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Abstract: A comparison is made between three
architectural models used for edge detection in ana-
log VLSI early vision systems. In analog VLSI com-
putational networks, signal strength is a paramount
issue due to the need to overcome circuit limitations
such as offsets, noise, and finite gain. Thercfore
algorithms mapped into silicon nctworks must take
full advantage of available signal strengths to maxi-
mize signal-to-noise ratios. It will be shown that a
discrete Differenced Gaussian algorithm retains a
greater amount of the available signal than algo-
rithms using thresholded zero-crossings from the
Difference of Gaussian (DoG) or the Laplacian of
Gaussian (LoG) functions.

1. INTRODUCTION

The resolution and performance of analog VLSI
computational circuits is limited by the achievable
signal-to-noise ratio [1]. Therefore it is not only crucial
to make use of all the signal magnitude possible to max-
imize this ratio, but signal losses due to filtering or inef-
ficient architectural realizations must be minimized.
Feature information becomes more difficult to retain as
practical implementation issues such as offsets, noise,
and finite gain are considered since larger noise tigures
require greater amounts of filtering. In this discussion
offsets, noise, and finite gain will be lumped into a
single parameter and referred to simply as noise. The
algorithm, then, and its corresponding silicon realization
must retain the available signal strength while minimiz-
ing noise contributions.

There have been several analog realizations
reported in the literature which perform such computa-
tions as motion or velocity estimation based on the
localization and movement of edges within an image.
Survey discussions of many of these applications are
covered in the literature [1], {2], [3]. In these systems,
small signal-to-noise ratios result in poor performance
when operated in low contrast environments.

The remainder of this paper will compare the com-
putational processes of three different early vision archi-
tectures.  Signal representations chosen for each
architecture are unique up to the signal labeled S;. Pro-
cessing from this point on is functionally identical and
therefore the equations representing these processing
steps are identical and can be described by
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where Oj 1s the discrete, binary output signal indicating
edge locations, Dj is the absolute value of the derivative
of the signal S represented by

D; = ]Si»~Si+ 1! )

and Vs the threshold voltage. Zero crossings are used
in these architectures to guarantee single pixel wide
edges. The crucial computation, however, is threshold-
ing which allows for the separation of edge signals from
noise. In these architectures Gaussian functions will be
used to approximate the symmetric, decaying exponen-
tial responses of the HRes [4] filtering networks due to
the ease with which the processes can be represented
mathematically L

Section II will address an architecture which com-
putes the thresholded zero-crossings of the Laplacian of
Gaussian function for edge detection. Section III will
address an architecture which is based on isolating the
thresholded zero-crossings from a Difference of Gauss-
1ans function [3] to determine edge locations. Section
I'V will address an architecture based on a discrete Dif-
ferenced Gaussian function for edge detection. Section
V will compare the results of each algorithm. Finally,
section VI will present out conclusions.

II. LAPLACIAN OF GAUSSIAN ALGORITHM

The first architecture which will be examined
implements a Laplacian of Gaussian function. Figure |
depicts the one-dimensional architectural implementa-
tion where logarithmic photoreceptor outputs are buff-
ered through transamps (voltage-to-current converters)
onto a resistive network implemented by HRes circuits
[4]. The characteristic length of the resistive network is
independently controlled by an off-chip bias voltage. It
can be shown that the systems® step response can be

described by
)vZerf( )+erf( ):](3)
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where ¢ is the characteristic length, A is the input
signal magnitude, and x is the spatial position. Locally
differenced responses, D, of the LoG architecture to a
20 mV step input are shown in Figure 2 where the
family of curves is generated by varying the filtering.
There are three points of interest within Figure 2.
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1. Simulations using the actual exponential filter response
characteristics have shown similar results to using Gaussians.
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Figure 1. LoG Architecture. The architecture depicted
computes the discrete second derivative of a Gaussian
function. This computation is done by the difference of
differences circuitry which approximates a one-
dimensional Laplacian of Gaussian function.

First, the signal response decreases more rapidly as o
increases than in the architectures discussed in sections
IIT and IV. This results in a smaller signal-to-noise ratio
and ultimately in a system which does not respond well
in low contrast environments. Second, the maximum
attainable signal difference for an ideal (noiseless)
system is A which occurs when o = 0 but for this
example the peak signal is approximately 6 mV and
occurs when o = 1. Third, the optimal o will
increase for all architectures in practical implementa-
tions since additional noise signals must be filtered out.

One detractor of using this architecture 1s the com-
putational complexity involved in implementing 1t in a
silicon network. The additional circuitry would result in
greater offsets and consequently lower S/N ratios,
reduced resolution, and greater power consumption than
in the two subsequent architectures.

Nearest Neighbor Differenced LoG Results, D;

S\ 6
g Increasing o
[ 4t
el
2
k=
2 2
=
I
B
w2
3 -2t
B
=
S . ‘
-10 -5 0 5 10
Spatial Position (x)
Figure 2. LoG Response. In this figure, nearest

neighbor differenced results from the LoG architecture
are shown. Notice the rapid loss of signal as the
filtering increases from ¢ = 1,2..16
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Figure 3. DoG Architecture. Shown here are two
adjacent photo-processing cells from the zero-crossing
chip. Photoreceptor outputs are buffered, filtered, and
then a DoG operation is performed. Edge signals are
determined by thresholding locally differenced
outputs.

1. DIFFERENCE OF GAUSSIAN ALGORITHM

The second algorithin {3] uses thresholded zero-
crossings trom a Difference of Gaussians function for
localizing edges. Figure 3 shows two cells from the one
dimensional array. Logarithmic photoreceptor outputs
are buffered through transamps onto two separate HRes
networks. The characteristic length [4] of each network
1s independently controlled by oft-chip bias voltages.
Therefore a DoG operation 1s performed by the wide
range output buffers. Edges are subsequently computed
from the wide-range transamp outputs by magnitude
thresholding nearest-neighbor differences as shown in
equation ().

It can be shown that the step response of an ideal
(noiseless) realization of the system shown in Figure 3
is of the form

A ﬁx ﬁx
Si = -2—{erf EE— —erf 2(5_ } (4)
F1 F2
where A denotes the magnitude of the input step signal,
op, and op, denote the characteristic lengths of the
respective filtering functions, and X represents the spa-
tial position.

Figure 4 shows a plot of the locally differenced
values from equation (4) when a step mput of A = 20
mV is applied to a system with filtering functions
having characteristic  lengths  op, = 1.66;, and
Op, = 1,216 . The factor 1.6 has been chosen to best
approximate a Gaussian response {5]. The arrow indi-
cates the change in response as G, 15 spanned. As can
be seen in Figure 4, the maximum attainable signal dif-
ference is approximately 3 mV when o, = 1. The
maximum achievable signal difference between adja-
cent points for an ideal system of infinite length 1s the
entire input signal magnitude, A. This case occurs when
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Figure 4. Shown here is a plot of the discrete nearest
neighbor differences of the functions resulting from the
DoG chip when op, = 1.60F; . The peak nearest
neighbor signal difference is approximately 3 mV.

there is no filtering in one resistive network, resulting in
a sharp transition at the step mput, and an mfinite
amount of filtering in the second network, where a dc
average of half the input signal magnitude, A/2, is
obtained from the step input (O # 1.60p; ). Asin the
previous architecture, the complexity of this design will
result in large offsets which lead to small S/N ratios.

An interesting comparison between the DoG and
LoG responses is that the LoG response i Figure 2 is
more spatially compact than the DoG response shown in
Figure 4 for the filtering constants chosen. The reason
for this is that an optimal fit between the DoG approxi-
mation and the LoG response has not been performed
since the goal of this discussion is to determine which
architecture retains the greatest amount of available
signal when realistic filtering requirements are consid-
ered.

IV. DIFFERENCED GAUSSIAN ALGORITHM

The last algorithm uses localized difterences from a
single filtered version of the input to isolate edge loca-
tions as depicted in Figure 5. Again two processing
cells composed of logarithmic photoreceptors, butfers,
a single filtering network, and the edge detection cir-
cuitry are shown. In this implementation, absolute
value circuits are employed as the local differencing cir-
cuits. It can be shown [6] that the expression represent-
ing the ideal system response to a step input signal 1s

s, = A erf(@)—erf[ﬁx_‘_l} (5)
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where A is the input signal magnitude, ¢ is the charac-
teristic length, and x is the spatial position. Figure 6
shows the differenced results when a 20 mV step func-
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Figure 5. DG Architecture. Two processing cells of a
chip employing a Locally Differenced Gaussian
computation for edge localization.
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tion 1s introduced into the system and the characteristic
length is varied from 1 to 16. As can be seen the peak
output occurs at ¢ = | and has an approximate value of
8 mV. In this algorithm the maximum signal difference
between adjacent points for an ideal infinite length
system 1s A just as in the previous systems. This condi-
tion occurs when ¢ = 0 and the entire step input transi-
tion 1s contained between adjacent points.

Several notes on the DG algorithm. First, this tech-
nique can produce thick edges since a simple magnitude
comparison is being performed. The thicker edges can
result in reduced resolution and require additional pro-
cessing to perform edge thinning. Second is that this
architecture is the least complex of the three which will
result in smaller offsets and better S/N ratios. Lastly, a
chip implementing this architecture has been fabricated
and is currently under test.

V. COMPARISON

As was discussed previously, the maximum recov-
ered signal for each algorithm in an ideal situation is
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Figure 6. DG Results. Nearest neighbor differencing
results showing the peak signal magnitude as ¢ is
varied from 1 to 16.
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Architectural Response Comparison
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Figure 7. This plot shows the peak signal magnitudes
between adjacent points for all the algorithms. For the
DoG algorithm, o©p, = 1.66p; has been assumed.
Therefore the filtering coefficient plotted along the x-
axis refers to o, .

A. The improvement in the signal-to-notse ratio, how-
ever, 1s dependent upon the amount of filtering that 1s
applied to each system. In the DoG algorithm 1t has
been shown that the proper ratio between the fliltering
constants to approximate the second derivative of a
Gaussian is 1.6 [5]. Figure 7 shows a comparison of the
results obtained from all three algorithms when a step
input signal 20 mV is applied. The filtering coefficients
used are op; = 1.60p; = 1.60pg= .60 g Where o,
and o0y represent the filtering constants used in the
Differenced Gaussian and Laplacian of Gaussian algo-
rithms respectively. The peak signal obtained for the
DoG algorithm occurs at oF; = .7 and has the value
2.25 mV while the Differenced Gaussian and LoG algo-
rithms yield a signal difference of 10.4 mV at that same
amount of filtering.

As the amount of filtering increases, all functions
tend towards zero but for characteristic lengths between
1 and 10 the Differenced Gaussian algorithm provides
superior signal retention characteristics. The LoG algo-
rithm yields similar signal retention characteristics to
the DG algorithm at very low filtering constants but
quickly loses this capability as the filtering increases.
Since the DG algorithm operates simply on thresholded
signal differences, it retains a greater amount of the
available signal compared to the other algorithms which
attempt to localize zero-crossing signals which have a
slope greater than some predetermined threshold. One
consideration when evaluating these results is that
extremely low or high filtering constants are not practi-
cal for VLSI implementations. Filtering constants
below 1 really perform no filtering at all while filtering
constants above 15 or 20 spread edge signals over an
extremely large number of processing cells making edge

detection difficult.

From these results one can see that the Differenced
Gaussian algorithm makes better use of the available
signal strength than the other methods. Therefore, one
can conclude that it is intrinsically easier to localize a
change in magnitude than it is to localize a change in
slope in analog VLSI networks. In addition, the DG
algorithm has a simpler computational structure which
results i1 a more compact, lower power realization with
reduced offsets and a better S/N ratio.

One technique which can be used to improve the
performance of all three architectures in low contrast or
noisy environments is Non-Nearest Neighbor Differenc-
g [6]. Essentially this technique increases the spatial
sampling distance used in the differencing computations
to retain greater amounts of the available signal.

VI. CONCLUSIONS

This paper has compared three architectures used
for computing edge locations in one-dimensional analog
VLSI networks. It is shown that using a Differenced
Gaussian algorithm is superior o a DoG or LoG imple-
mentation in silicon networks due to its ability to retain
greater signal magnitudes. Signal retention is essential
in order to overcome noise sources in the analog compu-
tational circuits. The DG algorithm also is the least
complex to implement since 1t has the fewest computa-
tional elements which also has the added benefit of
reducing overall system size and offsets.
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