 
greater amount of the avi1il;ible signal than illgo- 
rithms using thresholded zero-crossings from the 
Difference of Gaussian (DOG) or the LiLpli1ci;in of 
Gaussian (LOG) functions. 

I. INTRODIJCTION 

The resolution and performance of analog VLSI 
computational circuits is limited by the achievable 
signal-to-noise ratio [I]. Therefore it is not only crucial 
to make use of all the signal magnitude possible to mas- 
imize this ratio, but signal losses due to filtering or inef- 
ficient architectural realizations must be minimized 
Feature information becomes more difficult to retain as 
practical implementation issues such as offsets, noise, 
and finite gain are considered since larger noise figures 
require greater amounts of filtering. In this discussion 
offsets, noise, and finite gain will be lumped into a 
single parameter and refened to simply as noise. The 
algorithm, then, and its corresponding silicon realization 
must retain the available signal strength while minimiz- 
ing noise contributions. 

There have been several analog realizations 
reported in the literature which perform such computa- 
tions as motion or velocity estimation based on the 
localization and movement of edges within an image. 
Survey discussions of many of these applications ai-e 
covered in the literature [I], [2], [3]. In these systems, 
small signal-to-noise ratios result in  poor peifomiance 
when operated in low contrast eiivironiiients. 

The remainder of this paper will compare the coni- 
putational processes of three different early vision archi- 
tectures. Signal representations chosen for each 
architecture are unique up to the signal labeled Si. Pro- 
cessing from this point on is functionally identical and 
therefore the equations representing these processing 
steps are identical and can be described by 

0 if Di < Vtl1 
1 i f  Di  > Vtll 0. = 

I 
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wliei-e 0; is the discrete, binary output signal indicating 
edge locations, 11, is Ithe ahsolute value of the derivative 
of the signal Si represented by 

and Vdl is the threshold voltage. Zero crossings are used 
in  these architectures to guarantee single pixel wide 
edges. 7'lie crucial coniput.ation, however, is t1i:reshold- 
ing which allows for the separation of edge signids from 
noise. In these archilectures Gaussian functions will be 
used to appro sim a te the sy 1111iie tric, decay in g exponen- 
tial responses of the lilies 141 filtering networks due to 
the ease with which the I>i'c)cesses can be represented 

Section I1 will addt-ess an architecture which com- 
putes the thresholded zero-crossings of the Laplacian of 
Gaussian function for edge detection. Section 111 will 
xidress an architecture which is based on isolating the 
thresholded zero-crossings from a Difference of Gauss- 
ians function [3] to deteimine edge locations. Section 
IV will address an architeclure based on a discrete Dif- 
ferenced Gaussian function for edge detection. Section 
V will compare the results of each algorithm. Finally, 
section VI will present out (:onclusions. 

mathematically 1 . 

11 LAPLACIAN OF GAIJSSIAN ALGORITHM 

The first ai-chitecture which will be examined 
implements a Laplacian of IGaussian function. Figure 1 
depicts the otie-ditiicnsion~il architectural implenienta- 
tion where logarithmic photoreceptor outputs are buff- 
ered through transanips (voltage-to-currelit converters) 
onto a resistive network implemented by HRes circuits 
[4]. 'Ihe characteristic length of the resistive network is 
indepeiidently controlled by an  off-chip bias voltage It 
can be shown that the systems' step response can be 
dcsci-ibed by 

where o is the cliaracteixtic length, A is the input 
signal magnitude, and x is lhc spatial position Locally 
differenced responses, D;, of the LOG architecture to a 
20 m V  step input are shown in Figure 2 where the 
family of curves is generated by varying the filtwing. 

There are thee points of interest within Figure 2. 

Simulat ions using the ackual exponential filter response 1. 
clmxtcrist ics have s l iowi i  similar results to using Gaussians. 
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Figure 1. LOG Architecture. The architecture depicted 
computes the discrete second derivative of a Gaussian 
function. This computation is done by the difference of 
differences circuitry which approximates a one- 
dimensional Laplacian of Gaussian function 

First, the signal response decreases iiiore rapidly as  (T 

increases than in the architectures discussed in sections 
I11 and IV. This results in a smaller signal-to-noise ratio 
and ultimately in a system which does not respoiid well 
in low contrast environments. Second, the maximum 
attainable signal difference for an ideal (noiseless) 
system is A which occurs when (3 = 0 but for this 
example the peak signal is approximately 6 niV and 
OCCUTS when (3 = 1 , Third, th,e optimal (J will 
increase for all architectures in practical implernenta- 
tions since additional noise signals must be filtered out. 

One detractor of using this architecture is the coni- 
putational complexity involved in implementing it  i n  a 
silicon network. The additional circuitiy would result in 
greater offsets and consequently lower SM ratios, 
reduced resolution, and greater power consumption than 
in the two subsequent architectures. 
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Figure 2. LOG Response. In this figure, nearest 
neighbor differenced results from the LOG architecture 
are shown. Notice the rapid loss of signal as the 
filtering increases from (J = I ,2. .  16 . 
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Figure 3. DOG Architecture. Shown here are two 
adj acent photo-processing cells from the zero-crossing 
chip Photoreceptor outputs are buffered, filtered, and 
then a DOG operation is performed. Edge signals are 
detemiined by thi-esliolding locally differenced 
outputs. 

111. D I F F E R E N C E  OF G A l l S S l A N  ALGORITHM 

The second algorithm [3] uses thresholded zero- 
crossings from a Difference of Gaussians function for 
localizing edges. Figure 3 shows two cells from the one 
dimensional an-ay. Logarithmic photoreceptor outputs 
are buffered tluougli transamps onto two separate HRes 
iietworks. The characteristic length [4] of each network 
is independently controlled by off-chip bias voltages. 
Therefore a DOC; operation is performed by the wide 
range output buffers Edges are subsequently computed 
from the wide-range transamp outputs by magnitude 
thresliolding nearest-neighbor differences as shown in 
equation (1). 

It can be shown that the step response of an ideal 
(noiseless) realization of tlie system shown in Figure 3 
is of the fonn 

where A denotes the magnitude of the input step signal, 
oFI and ciF2 denote the characteristic lengths of the 
respective filtering functions, and x represents the spa- 
t ia l  positioii. 

Figure 4 shows a plot of the locally differenced 
values from equation (4) when a step input of A = 20 
riiV is applied to a system with filtei-ing functions 
having cliai-acteristic lengths oF2 = 1 .60F, and 
oFl = 1,2.. 16. The factor 1.6 has been chosen to best 
approsimate a Gaussian 1-esponse [SI. The m o w  indi- 
cates tlie change in response as oF1 is spanned. As can 
be seen in  Figure 4, the maximuni attainable signal dif- 
ference is approximately 3 m V  when oFI = 1 .  The 
maximum achievable signal difference between adja- 
cent points fur an  ideal system of infinite length is the 
entire input signal magnitude, A. This case occurs when 
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Figure 4. Shown here is a plot of the discrete nearest 
neighbor differences of the functions resulting from tlie 
DOG chip when oF2 = I . . ~ C Y F ~  , The peak nearest 
neighbor signal difference is approximately 3 mV. 

there is no filtering in one resistive network, resulting in 
a sharp transition at the step input, and an infinite 
amount of filtering in the second network, where a de 
average of half the input signal magnitudc, Ai2, is 
obtained from the step input ( 0 ~ 2  # 1 . 6 G ~ 1  ). As in  the 
previous architecture, the complexity of this design will 
result in large offsets which lead to small S/N ratios. 

An interesting comparison between tlie DoG and 
LOG responses is that the LOG response in Figure 2 is 
more spatially compact than the DOG response shown in 
Figure 4 for the filtering constants chosen. Tlie reason 
for this is that an optimal fit between the DOG approxi- 
mation and the LOG response has not been perfonued 
since the goal of this discussion is to detei-mine which 
architecture retains the greatest amount of available 
signal when realistic filtering requireiments are consid- 
ered. 

IV. DIFFERENCED GAUSSIAN ALGORITHM 

The last algorithm uses localized differences from a 
single filtered version of the input to isolate edge loca- 
tions as depicted in Figure 5 .  Again two processing 
cells composed of logarithmic photoreceptors, buffers, 
a single filtering network, and the edge detection cir- 
cuitry are shown. In this implementation, absolute 
value circuits are employed as the local differencing cw- 
cuits. It can be shown [6] that the expression represent- 
ing the ideal system response to a step input signal is 

where A is the input signal magnitude, (T is the charac- 
teristic length, and x is the spatial position. Figure 6 
shows the differenced results when a 20 mV step func- 
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FiFure 5. DG Architectur-e. Two processing cells of a 
chip employing a Locally Differenced Gaussian 
cornputation for edge localization. 

tion is introduced into the system and the characteristic 
length is varied from 1 to 16. As can be seen the peak 
output occurs at B = 1 and has an approximate value of 
8 inV. In this algorithm the maximum signal difference 
between adjacent points for an ideal infinite length 
system is A just as in the previous systems. This condi- 
tion occurs when B = 0 and the entire step input transi- 
tion is contained between adjacent points. 

Several notes on the DG algorithm. First, this tech- 
nique cnii produce thick edges since a simple magnitude 
coinparison is being pcifoinied. Tlie thicker edges can 
result in reduced resolution and require additional pro- 
cessing to perfom edge thitming. Second is that this 
architecture is tlie least complex of the three which will 
result in srnaller offsets and better S / N  ratios. Lastly, a 
chip iniplenienting this architecture has been fabricated 
and is cun-ently under test. 

v. COMPARISON 

A s  was discussed previously, the maximum I-CCOV- 

el-cd signal foi- c:icIi algorithm in an ideal situation is 

Nearest Neighbor Differeticed Gaussian Results, D, 
5- 1 

I\ 
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Figure 6. DG Results. Nearest neighbor differencing 
results showing the peak signal magnitude as (T is 
varied from I to 16 
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Figure 7. This plot shows the peak signal niagiiitudes 
between adjacent points for all the algorithms. For the 
DOG algorithm, oF2 = 1 . 6 0 ~ ~  has been assumed 
Therefore the filtering coefficient plotted along the x- 
axis refers to csF1 . 

A. The improvement i n  the signal-to-noise ratio, hoii - 
ever, is dependent upon the amount of filtering tha t  is 
applied to each system. In the DOG algorithm i t  has 
been shown that the proper ratio between the filtering 
constants to approsimate the second derivative of a 
Gaussian is 1.6 [SI. Figure 7 shows a comparison of the 
results obtained from a11 three algorithms when a step 
input signal 20 mV is applied. The filtei-ing coefficients 
used are OF2 = I .60F1 = 1 .60Dc;= 1 . C ‘ c s L ~ ~  where oiIci 
and oLOG represent the filtering constants used i n  the 
Differenced Gaussian and Laplacian of Gaussian algo- 
rithms respectively. The peak signal obtained for the 
DOG algorithm occurs at ( T F ~  = .7 and has the value 
2.25 mV while the Differenced Gaussian and Loci algo- 
rithms yield a signal difference of 10 4 mV at that  sallie 
amount of filtering. 

As the amount of filtering increases, all functions 
tend towards zero but for characteristic lengths between 
1 and 10 the Differenced Gaussian algorithm provides 
superior signal retention characteristics. The LOG algo- 
rithm yields similar signal retention characteristics to 
the DG algorithm at very low filtering constants but 
quickly loses this capability as the filtering increases. 
Since the DG algorithin opcratcs s imply  on tlu~csholdcd 
signal differences, it retains a greater amount of the 
available signal compared to the other algoi-itlims which 
attempt to localize zero-cr-ossing signals which ha \  e a 
slope greater than some predetermined tlircshold. One 
consideration when evaluating these results is that 
extremely low or high filtering constants are not practi- 
cal for VLSI implementations. Filtering constants 
below 1 really perform no filtering at all while filtering 
constants above 15 or 20 spread edge signals over an 
extremely large number of processing cells making edge 

detection difficult. 
From these results one can see that the Differenced 

Gaussian algorithm makes better use of the available 
signal sti-ength than the other methods. Therefore, one 
can conclude that i t  is intrinsically easier to localize a 
change in  magnitude than i t  is to localize a change in 
slope in analog VLSI netwotks. In addition, the DG 
algorithm has a simpler computational stiucture which 
I-esults in a more compact, lower power realization with 
reduced offsets and a better SM ratio. 

One technique which can be used to improve the 
perfomiance of all three architectures in low contrast or 
noisy enviroiiments is Non-Nearest Neighbor Differenc- 
ing [6]. Essentially this technique increases the spatial 
sampling distance used in the differencing computations 
to retain genter amounts of the available signal. 

VI. CONCLUSIONS 

This papei- has compared three architectures used 
for coni pu t in g edge 1 oca t i on s i 11 o ne-dim en si onal ana lo g 
VLSI networks. I t  is shown that using a Differenced 
Gaussian algorithm is superior to a DOG or LoG imple- 
mentation in silicon networks due to its ability to retain 
greatei- signal magnitudes. Signal retention is essential 
i i i  ~ i -dci-  to overcome noise soiirccs in the analog compu- 
tational circuits. The DG algorithm also is the least 
complex to implement since i t  has the fewest computa- 
tional elements which also has the added benefit of 
reducing overall system size and offsets. 
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