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ABSTRACT 

Psychophysical experiments inspire a more complete anal- 
ysis of the effect of quantization on a modified version of 
the histogram indexing method of object recognition. We 
derive an equation that describes how the amount of quanti- 
zation and number of features kept affects recognition accu- 
racy. The equation shows that quantization from 224 colors 
to 15 colors has a negligible effect on accuracy. A simu- 
lation shows that large numbers of objects cause a corre- 
sponding decrease in accuracy, but that keeping more fea- 
tures can increase the accuracy even for massive quantiza- 
tion. An object recognition experiment with real data shows 
dramatically better results when quantization is used, indi- 
cating that massive color quantization can provide some in- 
variance to lighting conditions. 

1. INTRODUCTION 

Psychophysical experiments provide insight to color mem- 
ory and its possible uses in recognition. Berlin and Kay 
[ 11 determined that there are eleven unique color categories. 
Experiments on human memory [2] show that people re- 
member colors as members of an internal color category. 
Our massive quantization is intended to be the engineering 
analogue to human color categorization. 

In this paper, we address three questions. First, how 
far can we quantize the initial color space before recogni- 
tion is seriously impaired? Second, how many colors are 
sufficient to describe a given size set of objects without ap- 
preciable reduction in object recognition accuracy? Third, 
is massive quantization effective in reducing the effects of 
lighting variations on real images? These three questions 
are posed from within the framework of the color histogram 
indexing method of object recognition. 

Color histogram indexing [3] was proposed as a method 
for object recognition by Swain and Ballard. In this method 
an object is represented by a histogram of the colors present 
in one or more images of the object. When a given ob- 

ject appears, its histogram is compared with the histograms 
in the database. The object is assumed to be segmented 
from its environment, and the colors of a given object are 
assumed constant. Their research claimed that “the range of 
colors that occur in the world need only be split into about 
200 different discrete colors to distinguish a large number 
of objects.”[3] Their database had 66 objects in it, they kept 
all the values of the histogram, and obtained only “small 
changes in match effectiveness” even for 64 bins. 

To derive an equation describing the effect of the num- 
ber of bins on accuracy, we use a slightly different approach. 
Instead of storing values for all possible colors, we keep 
only the colors of the p largest areas. We are splitting the 
number of bins in the original algorithm into two parts: the 
number of possible colors and the largest values of the his- 
togram. The simulation (used to generate a plot for vary- 
ing the number of objects in the database) also used this 
approach. However, we used the original algorithm when 
testing real data with segmented images. 

2. THEORY, SIMULATION AND METHODS 

Our computer experiment is based on a psychophysical ex- 
periment to determine the capabilities of human memory. In 
the psychophysical experiment, the observer is first shown 
an object. Next, the object is taken away, and replaced 
with a set of distinguishable objects, one of which is the 
original object. The observer is then asked to identify the 
original object. If the set contained multiple objects from 
the same category as the original, humans were not capable 
of reliably picking out the specific object they had previ- 
ously seen. In our computer experiment, the observer is a 
computer and although the computer quantizes the colors 
present in each object to store them, no other changes are 
made and no degradation over time occurs. Quantization 
takes the place of degradation through memory. The com- 
puter only makes a mistake if two or more objects in the set 
quantize to the same colors as the original object, in which 
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Fig. 1. Diagram showing examples of each variable used in the 
theoretical equations. 

case it chooses between the (perceptually) identical objects 
randomly. 

As shown in Figure 1, several variables affect the accu- 
racy of recognition. Let c denote the number of possible 
colors for the original image of the object, and k represent 
the number of possible colors that the object can have in 
memory. If the c initial colors are quantized to 10 colors for 
storage, k would be 10. For our feature vector, we take the 
colors of the p largest areas. In Swain and Ballard’s work 
[3], this would be equal to the number of possible colors k. 
Let n denote the number of objects in the group. All objects 
in a group must be different in the original space c. Our 
theoretical results produce the expected value of the accu- 
racy with 3 objects per group. It is possible to derive similar 
equations for other values of n, but they quickly become 
intractable. This derivation assumes that if there were m 
identical objects in the set, the chance of choosing the cor- 
rect one would be l / ~ .  In addition, each case is assumed 
to occur equally often. For a given set of objects, each indi- 
vidual object would be the test object equally often, and no 
set of objects could occur more often than any other. 

Figure 1 shows the effects of quantization. The origi- 
nal database (the first row) in colorspace c contains three 
objects (n = 3), each of which has four regions (p = 4). 
When the objects are stored, only IC = 3 colors are used, 
which results in the second row of objects. When one of the 
original objects is presented, it is first quantized and then 

\ 

compared to all objects in memory. Object B has no dupli- 
cates after quantization. Objects A and C, however, quan- 
tize to the same object in the new colorspace. Therefore, the 
computer will confuse objects A and C, resulting in reduced 
accuracy. On average, with this set of objects, the computer 
will guess correctly 2/3 of the time. 

As we wished to test the accuracy of this method for 
large n, we also implemented a Monte Carlo simulation. We 
averaged 10,000 sets of n objects each to obtain reasonably 
smooth results. 

In the theoretical equation, each area of uniform color 
is assigned an index, and so it is possible to derive accuracy 
values for IC < p. For real data, an area was designated as 
the sum of all pixels of a given color, so k must be greater 
than or equal top. Fewer colors than areas was not possible. 

To test the effectiveness of quantization for object recog- 
nition, we constructed a database from images of 9 different 
soda cans under 4 different lighting conditions. We quan- 
tized all the images twice. One database of quantized im- 
ages used a 256 color set. As in Swain and Ballard’s work, 
these colors were generated using uniform quantization of 
8 x 8 ~ 4  in RGB space. The other database consisted of the 
same images quantized to a set of 3 achromatic and 11 chro- 
matic values generated by a data-independent algorithm in 
HLS space. The 3 achromatic colors each contained a third 
of the possible lightness values and the 1 1  chromatic col- 
ors were generated by uniformly quantizing the hue axis. 
A saturation threshold was arbitrarily set to distinguish the 
chromatic values from the achromatic values. For the 256 
color set (k = 256), the 14 highest histogram values were 
kept and the rest were set to zero, and for the 14 color set 
(k = 14), all 14 values were kept. Thus the results are for 
14 histogram values (p = 14) in each case. 

We used four lighting conditions likely to be found in 
our lab: one with the flourescent overhead lights on and the 
blinds closed, one with the lights off and the blinds open, 
one with the left-hand lights on and the blinds open, and 
one with the right-hand lights on and the blinds open. The 
speculars under each lighting condition were different, and 
the images with the blinds open were noticeably bluer than 
the images with the blinds closed. 

Template images for the database were defined as the 
subset of images taken under a single lighting condition. 
The accuracy was calculated as the set of correctly identi- 
fied objects out of the set of images not being used as tem- 
plates. Each lighting condition was used as the template in 
turn, generating four accuracy values under each quantiza- 
tion condition. 

3. RESULTS 

Theoretically, for n = 3, we know that there are only three 
possible cases. When there are no duplicated objects in the 
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quantized space, the computer observer cannot make a mis- 
take. When two of the objects quantize to the same ob- 
ject, the test object is either the unique object, in which case 
the observer is correct, or one of the duplicated objects, in 
which case the observer will be correct half the time. In 
the third case, all three objects quantize to be the same. No 
matter which object is the test object, the observer will have 
to guess. To determine the percentage of correct scores, we 
calculate the number of wrong answers out of all possible 
cases, and subtract this from the perfect score. The number 
of all possible cases is 

where c p  is the total number of possible objects in the un- 
quantized space. The number of instances where two of the 
three objects quantize to the same object is given by 

(2) 

where kp is the number of distinguishable objects in the 
quantized space. When i is a number from 1 to k p ,  si rep- 
resents the number of objects from the set of c p  possible 
original objects that map into the ith object out of k p  possi- 
ble distinguishable objects in the quantized space. The third 
case is represented by a much simpler equation. When all 
the objects are the same, once the first object is chosen the 
rest must come from the same set of si objects. Therefore 
we get 

k p  

N3 = E sj ( ~ j  - 1) ( s j  - 2) (3)  

This gives our final equation for the theoretical accuracy 
given sets consisting of only 3 objects. 

j=1  

Figure 2 shows what happens when k is swept from 1 
to 25 and c is held to 224. For values of k greater than 25, 
the accuracy continues to approach 1. When k = 1, the 
accuracy is l / n ,  in this case 1/3. By k = 5 the system is 
correct over 95% of the time, and by k = 10 the system is 
making mistakes less than one percent of the time. When p 
is changed to 3, accuracy remains near one until k is even 
smaller. Varying p produces a strong impact on accuracy. 
For every incremental increase in p ,  the number of possi- 
ble objects in both the quantized and unquantized spaces 
increases exponentially, and thus the chances of a fixed size 
set incorporating two objects similar enough to be indistin- 
guishable in the quantized space are reduced. As expected, 
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Fig. 2. Theoretical results for c = 224, p = 2 andp = 3, n = 3, 
and k varying. 

increasing the number of features used to represent each ob- 
ject increases the recognition accuracy. 

Holding p and k constant, and varying c ,  produces very 
little effect on accuracy until c is very close to k. When 
c = k ,  accuracy is one, and no quantization occurs. If 
the number of colors in the original space is larger than the 
number of colors in the quantized space, the original num- 
ber of colors becomes irrelevant. In fact, varying c from 
224 to 2' produces an insignificant difference in accuracy 
(p = 2, n = 3, k = lo), and reducing it still further, to only 
six more levels than k, 16, produces a rise of only .002% 

The results of the simulation are shown in Figure 3. For 
k = 10 and p = 2, when n = 100 there are as many ob- 
jects in the set as there are distinguishable objects in the 
world. This is reflected in the accuracy, which decreases to 
about 63 percent. As expected, this cue breaks down for 
large n. When p is increased, the accuracy suffers less. As 
the number of objects that must be distinguished increases, 
the accuracy falls proportionately. Increasing the number of 
features alleviates this problem. 

Real data from the object recognition experiment de- 
scribed above produced convincing results, shown in Table 
1. Under the lighting condition that provided the best results 
with 14 colors, 78% of the 14-color objects were identified 
correctly. Only 37% of the 256-color objects were identified 
correctly. In this case, introducing quantization increased 
the accuracy by 41%. Under the lighting condition that pro- 
duced the best results with 256 colors, 52% of the 256-color 
objects were identified correctly. With 14 colors, under the 
same lighting condition, 63% were identified correctly. At 
worst, the difference between the accuracies was only 7%, 
but in all cases, quantization improved object recognition. 
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Fig. 3. Simulation (averaged) results for c = 224, p = 2 and 
p = 3, k = 10, and n varying. 

Lighting Condition I 256 Colors I 14 Colors 
1 I 41% 1 63% 

Table 1. Object recognition accuracy generated from database 
of9 soda cans under 4 different lighting conditions. Lighting con- 
dition in the table indicates the images that were used as the tem- 
plates in the database, while the test data consisted of the remain- 
ing 27 images. 

4. CONCLUSIONS 

In theory, we can reduce the number of colors from 224 to 
15 before the accuracy is substantially reduced. Massive 
color quantization has very little effect on accuracy where 
database size is small compared to the number of possi- 
ble objects. The simulation showed that if enough features 
of each object are kept, 15 or fewer colors may be suffi- 
cient. If the feature vectors are stored in a computer, only 
np(log2k) bits need to be stored. Trading off p and k would 
allow manipulation of the database size without loss of ac- 
curacy. Real data shows the benefits of massive quantiza- 
tion for object recognition. Even without a color constant 
pre-processor, taking the best results under each quantiza- 
tion condition, accuracy increased by 28% under a variety 
of lighting conditions. 
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